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The existing multi-view learning (MVL) learns how to process patterns with multiple information

sources. In generalization this MVL is proven to have a significant advantage over the usual single-view

learning (SVL). However, in most real-world cases we only have single source patterns to which the

existing MVL is unable to be directly applied. This paper aims to develop a new MVL technique for

single source patterns. To this end, we first reshape the original vector representation of single source

patterns into multiple matrix representations. In doing so, we can change the original architecture of a

given base classifier into different sub-ones. Each newly generated sub-classifier can classify the

patterns represented with the matrix. Here each sub-classifier is taken as one view of the original base

classifier. As a result, a set of sub-classifiers with different views are come into being. Then, one joint

rather than separated learning process for the multi-view sub-classifiers is developed. In practice, the

original base classifier employs the vector-pattern-oriented Ho–Kashyap classifier with regularization

learning (called MHKS) as a paradigm which is not limited to MHKS. Thus, the proposed joint multi-

view learning is named as MultiV-MHKS. Finally, the feasibility and effectiveness of the proposed

MultiV-MHKS is demonstrated by the experimental results on benchmark data sets. More importantly,

we have demonstrated that the proposed multi-view approach generally has a tighter generalization

risk bound than its single-view one in terms of the Rademacher complexity analysis.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

It is well-known that it is important to integrate the prior
knowledge of dealt patterns in designing classifiers [8]. In
practice, patterns can generally be obtained from single or multi-
ple information sources. If each information source is taken as one
view, accordingly there are two kinds of patterns, i.e. single-view
patterns and multi-view patterns.1 Correspondingly, the learning
based on single-view and multi-view patterns can be called as
single-view learning (SVL) and multi-view learning (MVL),
respectively. It has been proven that co-training as one typical
MVL approach has a superior generalization ability to SVL [9]. Co-
training learns on both labeled and unlabeled pattern sets. Both
labeled and unlabeled patterns are composed of two naturally
split attribute sets. Each attribute set is called one view of the
patterns. In implementation, co-training algorithm requires that
the two views given the class labels are conditionally indepen-
dent. The independence assumption is guaranteed by the patterns
composed of two naturally split attribute sets.
ll rights reserved.

ibute set for patterns. Thus,

ingle attribute set and multi-

tribute sets.
In this paper, we expand the existing MVL to single-view
patterns and thus develop a novel MVL framework, whose under-
lying motivations are:
�
 It is known that patterns can be sorted into single-view
patterns and multi-view patterns according to the number M

of information sources [9–11]. However, in most real-world
applications there are usually only single-view patterns avail-
able since the M has to be one. In that case, the existing MVL
framework cannot effectively work since there is not any
natural way to partition the attribute space [8,10–12]. There-
fore, this fact motivates us to develop a new MVL framework.
The new MVL is expected to create multiple different views
from single-view patterns and then to learn on the generated
views simultaneously.

�
 In the existing MVL framework, multi-view patterns are

represented by multiple independent sets of attributes. Its
base algorithms have the same architecture in each view so as
to iteratively bootstrap each other. Here, we expect to utilize
the multi-view technique due to its superior generalization to
the SVL. However, different from the exist MVL on multi-view
patterns, we give a new multi-view viewpoint for a given base
classifier on single-view patterns. Concretely, we change the
original architecture of the given base classifier and thus
obtain a set of sub-classifiers with different architectures from

www.elsevier.com/locate/pr
dx.doi.org/10.1016/j.patcog.2011.04.002
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each other. Each derived sub-classifier can be taken as one
view of the original base classifier, which forms a set of sub-
classifiers with multiple views. For all the derived sub-classi-
fiers, we further adopt a joint rather than separated learning
process. Therefore, one new learning algorithm is developed
for these multi-view sub-classifiers. It is minimized for the
disagreement between the outputs of each derived classifier
on the same patterns.

In practice, we select the vector-pattern-oriented linear clas-
sifier as the so-discussed base classifier. Before being classified,
any pattern whatever form it originally is, should be transformed
into a vector representation in the vectorial case [33]. However, it
is not always efficient to construct a vector-pattern-oriented
classifier since the vectorization for patterns such as images
might lead to a high computation and a loss of spatial information
[21,23,26,34,40]. For overcoming the disadvantage, we proposed a
matrix-pattern-oriented Ho–Kashyap classifier named MatMHKS
[21,40] in the previous work. MatMHKS is a matrixized version of
the vectorial Ho–Kashyap classifier with regularization learning
(namely MHKS) [20]. The literature [21,23,34,40] has demon-
strated the significant advantages of the matrixized classifier
design in terms of both classification and computational
performance.

The discriminant function of the vectorial MHKS is given as

gðxÞ ¼ ~oT xþo0, ð1Þ

where xARd is a vector pattern, ~oARd is a weight vector, and
o0AR is a bias. Correspondingly, the discriminant function of
MatMHKS is given as

gðAÞ ¼ uT A ~vþv0, ð2Þ

where AARm�n is a matrix pattern, uARm and ~vARn are the two
weight vectors, and v0AR is a bias. It is found that for a given
pattern, there can be one vector-form representation in the
formulation (1) but multiple matrix-form representations with
different dimensional sizes for the m and n in the formulation
(33). In other words, there are multiple ways for reshaping the
vector to the matrix. For instance, a vector x¼ ½1,2,3,4,5,6,7,8�T

could be assembled into two different matrices:

1 3 5 7

2 4 6 8

� �
and

1 2 3 4

5 6 7 8

� �T

:

Consequently, only one MHKS can be created for classifying the
given pattern x. In contrast, multiple MatMHKSs can be created
for the same task due to multiple reshaping ways from a vector to
a matrix. Therefore, for the same classification problem, the
solution set f ~o,o0g of single MHKS corresponds to the solution

sets fup, ~vp,vp
0g

M
p ¼ 1 of multiple MatMHKSs, where the weight

vector sets fup, ~vp
gMp ¼ 1 are different from each other in terms of

the dimensional size but can share a common discriminant

function form gðAÞ ¼ uT A ~vþv0. Here, MHKS is viewed as the base
classifier. Each MatMHKS is taken as one view of the base MHKS.
Our previous work [21] has validated that each MatMHKS
provides one hypothesis and exhibits one representation of the
original pattern. Thus multiple MatMHKSs can provide a com-
plementarity for each other in classification due to their different
representations for patterns. In order to achieve the complemen-
tarity, we syncretize the learning processing of multiple
MatMHKSs into one single processing. In this case, each
MatMHKS is expected to correctly classify one given pattern with
the same attributes. Meanwhile it should be minimized for the
disagreement between the outputs of all MatMHKSs. As a result,
the single learning process is produced and one multi-view-
combined classifier named MultiV-MHKS is proposed. Through
the Rademacher complexity analysis, we demonstrate that the
proposed multi-view MultiV-MHKS has a tighter generalization
risk bound compared with the single-view MHKS.
�
 The proposed MultiV-MHKS algorithm is a nice way to solve
the view selection problem of MatMHKS [21]. In MatMHKS, it
is always a problem to select the best right matrix-form
reshaped from a given vector pattern. This paper suggests
one way to bypass it through choosing all the relevant ones
and optimizing over them jointly. It is known that from a
vector pattern as the input of MHKS to a matrix as the input of
MatMHKS, the classification performance of MatMHKS relies
on the different reshaping or matrixization ways [21,40]. In
the processing of matrixizing a vector, different reshaping
ways can induce multiple matrix patterns with different
dimensional sizes of the row and column. Consequently,
different reshaping ways result in different classification
performances of MatMHKSs on the same vector patterns. Then
for the best performance, we have to make a choice in multiple
reshaping ways with the cross-validation technique at the cost
of high computation [21]. Since the proposed MultiV-MHKS
here simultaneously considers multiple MatMHKSs with mul-
tiple matrices, the choice of matrixizing ways could be avoided
to great extent.

�
 The proposed MultiV-MHKS algorithm adopts the data repre-

sentation in multiple views different from the other main
strategies for creating good ensembles of classifiers: sampling
either pattern sets or attribute (interchangeably feature) sets
[13,14,48]. Compared with sampling pattern sets or feature
sets, the proposed multi-view classifier design provides an
alternative novel approach of producing multiple data sets for
base learners, i.e. reshaping a vector pattern to different matrix
ones with the same full features. In this case, the proposed
multi-view classifier has the advantages in terms of the actual
number of the unique samples, the size of the feature set
and the representations, which brings up the superior perfor-
mance of the proposed MVL here. In addition, different from
the strategy of sampling pattern sets or feature sets, the
proposed MVL employs a joint optimization rather than
a separate learning in the training processing. To the best of
our knowledge, it is novel for the proposed strategy of
generating multiple training data sets on the base classifier.
The implemented experimental results here have also shown
that the proposed classifier MultiV-MHKS algorithm has a
superior classification performance to the other strategies of
ensembles.

We highlight the contributions of this paper as follows:
�
 Significance: This paper introduces the creation of multiple
views from a single view for multi-view learning. It is known
that though the existing MVL has been shown effective in the
literature [8,10–12], it still relies heavily on the naturally
separating the feature set into two independent components.
In many settings, there might not be any natural way to
partition the feature space, and thus the existing MVL frame-
work might not be applicable. In such a scenario, the proposed
approach suggested in this paper can potentially create multi-
ple independent or at least weaker correlated views from a
single view and then learn from the generated multiple views
simultaneously.

�
 Novelty in the two aspects: In the first aspect, the learning

approach proposed in this paper is different from the existing
multi-view learning approach. Instead of the classifiers trained
on two views iteratively boot-strapping each other, this paper
proposes a joint learning approach that minimizes the
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disagreement across the classifications with multiple views.
There might be some similarities with ensemble learning. In
ensemble learning, the predictions from different sub-classi-
fiers over a single view are combined. But, in contrast, the
critical difference of the proposed MVL here is in the joint
optimization. In the second aspect, compared with the typical
ensemble models: Bagging or Boosting based on pattern
sampling [13,48] and Attribute Bagging based on attribute
sampling [14], our strategy is neither sampling patterns nor
sampling attributes, instead reshaping the original pattern set
to the matrix pattern set in multiple times. Each reshaping can
develop a corresponding sub-classifier and then can be syn-
cretized together, which leads to a performance gain.

�
 Generalization: The proposed MVL is a wrapper technique and

is not restricted to the MHKS classifier. It acts as the state-of-
the-art kernelization technique applied to linear algorithms.
The proposed multi-view-combined learning can fall into the
framework as follows:

minL¼ JindþgJcom ð3Þ

where Jind ¼
PM

p ¼ 1 IpðfpÞ, Jcom ¼
PM

p ¼ 1ðfp�
PM

q ¼ 1 rqfqÞ,
PM

q ¼ 1

rq ¼ 1. Jind denotes that M learning machines fp,p¼ 1, . . . ,M

train according to the criterion Ip, respectively. Jcom makes M

machines fp corresponding to M views of the common labels
achieve as much agreement on their outputs as possible. Jcom

tries to achieve the complementarity between M learning

machines fp’s. When the individual machine fp adopts the

classifier g of Eq. (33) in practice, the learning framework
becomes the proposed algorithm MultiV-MHKS.

The rest of this paper is organized as follows. Section 2
discusses the related work on the multi-view learning. Section 3
gives how to create multiple pattern representations from single-
view patterns. Section 4 introduces the multi-view viewpoint into
MHKS and MatMHKS, and further gives the description about the
structure of the proposed multi-view-combined classifier MultiV-
MHKS. The experiments in Section 5 have demonstrated the
feasibility and effectiveness of the proposed MVL. Following that,
both conclusion and future work are given in Section 6.
2. Related work

One typical example of the existing MVL is web-page classi-
fication [9], where each web page can be represented by either
the words on itself (view one) or the words contained in anchor
texts of inbound hyperlinks (view two). In [9], Blum and Mitchell
design a co-training algorithm for the labeled and unlabeled web
pattern sets composed of two naturally split views. On labeled
web set, two sub-classifiers of co-training algorithm are incre-
mentally built with their corresponding views, and thus on each
cycle each sub-classifier labels the unlabeled webs and picks
those with the highest confidence into the labeled set. The
processing repeats until the terminated condition is satisfied.
The co-training algorithm requires the assumptions: (1) the
sufficiency that each base classifier should be sufficient to classify
the data correctly, (2) the independence assumption that the
different views given the class label are conditionally indepen-
dent, (3) the compatibility assumption that the base classifiers in
each view farthest agree on labels of web patterns. But in most
cases, it is hard to satisfy the independence assumption due to the
non-existence of naturally split attribute sets (i.e. naturally split
views) such as only single-view patterns available. Nigam and
Ghani [10] experimentally explore the co-training algorithm with
or without the independence assumption, demonstrate that the
co-training algorithm with a natural split of the attributes
outperforms the ones without, and further propose a probabilistic
multi-view algorithm co-EM. Moreover, Muslea et al. [11] incor-
porate active learning into co-EM and present a new method co-
EMT. Co-EMT outperforms both co-training and co-EM and has a
robustness in view-correlation cases to some extent. Although
both co-EMT and co-EM have a superior generalization to co-
training, all these algorithms cannot effectively work on the
patterns with the non-naturally split attributes, especially the
single-view patterns.

It should be stated that the existing MVL [9–11] focuses on
semi-supervised learning and works on both labeled and unla-
beled patterns. It is known that unlabeled patterns are much
easier to obtain in real-world learning applications than labeled
ones. Thus, several researches are done to exploit the role of
unlabeled patterns. Brefeld et al. [50] show that unlabeled data
can significantly improve the predictive performance of classifi-
cation algorithms and further propose an efficient semi-super-
vised least squares regression algorithm that scales linearly in the
number of unlabeled patterns through a semi-parametric variant.
Zhou [51] gives a more general discussion on unlabeled patterns
and shows the reasons that unlabeled patterns can effectively
work with either few or many labeled patterns. In contrast, the
proposed MVL here is supervised rather than semi-supervised
and thus pays more attention to labeled patterns available.
Meanwhile, paying more attention on agreement of the data is
intuitively understood. For example, the same face from the two
different views (i.e. different cameras) should share the same
label, implying such two-view input face must have the same
identity of that person. In the proposed MVL framework, we still
employ the assumptions of the existing MVL framework onto
labeled patterns. Firstly, the proposed MVL adopts MatMHKS as
the base classifier. MatMHKS has been demonstrated to classify
patterns correctly with labeled training set [21]. Thus, the
sufficiency assumption can be guaranteed. Secondly, the proposed
MVL reshapes the same vector patterns into different matrix
representations which are different from each other in the
representation level. But different matrix representations all
correspond to one unique pattern and thus are independently
given the class label on the labeled pattern set. Thirdly, the
proposed MVL requires not only the compatibility between
the sub-classifier of each view and a labeled pattern set, but also
the minimization of the disagreement among all views. In a word,
the proposed MVL falls into supervised learning framework.

Further, since the proposed MVL on single-view data sets here
generates different sub-classifiers from multiple matrix represen-
tations, it could be naturally associated with ensemble learning
[13–18,43,47,48]. The MVL usually combines the generated sub-
classifiers into one learning process in which all the outputs of the
sub-classifiers are expected to maximally agree with each other.
In contrast, an ensemble of sub-classifiers works by separably
running a base sub-classifier multiple times, and forming a final
decision with a combination of the outputs of the individual sub-
classifiers, where all the outputs are expected to achieve a large
diversity of prediction errors. Ensemble learning is known as an
effective method of boosting classification performance on single-
view patterns. It also combines multiple sub-classifiers separately
trained on a given data set. Valentini and Masulli [15] give an
overview of ensemble algorithms so as to distinguish generative
and non-generative algorithms. The generative ensemble gener-
ates a set of base sub-learners, whereas the non-generative one
confines themselves and combines a set of existing base sub-
learners. But in [15], the authors do not give an unified theory on
ensembles. Thus, Seewald [16] proposes a theoretical framework
for the field of ensemble learning, where some common ensemble
learning schemes can be reduced into the Stacking strategy.
Further, Kuncheva [47] gives how to combine sub-classifiers
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together in order to achieve an improved classification perfor-
mance across-the-board. Here, we pay attention to the special
ensemble scheme that generates a set of base sub-learners acting
on a set of given patterns since our proposed multi-view-com-
bined classifier also works on a set of given patterns. The
ensemble method acting on the original patterns is categorized
into two main schemes: sampling patterns and features. Bagging
[13], AdaBoosting [48] and Attribute Bagging [14] are their typical
instances. For the sampling patterns technique, this paper focuses
on Bagging that works by randomly sampling M times from the
original training set with replacement and generating M new
training sets. As the instance of the sampling features technique,
Attribute Bagging works by randomly selecting multiple subsets
of features from the original feature set without replacement.

There are two differences between our method and Bagging.
First, the proposed approach adopts the so-called multiviewization

that reshapes the original training set represented with single
vector into the sets represented with multiple matrices. Thus, the
original single-view training set can induce multiple training sets
represented with different matrices. In this case, we not only keep
the size of the original training set, but also hope to induce some
representation information. In contrast, Bagging randomly sam-
ples the original training set multiple times with replacement. In
this sense, some examples from the original training set are
repeated in the newly generated training set. Thus, the actual
number of unique pattern decreases though the size remains the
same. Secondly, the proposed approach adopts the joint learning
on the generated training sets. Bagging adopts the separate
learning, i.e. the majority voting technique. In a word, our
proposed method works by producing multiple different matrix
representations from the original vector representation and joint
learning over the representations. This is an entirely different but
novel approach of producing multiple data sets for base classi-
fiers. In order to explore the differences between them, we have
made an experimental comparison in Section 5.
Fig. 1. Reshape vector zARd�1 to a matrix AARm�n , where d¼mn and the i-th

sub-vector ai ARm�1 ,i¼ 1, . . . ,n.
3. Creating multiple pattern representations from single-view
patterns

3.1. The way of multiviewization

This section gives the way to generate multiple pattern
representations from the single-view patterns. Firstly, according
to the size of sources for patterns, we sort patterns into single-
view and multi-view patterns. In our opinion, each source of a
pattern can form a set of attributes for the pattern. Thus, each set
of attributes can be taken as one view of the pattern. Then

suppose that there are patterns fzig
N
i ¼ 1, where each pattern zi

has M views denoted as fzp
i g

M
p ¼ 1 and each view of all the patterns

denoted as fzp
i g

N
i ¼ 1 is independent from each other. If M¼1, the

patterns fzp
i g

M
p ¼ 1 is called the single-view patterns. If MZ2, the

patterns fzp
i g

M
p ¼ 1 is called the multi-view patterns.

As Section 2 stated, in traditional machine learning [45,46], the
learning machines on the single-view patterns is widespread and
there are usually only single-view patterns available in most
cases. Correspondingly, in the multi-view learning framework
[9–11], the superiority of the machines has been shown on the
multi-view patterns to the machines learnt from any individual
view. Thus, due to the superior performance of the learning on
multi-view patterns to single-view patterns, we develop a so-
called multiviewization technique for the single-view patterns.

In practice, we consider that the single-view patterns fzig
N
i ¼ 1

are originally represented by vector i.e. ziARd, which is the most
familiar case. In order to create multiple views from fzig
N
i ¼ 1, we

define a simple reshaping way for the given single-view patterns

fzig
N
i ¼ 1. Through the defined reshaping way, each pattern zi can be

represented in multiple matrices. In other words, the original-

vector patterns ziARd can be reshaped into multiple matrices in
different reshaping ways. For convenience, the defined reshaping
way is without overlapping among the components of the
pattern, i.e. the original-vector zi is partitioned into many equal-
size sub-vectors, and then arranged column-by-column into the
corresponding matrix as shown in Fig. 1. In this case, different
sizes of the sub-vector generate different matrix representations

of zi. Therefore in mathematics, each pattern ziARd can have

multiple matrix representations denoted as Ap
i ARmp�np , p¼ 1,

. . . ,M, where the value of d is equal to that of mp � np. We call the

reshaping processing as multiviewization.

3.2. Advantages of multiviewization

In the proposed multiviewization processing, the original vector
pattern zi is reshaped into the matrix Ap

i ARmp�np in each view.
The literatures [26,23,21,40,36] have given the advantages of
using the matrix rather than vector representation for patterns.
Firstly, the two weight vectors u, ~v of Eq. (33) respectively acting
on the two sides of the matrix pattern Ap replace the original
single weight vector ~o of Eq. (1) on zi. Thus, the memory required
for the weight vectors of the linear classifier is reduced from
d¼mp � np to mpþnp. Secondly, Chen et al. [36] have demon-
strated that reshaping the vector pattern into the matrix one can
introduce some new implicit information through the new con-
straint in structure. Thirdly, the discriminant function (33) of each
matrix view is the discriminant function (1) of the original vector
case imposed with Kronecker product [41] decomposability con-
straint [40]. The searching for its optimal weight vectors u, ~v of
each matrix view might be guided by some prior information
such as the structural or locally spatial information which is
reflected in the representation of the Kronecker production of u

and ~v. That is the reason why using the matrix rather than vector
representation for patterns can improve in the classification
performance especially for image patterns. Since the proposed
multiviewization adopts matrix representation for patterns, it
inherits all the listed advantages above.

Moveover, the proposed multiviewization is a wrapper techni-
que, since the multiviewization as Fig. 1 shows is not limited into
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one special learning algorithm and can be extended to the
learning framework with the formulation (1). The proposed
multiviewization processing creates multiple projections of the
original training set. Thus, the size of the original training set is
still kept the same. Comparison with the two current typical
combined classifiers Bagging based on pattern sampling [13] and
Attribute Bagging based on attribute sampling [14] both for
generation of classifier diversity, our strategy is neither sampling
patterns nor sampling attributes. Instead, the proposed multi-

viewization reshapes a whole pattern set to matrix pattern set and
works with the representation level of the original single-view
patterns. Therefore, the proposed multiviewization is an alterna-
tive approach for improving classification like Bagging [13] and
Attribute Bagging [14].
4. Joint learning on multiple views

This section describes how to learn on the multiple pattern
representations generated from the single-view patterns. We first
review the base classifier MHKS [20] and its corresponding
matrixization version MatMHKS, respectively. Based on both
MHKS and MatMHKS, we further propose a multi-view-combined
classifier namely MultiV-MHKS.

4.1. MHKS classifier

The vector linear classifiers [25] own the discriminant function
written as the formulation (1), and have attracted more and more
attentions due to their ease of mathematical tractability. Among
these classifiers, the Ho–Kashyap (HK) classifier [19] is well-
known as its simplicity and fast gradient descent optimization
with a heuristic update-rule. Subsequently, some modifications
have been done in the HK classifier. MHKS [20] is a regularized
least squares (RLS) [42,44] classifier. It adopts a similar principle
to support vector machine (SVM) [22], maximizes the separating
margin without solving the quadratic programming (QP) problem,
and gets better generalization performance than the original HK
classifier in their experiments. This subsection reviews the
architecture of MHKS.

Suppose that there are N samples ðxi,jiÞ,i¼ 1, . . . ,N, where
xiARd and the corresponding class label jiAfþ1,�1g. The dis-
criminant function of the HK classifier for the binary classification
problem is denoted as the formulation (1). If the binary classifica-
tion problem is linearly separable, we can use (1) to get the
formulation in the following form:

jigðxiÞ ¼jið ~o
T xiþo0Þ40, i¼ 1, . . . ,N: ð4Þ

Further, by defining the augmented pattern vector yi ¼ ½x
T
i ,1�T , the

corresponding augmented weight vector can be given by

w¼ ½ ~oT ,o0�
T ARdþ1. Thus (4) can be rewritten as

jigðyiÞ ¼jio
T yi40, i¼ 1, . . . ,N: ð5Þ

Let yi ¼jiyi, Y ¼ ½y1, . . . ,yN�
T , then, (5) can be denoted in matrix

form

Yo40N�1: ð6Þ

The criterion function of the HK classifier is to minimize the
quadratic loss function as follows:

Jsðo,bÞ ¼ JYo�bJ2
2 ¼ ðYo�bÞT ðYo�bÞ, ð7Þ

where b is the margin vector, and bZ0N�1. The gradients of Js

with respect to o and b are respectively given by

roJs ¼ 2YT ðYo�bÞ, ð8Þ
rbJs ¼�2ðYo�bÞ: ð9Þ

Then, the margin vector b is first initialized to b1Z0N�1 with all
components set to a non-negative value. At each iteration k, the
weight vector ok is deduced from bk by

ok ¼ Yybk, ð10Þ

where Yy stands for the pseudo-inverse of Y. By the gradient
descent method, the new estimate of the margin vector b can be
computed. But it is not free to compute b since the constraint

bZ0N�1. For this, by starting with bZ0N�1 and preventing any of
its components from reducing, we obtain the HK rule for mini-

mizing Jsðo,bÞ based on (9) and (10) as follows:

b1Z0N�1,

bkþ1 ¼ bkþrðekþjekjÞ,

(
ð11Þ

where the error vector ek ¼ Yok�bk, and the learning rate
0oro1. In practice, we will define a termination criterion

Jbkþ1�bkJ2rx.
Although the HK classifier can find a separable vector in the

linearly separable case and provide evidence in the linearly
inseparable case [25], it is sensitive to outliers [20] and cannot
guarantee good classification performance. Thus, Leski [20] pro-
poses MHKS to remedy the shortcoming and defines a canonical
hyperplane as follows:

YoZ1N�1: ð12Þ

Then, a hyperparameter c is introduced to tune the tradeoff
between the model complexity and the training error. Conse-
quently, the criterion of MHKS is defined as follows:

min
oARdþ 1 ,bZ0

Iðo,bÞ ¼ ðYo�1N�1�bÞT ðYo�1N�1�bÞþc ~oT ~o, ð13Þ

where the second term of the right-handed side of (13) is a
regularization one, and the regularization parameter cZ0. The
procedure of MHKS remains the same as the HK classifier except
(10), which becomes

ok ¼ ðY
T Yþc~IÞ�1YT ðbkþ1N�1Þ, ð14Þ

where ~I is an identity matrix with the last element on the main
diagonal set to zero, and the error vector is now ek ¼ ðYok�

bk�1N�1Þ. On the whole, MHKS adopts the similar principle to
SVM, and maximizes the separating margin without solving the
QP problem.

4.2. MatMHKS classifier

This subsection reviews our previous work MatMHKS [21] that
can classify a matrix pattern reshaped from images or original
one-dimensional vectors and shows a superior classification
performance. Suppose that for the binary classification problem
in the matrix case, there are matrix samples Tr2DðNÞ ¼

fðA1,j1Þ, . . . ,ðAN ,jNÞg, where N is the sample number, AiARm�n,
and the corresponding class label jiAfþ1,�1g. With the formu-
lation (33), the discriminant function of MatMHKS for the binary
classification problem can be given in terms of

gðAiÞ ¼ uT Ai ~vþv0

40, if ji ¼ ¼ þ1,

o0, if ji ¼ ¼�1,

(
i¼ 1, . . . ,N: ð15Þ

Similarly to MHKS, we define the equalities jiðu
T Ai ~vþv0Þ�

1¼ bi,i¼ 1, . . . ,N, where b¼ ½b1, . . . ,bN�
T is an arbitrary non-nega-

tive vector, biZ0, and the error vector e¼ ½e1, . . . ,eN�
T with all

components ei ¼jiðu
T Ai ~vþv0Þ�1�bi,i¼ 1, . . . ,N. The p-th compo-

nent of the e named ep, is taken as a measure of the distance of the
p-th pattern to the separation hyperplane (the distance is called
margin). If the margin is positive, epZ0, and in this case, the
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pattern Ap is correctly classified and thus ep can be set to zero by
increasing the corresponding bp. On the other hand, if the margin
of the p-th pattern is negative, epo0, but due to the constraint
bpZ0, it is impossible to prevent condition bpo0 by decreasing
bp to set ep to zero. Thus, the misclassification error in the matrix
case, can be written in the form

Iðu, ~v,v0,bÞ ¼
XN

i ¼ 1

‘ ð�eiÞ, ð16Þ

where ‘ ðzÞ ¼ 1 for z40, and ‘ ðzÞ ¼ 0 for zr0. But this optimiza-
tion problem is NP-complete [35] since the criterion is not a
convex function. Instead of (16), the alternative criterion is
defined as below

min
uARm , ~v ARn ,v0 ,bZ0

Iðu, ~v,v0,bÞ ¼
XN

i ¼ 1

ðjiðu
T Ai ~vþv0Þ�1�biÞ

2

þcðuT S1uþ ~vT S2 ~vÞ, ð17Þ

where S1 ¼mIm�m,S2 ¼ nIn�n are the two regularization matrices
respectively corresponding to the u and ~v, the regularization
parameter c (cAR,cZ0) controls the generalization ability of
the classifier designed by making a tradeoff between the com-
plexity of the classifier and the training errors. In order to express
simply, we set Y ¼ ½y1, . . . ,yN�

T ,yi ¼ji½u
T Ai,1�

T ,i¼ 1, . . . ,N,v¼
½ ~vT ,v0�

T , and (17) can be simplified in matrix form as follows:

min
uARm ,vARnþ 1 ,bZ0

Iðu,v,bÞ ¼ ðYv�1N�1�bÞT ðYv�1N�1�bÞ

þcðuT S1uþvT ~S2 vÞ, ð18Þ

where ~S2 is a matrix with dimensionality of ðnþ1Þ � ðnþ1Þ and
~S2 ¼ ð

S2
0

0
0Þ. Then, the weight vector u, ~v and the bias v0 can be

obtained by the gradients of the objective functions (17) and (18)
with respect to u, v and b. The design procedure for MatMHKS is
shown in Table 1.

4.3. Proposed multi-view-joint classifier (MultiV-MHKS)

This subsection introduces the multi-view viewpoint into the
classifier design, and gives a detailed description about the
proposed multi-view-combined classifier on single-view patterns.
Suppose that there are N labeled samples fðxi,jiÞg

N
i ¼ 1 in a single-

view sense, where xiARd and the corresponding class label
jiAfþ1,�1g. The discriminant function of MHKS is (1) as
follows:

gðxÞ ¼ ~oT xþo0:

The discriminant function of MatMHKS is (33) as follows:

gðAÞ ¼ uT A ~vþv0:

fo,o0g is denoted as one MHKS-solution set and correspondingly,

fu, ~v,v0g is denoted as one MatMHKS-solution set. For a given
Table 1
Algorithm MatMHKS.

Input: Tr2DðNÞ ¼ fðA1 ,j1Þ, . . . ,ðAN ,jN Þg

OutPut: the weight vectors u, ~v , and the bias v0

1. fix cZ0,0oro1; initialize bð1ÞZ0 and u(1); set the iteration index k¼1;

2. Y ¼ ½y1 , . . . ,yN �
T , where yi ¼ji½uðkÞ

T Ai ,1�
T ;

3. vðkÞ ¼ ðYT Yþc ~S2 Þ
�1YT ð1N�1þbðkÞÞ;

4. eðkÞ ¼ YvðkÞ�1N�1�bðkÞ;

5. bðkþ1Þ ¼ bðkÞþrðeðkÞþjeðkÞjÞ;
6. if Jbðkþ1Þ�bðkÞJ4x, then go to Step 7, else stop;

7. uðkþ1Þ ¼ ð
PN

i ¼ 1 Ai ~vðkÞ ~vðkÞ
T AT

i þcS1Þ
�1
ð
PN

i ¼ 1 jið1þbiðkÞ�jiv0ÞAi ~vðkÞÞ,

k¼kþ1, go to Step 2.
sample with the same attributes to be classified, its vector form is

xi, and its multiple matrix forms are denoted as fAp
i g

M
p ¼ 1 which are

reshaped from xi in the pre-defined M ways. Consequently, for the
given sample, only one MHKS can classify it, whereas multiple

MatMHKSs can classify it. The solution set f ~o,o0g of one MHKS

corresponds to the solution sets fup, ~vp,vp
0g

M
p ¼ 1 of multiple

MatMHKSs which are different from each other in the dimension-

ality size of their weight vectors up, ~vp and have a common
expression. The corresponding discriminant function set of multi-

ple MatMHKSs is denoted as GðAÞ ¼ fgpðAp
i Þg

M
p ¼ 1. A natural idea is

to learn the set GðAÞ ¼ fgpðAp
i Þg

M
p ¼ 1 such that each function

correctly classifies its corresponding matrix form Ap
i of the sample

xi, and the disagreement between the outputs of the function set
is farthest minimized. We fuse the M MatMHKSs into one single
learning process in the framework (3).Concretely, we can get the
following optimization problem:

min
up ARm , ~v p ARn ,v

p
0
AR

p ¼ 1,...,M

L¼
XM
p ¼ 1

XN

i ¼ 1

ðjig
pðAp

i Þ�1�bp
i Þ

2
þcpðupT S1upþ ~vpT S2 ~v

p
ÞÞ

 

þg
XN

i ¼ 1

XM
p ¼ 1

jig
pðAp

i Þ�
XM
q ¼ 1

rqjig
qðAq

i Þ

 !2

, ð19Þ

where bp
i is an arbitrary scalar quantity; cp is the regularization

parameter of each view; S1 ¼mIm�m,S2 ¼ nIn�n; g is the coupling
parameter that regularizes the set G(A) towards compatibility

using the multiple Ai’s of a given sample xi; rqZ0,
PM

q ¼ 1 rq ¼ 1, rq

denotes the importance of the corresponding view and the bigger
the rq is, the more important the corresponding view is. The first
term of the right side of (19) is to guarantee that each view can
correctly classify samples, and the second one is to minimize the
disagreement between each view by making the outputs of each
view be maximally close to the weight average outputs of
all views.

It is known that the outputs of the sub-classifiers should
disagree on labeled data in order to get a diversity in ensemble
learning [53]. The diversity is supposed to improve performance
in ensemble learning [47,51,53]. However, as the above state-
ment, the proposed MVL requires an agreement among the
outputs of multiple views as shown in Eq. (19). There are three
reasons. Firstly, in our method, the original pattern set is reshaped
into multiple different matrix representation sets, which has
supplied a diversity in representation level. As Wang and Zhou
[52] have stated, the key for the success of disagreement-based
approaches is the existence of a diversity, and it is unimportant
how the diversity is obtained. Actually, the diversity of our
method is achieved through the proposed multiviewization. Sec-
ondly, the literatures [49,50,54] state that the disagreement of
multiple views acts as an upper bound on the generalization
error. Therefore, although minimizing the rate of disagreement
increases the dependency between the hypotheses and the
original motivation for co-training no longer holds, there is still
an improved predictive performance of these co-training
approaches through minimizing the disagreement. Thirdly,
ensemble learning such as Bagging or Boosting [13,48] does not
change the original patterns themselves. It just changes the size of
the training set and thus needs an additional way to generate
diversity. In contrast, our method adopts the matrixized
reshaping way.

In this paper, we adopt rq ¼ 1=M,q¼ 1, . . . ,M for simplicity.
Thus (19) can be converted into (20)

min
up ARm , ~v p ARn ,v

p
0
AR

p ¼ 1,...,M

L0 ¼
XM
p ¼ 1

XN

i ¼ 1

ðjig
pðAp

i Þ�1�bp
i Þ

2
þcpðupT S1upþ ~vpT S2 ~v

p
ÞÞ
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XN XM
p p 1 XM

q q

 !2
Algorithm MultiV-MHKS.

Input: Labeled data fðxi ,jiÞg
N
i ¼ 1, and the pre-defined M ways that satisfy the

condition mn¼d.

OutPut: The solution to MultiV-MHKS fup , ~vp ,vp
0g

M
p ¼ 1.

1. Reshape xi to fAp
i g

M
p ¼ 1 with the pre-defined M ways, where the value of mn

equals to the value of d; initialize up
1 ,vp

1 ,p¼ 1, . . . ,M at random; set the initial

value of Y by Yp
1 ¼ ½y

p
1 , . . . ,yp

N �
T ,yp

i ¼ji½u
pT
1 Ap

i ,1�T , i¼ 1, . . . ,N,p¼ 1, . . . ,M; let

k¼1;

2. Do until the termination criterion (26) is satisfied:

(a) For p¼1yM:

(i) Compute vp
kþ1 ,up

kþ1 ,bp
kþ1 with (23), (22), and (25), respectively;

(ii) Set Yp
kþ1 ¼ ½y

p
1 , . . . ,yp

N �
T ,yp

i ¼ji½u
pT
kþ1Ap

i ,1�T ,i¼ 1, . . . ,N;

(b) Compute L0kþ1 with (20) or (21);

(c) Increment k;

3. Return the final fup , ~vp ,vp
0g

M
p ¼ 1.
þg
i ¼ 1 p ¼ 1

jig ðAi Þ�M
q ¼ 1

jig ðAi Þ : ð20Þ

Then, similar to MatMHKS, we set Yp ¼ ½yp
1, . . . ,yp

N�
T ,yp

i ¼

ji½u
pTAp

i ,1�T ,i¼ 1, . . . ,N,bp ¼ ½bp
1, . . . ,bp

N �
T ,vp ¼ ½ ~vpT ,vp

0�
T , and (20)

can be simplified in matrix form as follows:

min
up ARm ,vp ARnþ 1

p ¼ 1,...,M

L¼
XM
p ¼ 1

ððYpvp�1N�1�bpÞ
T
ðYpvp�1N�1�bpÞ

þcpðupT S1upþvpT ~S2 vpÞÞ

þg
XM
p ¼ 1

Ypvp�
1

M

XM
q ¼ 1

ðYqvqÞ

 !T

Ypvp�
1

M

XM
q ¼ 1

ðYqvqÞ

 !
,

ð21Þ

where ~S2 is a matrix with dimensionality of ðnþ1Þ � ðnþ1Þ and
~S2 ¼ ð

S2
0

0
0Þ.Now taking the gradient of (20) and (21) with respect to up and

vp to be zero respectively, we can obtain

up ¼ 1þg M�1

M

� �2
 !XN

i ¼ 1

Ap
i
~vp
ðAp

i
~vp
Þ
T
þcpS1Þ

�1
0
@
XN

i ¼ 1

Ap
i
~vp jiðb

p
i þ1Þ� 1þg M�1

M

� �2
 !

vp
0

 
:

 

þgM�1

M2

X
q ¼ 1,qap

ðuqT Aq
i
~vq
þvq

0Þ

!!
ð22Þ

vp ¼ 1þg M�1

M

� �2
 !

YpT Ypþcp ~S2

 !�1

YpT 1N�1þbpþgM�1

M2

XM
q ¼ 1,qap

Yqvq

 !
ð23Þ

The gradient of (21) with respect to bp is given as follows:

rbp L0 ¼ �2ðYpvp�1N�1�bpÞ: ð24Þ

Then by denoting the vector b of the p-th view at the k-th
iteration by bp

k and with (24), we obtain

bp
1Z0,

bp
kþ1 ¼ bp

kþr
pðep

kþje
p
kjÞ,

(
ð25Þ

where at the k-th iteration, the error vector of the p-th view

ep
k ¼ Yp

k vp
k�1N�1�bp

k , and the learning rate of the p-th view

0orpo1. In practice, the termination criterion can be designed
as

JL0kþ1�L0kJ2

JL0kJ2
rx: ð26Þ

Such a designed procedure is termed as MultiV-MHKS and
summarized in Table 2.

The discriminant function of MultiV-MHKS for the sample

zARd with the M reshaped matrices fZpARmp�np

gMp ¼ 1 is given as

follows:

gðzÞ ¼
1

M

XM
p ¼ 1

ðupT Zp ~vp
þvp

0Þ
40 then zAclassþ1,

o0 then zAclass�1:

(
ð27Þ

Finally, it can be found that if M¼ 1,g¼ 0 of (19), MultiV-
MHKS is degenerated into MatMHKS. Meanwhile, further setting
m¼1, u¼1, the procedure is degenerated to MHKS. Thus both
MHKS and MatMHKS classifiers can be reviewed as two special
instances of MultiV-MHKS.
5. Experiments

This section gives the demonstration on the effectiveness of
the proposed MVL. The proposed MVL can be composed of two
components: (1) pattern representation in multiple views (multi-
viewization); (2) the joint learning processing with the generated
views. Thus, in order to demonstrate the proposed approach, we
have to demonstrate the effectiveness of the two components,
respectively. For the first component, we give a comparison
between the proposed multiviewization processing and Bagging
[13], Attribute Bagging [14]. For the second component, with the
multiple pattern representations generated from the single-view
patterns, the joint learning is compared with the separate one
with majority voting and co-training [9]. We also compare the
proposed MultiV-MHKS with its corresponding single-view ver-
sion MHKS and SVM in terms of both classification and running
time. Simultaneously, we give the running time analysis of the
proposed MVL. Finally, we discuss both the complementarity of
the generated views and the multiviewization processing with
random attribute permutation.

5.1. Experimental setting

In order to evaluate the feasibility and effectiveness of the
multi-view classifier MultiV-MHKS, it is compared with its base
classifier MHKS [20], Bagging [13] and Attribute Bagging [14]. The
benchmark data sets used here are obtained from UCI Machine
Learning Repository [24]. All computations are run on Windows
2000 Terminal and MATLAB environment. The involved para-
meters of all the classifiers here are given as follows. In
the proposed approach MultiV-MHKS, bp

1 ¼ 10�6,rp ¼ 0:99,
x¼ 10�4,p¼ 1, . . . ,M. In MHKS, b1 ¼ 10�6,r¼ 0:99,x¼ 10�4. The
coupling parameter g in MultiV-MHKS and the regularization
parameter c in MultiV-MHKS and MHKS are both selected from
the set f2�4,2�3, . . . ,23,24

g by N-fold cross-validation [28–30], i.e.
randomly split the samples into two parts (the training and
testing sets), and repeat the procedure N times. Both the g and c

are finally determined by the best average accuracy on the N

testing sets. In our experiments, N is set to 10.

5.2. Multi-view learning vs. single-view learning

This subsection examines whether the multi-view learning
MultiV-MHKS is superior to its corresponding single-view learn-
ing MHKS and support vector machines (SVM) with the linear
kernel in terms of classification performance. In practise, a
kernelized classifier is different from the non-kernelized one in
terms of performance. The MultiV-MHKS is a linear version. Thus
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here, we only select the linear SVM as the compared single-view
classifiers for fairness. Table 3 gives the compared results and
shows the effectiveness of the MultiV-MHKS, where the best
accuracies of the data sets are in bold. The used data sets are
shown in Table 4, where Shuttle-landing-control and Echocardio-
gram are denoted as SLC and Echo. for short, respectively. Two
kinds of matrix representations (i.e. M¼2 in MultiV-MHKS) for
each data set are generated as shown in Section 3. Ten-fold cross-
validation is adopted and their classification accuracies on their
corresponding testing sets are averaged and reported in Table 3.
Here, the best classification performance of the MultiV-MHKS
corresponds to the best M (M¼2) matrix representations that are
Table 3
Average testing accuracy (%) and p-values of MultiV-MHKS and MHKS, Linear SVM.

Data sets MultiV-MHKS

accuracy

MHKS accuracy

p-value

SVM accuracy

p-value

Hepatitis 80.6371.81 77.60 �74:04 79.7570

0.0290 0.2846

Glass 99.2470.60 87.43n73.69 99.1470.94

9.3441e�009 0.7730

Water 96.9772.71 95.1572.45 95.7673.83

0.1720 0.1092

Sonar 76.6773.23 75.6571.95 73.7073.44

0.4049 0.1200

Pima-diabetes 71.1470.27 69.31n72.57 52.60n70.16

0.0336 1.5543e�015

Optdigits 95.7271.23 94.8272.05 92.26n70.81

0.2796 8.1710e�007

Dermatology 97.1770.96 97.2870.84 96.5671.77

0.9569 0.1383

Lenses 53.85710.90 43.85712.58 61.5470
0.0906 0.1358

Balance 88.8571.02 87.37n70.90 88.2772.27

7.0498e�005 0.1055

Breast-cancer-wisconsin 97.3270.78 96.4271.18 78.07n70

0.1253 0.0069

Note: The p-values are from a t-test comparing each classifier with MultiV-MHKS. Th

MultiV-MHKS is significant at 5% significance level, i.e. the p-value less than 0.05.

Table 4
Information of data sets.

Data sets Number of

attributes

Maximum

number of views

Wine 12 6

SLC 6 4

Echo. 12 6

Sonar 60 10

Iris 4 3

Glass 10 4

Water 38 4

Pima-diabetes 8 4

Dermatology 34 4

Lenses 4 3

Balance 4 3

Breast-cancer-wisconsin 10 4

Cmc 9 3

Hepatitis 18 6

Horse-colic 27 4

Housing 12 6

Ionosphere 34 4

House-votes 16 5

Lung-cancer 56 8

Optdigits 64 5
determined by an internal cross-validation on each training fold.
In each training fold, the best subset of matrix representations for
MultiV-MHKS are selected from the set that is shown in the
fourth column of Table 4. In addition to reporting the average
accuracies across the 10 folds, we also perform the paired t-test
[32] comparing MulitV-MHKS with MHKS. The null hypothesis H0

demonstrates that there is no significant difference between the
mean number of samples correctly classified by MulitV-MHKS
and MHKS. Under this assumption, the p-value for each test is the
probability of a significant difference in correctness values occur-
ring between two testing sets. Thus the smaller the p-value, the
less likely that the observed difference results from identical
Data sets MultiV-MHKS

accuracy

MHKS accuracy

p-value

SVM accuracy

p-value

Cmc 50.0171.41 48.6271.19 51.4271.35
0.0786 0.1367

Echocardiogram 89.4072.58 87.7673.20 88.3672.31

0.2235 0.4992

House-votes 92.8171.45 92.8171.69 90.4571.31

0.1132 0.0573

Horse-colic 77.8571.89 76.9671.72 48.17n70

0.1206 1.0159e�012

Housing 92.9170 92.6870.74 90.9170.23

0.3306 0.3306

Ionosphere 89.3371.50 88.2772.18 86.67n73.09

0.2652 0.0044

Wine 94.4371.74 94.3472.66 92.9272.64

0.9265 0.0686

Iris 97.7371.09 93.60n71.63 96.40n71.29

3.2090e�006 0.0490

Shuttle-landing-control 72.86710.54 68.57713.12 67.14710.54

0.4313 0.3065

Lung-cancer 53.3378.46 50.00710.99 44.00n713.12

0.3506 0.0056

e best accuracy results are in bold. An asterisk n denotes that the difference from

Generated views (the size of matrix)

1�12; 2�6; 3�4; 4�3; 6�2; 12�1

1�6; 2�3; 3�2; 6�1

1�12; 2�6; 3�4; 4�3; 6�2; 12�1

2�30; 3�20; 4�15; 5�12; 6�10; 10�6; 12�5; 15�4; 20�3; 30�2

1�4; 2�2; 4�1

1�10; 2�5; 5�2; 10�1

1�38; 2�19; 19�2; 38�1

1�8 2�4 4�2 8�1

1�34; 2�17; 17�2; 34�1

1�4; 2�2; 4�1

1�4; 2�2; 4�1

1�10; 2�5; 5�2; 10�1

1�9; 3�3; 9�1

1�18; 2�9; 3�6; 6�3; 9�2; 18�1

1�27; 3�9; 9�3; 27�1

1�12; 2�6; 3�4; 4�3; 6�2; 12�1

1�34; 2�17; 17�2; 34�1

1�16; 2�8; 4�4; 8�2; 16�1

1�56; 2�28; 4�14; 7�8; 8�7; 14�4; 28�2; 56�1

2�32; 4�16; 8�8; 16�4; 32�2



Table 5
Comparison among the proposed MVL, Bagging and Attribute Bagging.

Algorithm Sample Attribute Representation

Bagging No Yes 1

Attribute Bagging Yes No 1

MultiV-MHKS Yes Yes MðZ1Þ
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testing set correctness distributions. The threshold for p-value is
set to 0.05. Consequently, from this table, it can be found that the
average classification accuracy of MultiV-MHKS is superior to that
of MHKS on most data sets except Dermatology and House-votes.
Even on such two data sets, the MultiV-MHKS also has a
competitive performance to MHKS. Further, the p-values also
show that MultiV-MHKS has a different significance from MHKS
on Iris, Glass, Pima-diabetes, Hepatitis and Balance in terms of
classification performance. Compared with the linear SVM, the
MultiV-MHKS also shows its superior performance in terms of
classification.

5.3. Multiviewization vs. Bagging and Attribute Bagging

For the given single-view patterns, the proposed MVL reshapes
the original vector representation into M matrix ones, each of which
is taken as one view of the original patterns. The proposed multi-
viewization can be regarded to work with the different representa-
tion level of the original patterns. At present there are two typical
ensemble schemes on single-view patterns: Bagging [13], AdaBoost-
ing [48], and Attribute Bagging [14]. Since both Bagging and
AdaBoosting belong to the sampling scheme, we take Bagging as
the discussed paradigm. Bagging generates M training sets by
randomly sampling M times with replacement, then develops M

classifiers on the generated training sets respectively, and finally
classifies each pattern by equal weight majority-voting on all the M

classifiers. Bagging can be regarded to work with the size level of the
original single-view patterns. Different from Bagging that generates
different training sets by randomly sampling, Attribute Bagging
produces different training sets by randomly selecting subsets of
attributes M times, then develops M classifiers on the generated
training sets respectively, and finally classifies each pattern by equal
weight majority-voting. Attribute Bagging can be regarded to work
with the feature level of the original single-view pattern. It can be
found that the proposed multiviewization, Bagging, Attribute Bag-
ging work with representation, sample, and attribute levels of the
original single-view patterns, respectively. Both Bagging and Attri-
bute Bagging have been demonstrated to be effective in improving
classification performance [13,14]. Here, we compare the proposed
multiviewization with both Bagging and Attribute Bagging so as to
validate whether it is also effective or better for the work with
representation level of the original patterns.

We implemented the proposed MVL, Bagging, and Attribute
Bagging on some UCI benchmark data sets that are shown in
Table 4. Table 4 gives all the possible matrix representations from
their corresponding vector. Taking ‘‘Sonar’’ for example, the
number of its attributes is 60. Thus, there are 10 kinds of matrix
representations (views) for ‘‘Sonar’’ as shown in Table 4. Fig. 7
shows the classification performance on the 20 data sets, where
the x-axis denotes the number of views on the given data set and
the y-axis denotes the classification accuracies. Since it is differ-
ent for the number of the possible matrix representations for each
data set as shown in Table 4, it is also different for the range of the
number of the views on each data set. In order to select the views
of each data set of Fig. 7, we first carry out the sub-classifier
MatMHKS in each view. Then, for each joint combination with M

views, the selected M views correspond to the best M classifica-
tion accuracies of MatMHKS in single view. From the figure, it can
be clearly found that (1) the proposed multi-view strategy
learning on multiple matrix representations takes the first place
on all the data sets only but Sonar Lenses and Horse-colic;
(2) Attribute Bagging and Bagging take the second and third
places, respectively. In order to analyze the experimental phe-
nomenon, we give the comparison among the proposed MVL,
Bagging and Attribute Bagging tabulated in Table 5, where the
second column ’’Sample’’ represents whether the algorithm keeps
the number of the training set, the third column ‘‘Attribute’’
represents whether the algorithm keeps the size of the feature
set, and the fourth column ‘‘Representation’’ represents how
many kinds of representations the algorithm adopts. From
Table 5, we find that compared with the other two algorithms,
the proposed MVL has the advantages in terms of the number of
samples, the size of the feature set and the representations, which
brings up the superior performance of the proposed MVL. Further,
it is known that the number of samples plays an important role
on algorithms including Bagging. Thus, Bagging might not work
well in the small-scale sample case. Similarly, Attribute Bagging
might not work well on the data with a small-size-set of features.
But the proposed MVL can still work well in the above two cases
due to that it utilizes all given samples with full features. Fig. 7
validates the above statement.

It can be found that the performance of MHKS with Bagging on
these data sets such as Wine, SLC and Echo. is much lower than
that of MHKS. The phenomenon mainly attributes to that in our
experimental setting for Bagging, the size of the training set for
each sampling is kept to the same size as that of the original
training set. Since the training set is randomly sampled with
replacement, the actual size of the sampled training set is smaller
than the size of the original one [14]. The experimental results
here show that the decrease of the size of the training data set
plays an important role on the classification performance here. It
accords with the results of the literature [14] that Attribute
Bagging is better than Bagging in terms of classification.

Fig. 7 also shows that the performance of the MultiV-MHKS
achieves its best accuracy with the number of views M¼2 on the
data sets (Wine, SLC, Echo., Iris, Glass, Dermatology, Lenses,
Balance, Breast-cancer-wisconsin, Cmc, Optdigits, Horse-colic,
Housing, Ionosphere, and House-votes). This phenomenon seems
to show that the proposed multi-view learning can farthest
increase the single-view learning only on the case of M¼2 in
terms of classification performance. And we need not select the
value of the number of the views M since the MultiV-MHKS with
M¼2 can success, which can avoid a large computation in terms of
searching parameters. On the other side, this phenomenon also
shows that the performance of the MultiV-MHKS seems to
decrease with the number of views growing larger than two on
some data sets, which might attribute to the over-fitting or the
increase of correlation among views. The experimental results have
told that the proposed multi-view learning with M¼2 is enough to
give a superior performance. This phenomenon may be just for the
proposed multi-view matrixization pattern representation here.
However, for other cases, more weaker-correlated views should be
favorable for boosting performance [38]. As we have known, the
more the weaker-correlated views, the more variance is reduced.
Thus more likely, the more generalization is boosted. Therefore, it
is a future work for us to discuss why this phenomenon appears.

5.4. Joint vs. separate learning on multiple views

This subsection gives the reasons why a joint rather than
separate learning is adopted for the different matrix representations
generated from the original single-view patterns. Here, we have
implemented the voting learning that separably carries out MatMHKS



Table 7
Training time comparison (in s) between MultiV-MHKS and MatMHKS with

voting.

Data sets Glass Wine Iris SLC Echo. Sonar

MultiV-MHKS 27.73 0.50 17.05 0.02 0.46 7.58

MatMHKS with voting 21.25 25.24 3.59 0.02 7.11 4.69
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Fig. 2. Classification performance (%) comparison between MultiV-MHKS and Co-

Training on data sets (from left to right): Sonar, Wine, SLC, Iris, Glass, Echo., Water,

Pima-diabetes, Dermatology, Lenses, Balance, Breast-cancer-wisconsin, Cmc, Opt-

digits, Hepatitis, Horse-colic, Housing, Ionosphere, House-votes, Lung-cancer.

Table 8
Training time (in ‘s’) comparison between MultiV-MHKS and MHKS.

Data sets MultiV-MHKS MHKS

Hepatitis 1.56 4.39

Shuttle-landing 0.04 0.11

Water 2.19 13.29

Wine 0.47 4.76

Pima-diabetes 1.35 0.05

Optdigits 6433 3995

Dermatology 125.73 63.35

Lenses 0.06 0.21

Balance 10.36 6.67

Breast-cancer-wisconsin 7.63 5.13

Cmc 2.74 0.55

Echocardiogram 1.04 0.78

House-votes 1.17 1.34

Horse-colic 5.44 0.38

Housing 0.61 1.80

Ionosphere 5.03 1.33

Sonar 8.87 0.18

Iris 0.35 4.20

Glass 85.48 48.10

Lung-cancer 4.23 1.65
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on different matrix representations from the original single-view
patterns and classifies each data instance by equal weight voting on
different MatMHKS. Tables 6 and 7 give the average classification
performance and the training time of MultiV-MHKS and MatMHKS
with voting on all the range of the views for the six data sets: Sonar,
Wine, SLC, Iris, Glass, Echo., respectively. Taking ‘‘Sonar’’ for example,
the maximum number of its views is 10 as shown in Table 4. Thus,
the corresponding results of Sonar in Tables 6 and 7 denote the
average classification accuracies and training time on the range of the
generated views from 2 to 10, respectively. From Tables 6 and 7, it
can be found that the joint learning MultiV-MHKS can significantly
improve classification performance on some data sets such as Glass
and Iris. Simultaneously, the proposed joint learning takes a compar-
able training time to that of the separate learning.

5.5. Joint vs. co-training learning on multiple views

This subsection further gives a comparison between the proposed
joint learning (MultiV-MHKS) and the co-training learning [9] on
multiple matrix representation views generated from a given single-
view patterns. From the literature [9,10], it can be found that the co-
training learning is only fit for two views, i.e. M¼2. Thus, each data
set used here first is multiviewized into two kinds of matrix
representations, each of which is one view of the original data set
denoted as V1 and V2, respectively. Then, each data set is partitioned
into three equal-size parts: training example set L, unlabeled
example set U, and test example set T, where each set has two
views. The co-training learning loops until the set U is null. In each
iteration, (1) use L to train two classifiers MatMHKS Hi that work in
Vi, i¼1,2, respectively; (2) let Hi label p examples from U in the two
views, respectively; (3) move the 2p self-labeled examples from U to
L. The final classifier of co-training is H¼ 1

2 ðH1þH2Þ. Fig. 2 gives the
classification performance comparison between MultiV-MHKS and
the co-training learning on the 20 data sets shown in Table 4. Since
co-training is described for two views in the literatures [9,10], the
number of the generated kinds of matrix representations is two and
the results of Fig. 2 correspond to the optimal combinations in two
kinds of matrix representations through an internal cross-validation
on each training fold. From this figure, it can be clearly found that the
proposed joint learning strategy is superior to the co-training
learning in terms of classification. In other words, the co-training
learning does not work well in this case.

5.6. Analysis of computational complexity in MultiV-MHKS

In this subsection, we give a discussion on the computational
complexity of the joint learning MultiV-MHKS. Since MultiV-
MHKS is taken as a multi-view version of MHKS, we first analyze
both of them in terms of computational complexity. Both MultiV-
MHKS and MHKS are iterative algorithms. In each iteration, MHKS
mainly takes time computing on the formulation (14) that needs
oðd3Þwhere d is the number of the original attributes. If d¼m� n,
MultiV-MHKS needs oðMðm3þn3ÞÞ mainly for both (22) and (23)
in each iteration as shown in Table 2. Since Mr10 in our
experiments, both MultiV-MHKS and MHKS should take a com-
parable computational cost. Table 8 gives the average training
time of both MultiV-MHKS and MHKS under the environment as
Table 6
Classification performance (%) comparison between MultiV-MHKS and MatMHKS with

Data sets Glass Wine Iris

MultiV-MHKS 98.8070.20 93.4671.22 97.1
MatMHKS with voting 88.1770.90 93.4270.73 93.2
shown in the section of Experimental setting. From this table, it
can be found that the average running times of MultiV-MHKS are
actually comparable to those of MHKS on most of the used data
sets.
voting.

SLC Echo. Sonar

070.42 69.5373.01 88.1670.70 76.9270.53

071.13 70.4770.80 88.1070.82 75.7470.93
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Table 9
The optimal regularization parameter c of SVM in Fig. 4.

Kernel The size of training samples

1000 3000 5000 10 000 15 000 20 000 30 000 40 000 50 000

Linear 2�2 2�2 2�2 22 24 2�2 2�2 2�2 2�2

Poly 2�4 2�4 2�4 22 22 22 22 22 22
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Further, we have also experimentally demonstrated that
MultiV-MHKS can converge well. Fig. 3 shows the training errors
change with the iteration number of MultiV-MHKS on the binary-
class data sets: Water, Sonar, Pima-diabetes, Breast-cancer-wis-
consin, Echocardiogram, Hepatitis, Housing, House-votes, and
Shuttle-landing-control, respectively. From the figure, it can be
found that all the training errors of the used data sets can
obviously converge to stable values. Especially for Water, Sonar,
Pima-diabetes, Housing, and Shuttle-landing-control, the itera-
tions less than 7 are usually enough to achieve convergence.

5.7. Analysis on large dimensional patterns

As Table 4 shows, the maximal dimensionality of the used data
is 64. In order to further explore the effect of the proposed
method, we carry out MultiV-MHKS, MHKS, MatMHKS and SVM
on the large dimensional database MNIST.2 The MNIST consists of
the handwritten digits from 0 to 9. It has a training set of 60 000
samples and a test set of 10 000 samples. The size of each sample
of the MNIST is 28�28. Here, we adopt the whole test set of
10 000 samples and the subset of the training set with 50 000
samples due to the experimental condition.

Fig. 4 shows the classification accuracies of MultiV-MHKS,
MHKS, MatMHKS and SVM as a function of the training size on
the MNIST, where the sizes of the training sets are respectively
taken as 1000, 3000, 5000, 10 000, 15 000, 20 000, 30 000, 40 000,
50 000 samples and the size of the test set is fixed to 10 000
samples. In this figure, the SVM adopts the Linear kernel
kðxi,xjÞ ¼ xT

i xj and the Poly kernel kðxi,xjÞ ¼ ðx
T
i xjÞ

d with the para-
meter d¼2, where the regularization parameter c is selected from
the set f2�4,2�3, . . . ,23,24

g by N-fold cross-validation and Table 9
lists the corresponding optimal c. Both MHKS and MatMHKS use
the same parameters as the description of Section 5.1. In
MatMHKS, each sample is respectively reshaped into different
matrices with 2�392, 392�2, 4�196, 196�4, 7�112, 112�7,
8�98, 98�8, 14�56, 56�14, 16�49, 49�16, 28�28. Fig. 4
shows the optimal results of MatMHKS with respect to the above
different sizes. In MultiV-MHKS, we empirically adopts the two,
three and four kinds of the matrix sizes corresponding to the first
two, three and four best results of MatMHKS, respectively. From
this figure, it can be found that (1) MultiV-MHKS always takes the
first place in terms of classification performance; (2) MHKS has
the worst classification accuracy in all the cases; (3) the proposed
multi-view method is superior to the single-view one in the linear
2 Available at http://yann.lecun.com/exdb/mnist/.
learning framework. Meanwhile, Fig. 5 shows the classification
accuracies of MultiV-MHKS with the number of the views
M¼2,3,4 as a function of the training size on the MNIST, where
the size of the test set is fixed to 10 000 samples. From this figure,
it can be clearly found that (1) the classification accuracy of
MultiV-MHKS increases with the growing number of the views M

in all the cases with different training set sizes; (2) the proposed
MultiV-MHKS with different M has a comparable performance on
the larger training samples.

It should be stated that the literature [56] proposes a fast SVM
that can get a much effective and efficient performance on MNIST.
In their work [56], the fast SVM can get a 99.79% classification
accuracy on the whole training set of MNIST since it removes

http://yann.lecun.com/exdb/mnist/


Fig. 6. Reshape matrix AARs�t to another matrix CARu�4v , where s¼2u, t¼2v

and the i-th sub-matrix Bi ARu�v ,i¼ 1 . . .4.

Z. Wang et al. / Pattern Recognition 44 (2011) 2395–24132406
most non-support vectors quickly and adopts some effective
strategies such as kernel caching and efficient computation of
kernel matrix. In contrast, the proposed MultiV-MHKS has some
difficulty in outperforming the fast SVM since it is only a linear
machine. On the other hand, we here focus on the proposed
multiviewization that has been demonstrated more effectiveness
than the single-view MHKS. Thus we adopt the original SVM
without efficient optimization for comparison. But the effective
and efficient work of [56] makes us explore the efficiency and
kernelization of our proposed work in future.

5.8. Further discussion

5.8.1. MHKS vs. MatMHKS

Since MHKS is the baseline of the MultiV-MHKS and MatMHKS
is taken one view of MutliV-MHKS. Here, we give the relationship
between MHKS and MatMHKS. First, we give the following
lemma.

Lemma 1 (Graham [41]). Let AARm�n, BARn�p and CARp�q, then

vecðABCÞ ¼ ðCT � AÞvecðBÞ, ð28Þ

where vecðXÞ denotes an operator that vectorizes the matrix X into

the corresponding vector. For example, let X ¼ ðxijÞARp�q and

xi ¼ ðx1i, . . . ,xpiÞ
T is the i-th column of X, and thus

vecðXÞ ¼ ðxT
1, . . . ,xT

i , . . . ,xT
qÞ

T is a vector with p� q dimensionality.

‘‘ � ’’ denotes Kronecker product operation.

Then, since we revealed the relationship between MatMHKS
and MHKS in the literature [21], here we give the conclusion as
stated in the following theorem.

Theorem 1. Let the discriminant functions of MHKS and MatMHKS

respectively be the function: (i) gðxÞ ¼ ~oT xþo0 and (ii) gðAÞ ¼

uT A ~vþv0, then
(a)
 both (i) and (ii) may have the same form;

(b)
 the solution space for the weights in MatMHKS is contained in

that of MHKS, and MatMHKS is a MHKS imposed with Kronecker

product decomposability constraint.
Further, in the literature [40], we have also experimentally
demonstrated that in searching for the optimal weight vectors u, ~v
of MatMHKS, MatMHKS could be guided by some prior informa-
tion such as the structural or locally spatial information which is
reflected in the representation of the Kronecker production of u, ~v.
That is the reason why MatMHKS outperforms MHKS on image
data sets [40]. More importantly, MatMHKS can avoid over-fitting
since it makes implicitly a tradeoff between a less constrained
model with more parameters (MHKS) and a more constrained
model with fewer parameters (MatMHKS).

5.8.2. The Rademacher complexity of MultiV-MHKS, MatMHKS and

MHKS

The motivation of the proposed method is that it might obtain
some useful information for classification to reshape the features of
one pattern into different matrices and jointly learn on these
matrices. In detail, for some patterns which inherently possess the
two-dimensionality structure like images, the matrix form of classi-
fier could be advantageous than the vector format as the former
preserves the location information in the pattern representation. In
other words, it could depict both global and local information to
reshape 2D structural patterns into new matrices according to
Figs. 1 and 6, which is also demonstrated in the literature [57]. Thus,
learning on different matrices can increase performance in this case.
On the other hand, it cannot always be guaranteed that arbitrarily
reshaping a vector into the corresponding matrix format could bring
location information of the pattern. However, the experimental
results in Table 3 show the better performance of the proposed
approach than the single-view algorithm on some non-image data
sets. In order to explain this phenomenon, we analysis the proposed
multi-view method with the generalization risk bound.

It is well-known that the analysis of the generalization risk
bound is important for theoretically interpreting performance
behavior of a learning algorithm. Here, we give the discussion for
the MultiV-MHKS, MatMHKS and MHKS in terms of the general-
ization risk bound with the Rademacher complexity. It is known
that the classical risk bound theory was proposed by Vapnik and
Chervonenkis [4] and can be described through Theorem 2.

Theorem 2. Let P be a probability distribution on w� f71g and

fxi,yig
n
i ¼ 1 be chosen independently according to P. Then, for a {71}-

valued function class with the domain w, there is a constant cZ0
such that for any integer n, with probability at least 1�d over

fxi,yig
n
i ¼ 1, every g in satisfies

PðyagðxÞÞr P̂n ðyagðxÞÞþc

ffiffiffiffiffiffiffiffiffiffiffiffi
VCð Þ

n

r
, ð29Þ

where VCð Þ denotes the Vapnik–Chervonenkis dimension of and

P̂n denotes the empirical risk error of the function g on the sample set

fxi,yig
n
i ¼ 1.

In this case, the VC( ) dimension measures the complexity of
the class function . Further, the Rademacher complexity was
proposed as an alternative notion of the complexity of a function
class [2]. Here, the Rademacher complexity is used to measure
the complexity of the proposed MultiV-MHKS. Definition 1 gives a
definition of the Rademacher complexity [2].

Definition 1. Let m be a probability distribution on a set w and

suppose that fxig
n
i ¼ 1 are independent samples selected from w

according to m. Let be a class of functions mapping from w to R.

Let fsig
n
i ¼ 1 be independent uniform {71}-valued random vari-

ables and define the random variable

R̂nð Þ ¼ E sup
gA

2

n

Xn

i ¼ 1

sigðxiÞ

�����
�����

2
4

������x1, . . . ,xn

3
5, ð30Þ
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Fig. 7. The classification accuracies of MultiV-MHKS, Bagging and Attribute Bagging as a function of the number of the views on the given data sets (Wine, SLC, Echo.,

Sonar, Iris, Glass, Water, Pima-diabetes, Dermatology, Lenses, Balance, Breast-cancer-wisconsin, Cmc, Optdigits, Hepatitis, Horse-colic, Housing, Ionosphere, House-votes,
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Fig. 7. (continued)
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where E is the operator of the expected value of a random

variable. Then the Rademacher complexity of is

Rnð Þ ¼ ER̂nð Þ: ð31Þ

Theorem 3 [5] gives the generalization risk bound of with the
Rademacher complexity Rnð Þ.

Theorem 3. Let P be a probability distribution on w� f71g and
fxi,yig

n
i ¼ 1 be chosen independently according to P. Then, for a

{71}-valued function class with the domain w, with probability
at least 1�d over fxi,yig

n
i ¼ 1, every g in satisfies

PðyagðxÞÞr P̂n ðyagðxÞÞþ
Rnð Þ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=dÞ

2n

r
: ð32Þ

We use the RnðgMultiVMHKSÞ,RnðgMatMHKSÞ and RnðgMHKSÞ to denote
the Rademacher complexities of the MultiV-MHKS, MatMHKS and
MHKS, respectively. First, we give the relationship between
RnðgMultiVMHKSÞ and RnðgMatMHKSÞ. It is known that the generalization
risk bound of the single-view MHKS satisfies the inequality (32).
According to Eqs. (33) and (34),

gA¼ uT A ~vþv0, ð33Þ

gðzÞ ¼
1

M

XM
p ¼ 1

ðupT Zp ~vp
þvp

0Þ
40 then zAclassþ1,

o0 then zAclass�1

(
ð34Þ

the decision function gMultiVMHKS of the proposed multi-view
MultiV-MHKS is the convex combination of the decision functions
gMatMHKS. It has been proven that for a class of functions , if
conv is the class of convex combinations of function from ,
� ¼ f�g : gA g [5], then

Rnðconv Þ ¼ Rnð Þ: ð35Þ
That is

RnðgMultiVMHKSÞ ¼ RnðgMatMHKSÞ ð36Þ

Concretely, for the sample set fxig
n
i ¼ 1 and fsig

n
i ¼ 1,

sup
gA conv

Xn

i ¼ 1

sigðxiÞ

�����
�����¼max sup

gA conv

Xn

i ¼ 1

sigðxiÞ, sup
gA conv

�
Xn

i ¼ 1

sigðxiÞ

0
@

1
A

¼max sup
gA

Xn

i ¼ 1

sigðxiÞ,sup
gA

�
Xn

i ¼ 1

sigðxiÞ

0
@

1
A

¼ sup
gA

Xn

i ¼ 1

sigðxiÞ

�����
�����:

Further, according to the definition of the Rademacher complex-
ity, Eq. (36) is proven [5].

Secondly, we give the relationship between RnðgMatMHKSÞ and
RnðgMHKSÞ. According to our previous work [21] (Theorem 1), it is
known that the solution space for the weights in MatMHKS is
contained in that of MHKS, and MatMHKS is a MHKS imposed by
Kronecker product decomposability constraint. Therefore, the set
of functions fgMatMHKSgDfgMHKSg. According to the definition of the
Rademacher complexity, i.e. (30) and (31), we could get

RnðgMatMHKSÞrRnðgMHKSÞ: ð37Þ

With (36) and (37), we finally have the relationship among
RnðgMultiVMHKSÞ, RnðgMatMHKSÞ, RnðgMHKSÞ as follows:

RnðgMultiVMHKSÞ ¼ RnðgMatMHKSÞrRnðgMHKSÞ: ð38Þ

Therefore, it can be found that the proposed multi-view method
generally has a tighter generalization risk bound than the single-
view MHKS.



Table 12
Classification performance (%) comparison for the three reshaping ways of MultiV-

MHKS on the non-image data, where the number of views M¼2.
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5.8.3. Complementarity analysis of MultiV-MHKS

This subsection first gives a discussion on multiple solutions

fup, ~vp
gMp ¼ 1 in the MultiV-MHKS. The previous description has

stated that the effectiveness of the MultiV-MHKS can attribute to
the complementarity between multiple matrix representations of
a given single-view pattern. It is known that combining multiple
learners can mitigate the limitation of single learner. Here, the
unknown function to be approximated might be not present in
one vector (MHKS) or matrix (MatMHKS) representation space.
But a joint learning of multiple MatMHKS from multiple matrix
representation spaces can expand the space of representable
functions, likely also embracing the true one. For validating the

statement, we explore multiple solutions fup, ~vp
gMp ¼ 1 in the

MultiV-MHKS. For the solution up, ~vp of each view, we define a

solution vector wp by wp ¼ up � ~vp. wp is used to represent the
whole solution space of the p-th view in MultiV-MHKS since the
solution of each matrix representation is guided by the Kronecker
production of u and ~v, which is stated in the last subsection. Thus,
we adopt the following formulation (39) for measuring the
difference between the solutions of the i-th and j-th views in
MultiV-MHKS:

Dij ¼
jwiT wjj

JwiJJwjJ
, ð39Þ

where 0rDijr1. Further, the differences among the solutions of

the M views in MultiV-MHKS can be defined as D¼ ð2=MðM�1ÞÞPM
i ¼ 1

PM
j ¼ iþ1 Dij, where 0rDr1. It can be found that the larger

the D is, the larger difference among all the solutions of the M

views in MultiV-MHKS. Table 10 gives the classification perfor-
mance of MultiV-MHKS, MHKS, the p-value and the D values of
the used data sets: Sonar, Wine, SLC, Iris, Echo. and Glass, where
the values of M¼2 for each data set. From this table, it can be
found that the data sets such as Iris and Glass which have a clear
performance increase correspond to those values of D that are
neither too small nor too large. In the case that the value of D is
too large, the correlation among the views of MultiV-MHKS is so
strong that the solutions of the views are overlapping. But in the
case that the value of D is too small, the correlation among the
views of MultiV-MHKS is so weak that the solution space
expanded by multiple views is too large, where MultiV-MHKS
cannot easily find the true solution. Consequently, the weaker
correlation between the views of MultiV-MHKS is enough to lead
Table 10
Complementary analysis of multiple views in MultiV-MHKS.

Data sets MultiV-MHKS (%) MHKS (%) p-value D value

Sonar 76.6773.23 75.6571.95 0.4049 0.1378

Wine 94.4371.74 94.3472.66 0.9265 0.1403

SLC 72.86710.54 68.57713.12 0.4313 0.4091

Iris 97.7371.09 93.6071.63 3.2090e�006 0.3685
Echo. 89.4072.58 87.7673.20 0.2235 0.5552

Glass 99.2470.60 87.4373.69 9.3441e�009 0.2373

Table 11
Classification performance (%) comparison for the three reshaping ways of MultiV-MH

The number of views (M) Reshape1(Original) Res

Size (training, test) (1000,10 000) (3000,10 000) (10

M¼2 83.92 87.87 83.

M¼3 85.84 89.23 85.

M¼4 89.12 90.09 89.
to a performance improvement. The similar phenomenon has
been witnessed in another work of us [38].

We further analyses the initializations for up
1,vp

1,p¼ 1, . . . ,M in

each view of the MultiV-MHKS. In our experiments, up
1,vp

1,p¼ 1,

. . . ,M are initialized with full 1 vectors, i.e. up
1 ¼ ½1,

. . . ,1�T ,vp
1 ¼ ½1, . . . ,1�T ,p¼ 1, . . . ,M. Here, it should be noted that

although the elements of up
1,vp

1,p¼ 1, . . . ,M are all the same, the

vector sizes of each view up
1,vp

1 are different from each other. As

shown in Table 4, each view of each data set has different

dimensionalities in up
1 and vp

1. Taking Wine for example, the

vector up
1 of MultiV-MHKS has the dimension size 1, 2, 3, 4, 6,

12 in each view, respectively and the vector vp
1 has the size 12, 6,

4, 3, 2, 1, respectively. It guarantees that the solutions for each
view of MultiV-MHKS would be different.
5.8.4. Reshaping analysis of MultiV-MHKS

In order to more deeply investigate the effect of reshaping, we
here design another two reshaping ways besides the original one
as shown in Fig. 1. The second reshaping way is to first randomly
arrange the feature array of vector or matrix patterns and then
again reshape them like Fig. 1. The third reshaping way is defined
in such a way that we first convert a given pattern z into one

matrix AARs�t , then partition the matrix A into different small

matrices BiARu�v,i¼ 1, . . . ,l, and finally arrange the small

matrices Bi,i¼ 1, . . . ,l into one new matrix C. This reshaping way
is illustrated in Fig. 6. The first, second and third reshaping ways
are denoted respectively as ‘‘Reshape1(Original)’’, ‘‘Reshape2(R-
andom)’’ and ‘‘Reshape3(Blocking)’’ in Tables 11 and 12. Both
Tables 11 and 12 show the classification accuracies of the MultiV-
MHKS with respect to the three different reshaping ways on the
data Glass, Wine, Iris, SLC, Echo., Sonar, and the other four data
sets with more than 100 attributes: Arrhythmia (452 examples/
279 attributes/13 classes), Hill-Valley (606 examples/100 attri-
butes/2 classes), SECOM (1567 examples/590 attributes/2 classes)
and Musk (476 examples/166 attributes/2 classes) [24]. Since the
dimensionalities of the data sets Glass, Wine, Iris, SLC, Echo. and
Sonar are all small, we only apply the third reshaping way to the
Different data set Reshape1

(Original)

Reshape2

(Random)

Reshape3

(Blocking)

Glass 98.80 98.67 –

Wine 93.46 93.42 –

Iris 97.10 95.05 –

SLC 69.53 66.17 –

Echo. 88.16 88.16 –

Sonar 76.92 74.80 –

Arrhythmia 59.92 59.92 59.92

Hill-Valley 75.74 75.74 75.74

SECOM 92.95 92.95 92.95

Musk 78.51 78.51 78.51

KS on MNIST.

hape2(Random) Reshape3(Blocking)

00,10 000) (3000,10 000) (1000,10 000) (3000,10 000)

92 87.87 83.92 87.87

84 89.23 85.84 89.23

12 90.09 89.12 90.09
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large dimensional data MNIST, Arrhythmia, Hill-Valley, SECOM
and Musk. From Tables 11 and 12, it can be found that (i) the
three different reshaping ways for MultiV-MHKS yield similar
results on most of the used data sets; (ii) MultiV-MHKS with the
original feature array shows its advantage over MultiV-MHKS
with the random feature array in terms of classification perfor-
mance on the data sets Iris, SLC and Sonar; (iii) it seems that for
these data, different reshaping ways do not result in a significant
difference in the performance of MultiV-MHKS here.
6. Conclusions and future work

In this paper, we have developed a new multi-view classifier
MultiV-MHKS that is composed of multiviewization and a joint

learning process. It takes MHKS as the base classifier and each
corresponding MatMHKS generated from MHKS as one view, and
combines all the views into one single learning process. Different
from the existing multi-view viewpoint that patterns are repre-
sented by multiple independent attribute sets, the proposed multi-
view viewpoint is to reshape the original vector representation of
the single-view patterns into multiple matrix representations, select
one classifier as the base classifier, change the architecture of the
base classifier into different ones so as to deal with the correspond-
ing matrix patterns, then take each newly generated one as a view,
and finally form a set of classifiers with different views.

It can be found that MultiV-MHKS can well solve the matrix-
ization-dependent problem of MatMHKS [21]. The experiments
are done to illustrate the feasibility and effectiveness of the
MultiV-MHKS. Firstly, a comparison of MultiV-MHKS with its
corresponding single-view classifier MHKS has shown that the
proposed classifier has a relatively superior classification perfor-
mance but just needs a comparable running time. Moreover, we
give the theoretical reason why the MultiV-MHKS is better than
the single-view MHKS. Secondly, compared with the other
ensemble schemes on single-view patterns: sampling pattern
and sampling features, the multiviewization in MulitV-MHKS also
has an advantage in terms of classification performance. Thirdly,
the joint learning of MultiV-MHKS is demonstrated to be better
than both the separate and co-training learning on multiple
generated matrix views. It should be stated that the compared
co-training algorithm with two matrix representations is actually
new since it uses the single-view patterns instead of the conven-
tional multi-view patterns. Fourthly, MultiV-MHKS is experimen-
tally illustrated to converge within a few training iterations.
Finally, we give a further analysis about the complementarity in
the MultiV-MHKS and conclude that the weaker correlation
between the solution spaces of all the views in MultiV-MHKS
leads to the classification performance improvement.

It is well-known that the outputs of the sub-classifiers should
disagree on labeled data in order to get a diversity in ensemble
learning [53]. The diversity is supposed to improve performance in
ensemble learning [47,51,53]. However, as the above statement, the
proposed MVL requires an agreement among the outputs of multi-
ple views as shown in Eq. (19). There are three reasons. Firstly, in
our method, the original pattern set is reshaped into multiple
different matrix representation sets, which has supplied a diversity
in representation level. As Wang and Zhou [52] has stated, the key
for the success of disagreement-based approaches is the existence of
a diversity, and it is unimportant how the diversity is obtained.
Actually, the diversity of our method is achieved through the
proposed multiviewization. Secondly, the literatures [49,50,54] state
that the disagreement of multiple views acts as an upper bound on
the generalization error. Therefore, although minimizing the rate of
disagreement increases the dependency between the hypotheses
and the original motivation for co-training no longer holds, there is
still an improved predictive performance of these co-training
approaches through minimizing the disagreement, which induces
Eq. (3). Thirdly, ensemble learning such Bagging or Boosting [13,48]
does not change the original patterns themselves. It just changes the
size of the training set and thus needs an additional way to generate
diversity. In contrast, our method adopts the matrixized reshaping
way. In the literature [53], the ambiguity decomposition is shown as

ðfens�tÞ2 ¼
X

t

ciðfi�tÞ2�
X

t

ciðfi�fensÞ
2, ð40Þ

where t is the target value of an arbitrary datapoint, ci ¼ 1,ciZ1,
and fens is the convex combination of the M component estimators
fens ¼

PM
i ¼ 1 cifi. Our proposed MVL is given as Eq. (3). They are

designed from different viewpoints. Firstly, Eq. (40) falls into
ensemble learning and our proposed equation (3) falls into multi-
view learning. The former fi is separately trained but the latter fp is
jointly trained. All the fp of the proposed equation (3) are boosted
each other in training processing. That is the main difference.
Secondly, from the form between Eqs. (3) and (40), they are also
different. The former is

P
tciðfi�tÞ2�

P
tciðfi�fensÞ

2, and the latter is
JindþgJcom.

In this manuscript, we propose the approach called as MultiV-
MHKS from the multi-view learning (MVL) point of view based on
the following reasons. Firstly, although the proposed method is
actually different from the original MVL [9], here we abuse the
word ‘‘multi-view’’ since the generated multiple views in this
manuscript is artificially abstracted rather than those natural
feature sets. Thus, the word ‘‘multi-view’’ of this manuscript can
be regarded as the expanded conception in terms of abstract
meaning. In practice, we can deal with the pattern in the
proposed multiviewization way here if the pattern can be repre-
sented with multiple ways. It should be emphasized that multiple
views of the dealt pattern can be given in either natural or
artificial way. It is actually the motivation of our proposed
method in this manuscript. Secondly, our previous work [55]
sorts patterns into multi-view patterns represented by indepen-
dent sets of attributes and single-view patterns represented by
only one set of attributes and not properly separated into several
distinct sets of attributes. Correspondingly, learning machines can
also be sorted into: the single-view machines with only one
machine architecture and the multi-view machines with multiple
architectures [55]. Naturally, there are four combinations: the
single-view machines on the single-view patterns, the single-
view machines on the multi-view patterns, the multi-view
machines on the single-view patterns, and the multi-view
machines on the multi-view patterns [55]. The work proposed
in this manuscript falls into the framework of the multi-view
machines on the single-view patterns. Thus, we lay the proposed
work here on the expanded multi-view learning. Thirdly, the
classical MVL such as the co-training method [9] requires two
sufficient and redundant views, i.e. two attribute sets, each of
which is sufficient for learning and conditionally independent
with the other given the class label. Unfortunately, such a
requirement can hardly be met in most cases. The requirement
of sufficient and redundant views is quite strict, which indeed
motivates us to consider the way of solving the strict requirement
and to design a new MVL for the single-view patterns in the MVL
framework. Fourthly, the MultiV-MHKS reshapes the same vector
pattern to different matrix representations which are different
from each other in the representation form. But different matrix
representations all correspond to the same unique pattern. Each
(newly-formed) matrix can be formally viewed as one view of the
original vector. Thus, the proposed method learns these artifi-
cially generated multi-view patterns, which corresponds to the
new MVL of the multi-view machines on the single-view patterns
presented in our previous work [55]. Fifthly, the MultiV-MHKS is
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a supervised rather than semi-supervised MVL. In the proposed
MVL framework, we employ the assumption of the existing MVL
framework on labeled patterns. The MultiV-MHKS adopts
MatMHKS as the base classifier. MatMHKS has been demon-
strated to classify patterns correctly with labeled training set
[21]. Thus, the sufficiency assumption can be guaranteed. Differ-
ent matrices are independent on each other given the class label
on the labeled pattern set in the MultiV-MHKS. Through mini-
mizing the disagreement among all views (matrices), the MultiV-
MHKS also guarantees the compatibility between the sub-classi-
fier designed from each view.

In future, our work is to (1) further explore how to select an
appropriate reshaping way in the proposed multiviewization;
(2) generalize the MultiV-MHKS to a much efficient nonlinear
method.
Acknowledgment

The authors thank (Key) Natural Science Foundations of China
under Grant nos. 61035003, 60903091, and the Specialized
Research Fund for the Doctoral Program of Higher Education
under Grant no. 20090074120003 for partial support. This work
is also supported by the Open Projects Program of National
Laboratory of Pattern Recognition and the Fundamental Research
Funds for the Central Universities.

References

[2] V. Koltchinskii, Rademacher penalties and structural risk minimization, IEEE
Transactions on Information Theory 47 (5) (2001) 1902–1914.

[4] V. Vapnik, A. Chervonenkis, On the uniform convergence of relative frequen-
cies of events to their probabilities, Theory of Probability and its Applications
2 (1971) 264–280.

[5] P. Bartlett, S. Mendelson, Rademacher and Gaussian complexities: risk
bounds and structural results, Journal of Machine Learning Research 3
(2002) 463–482.

[8] R. Duin, E. Pekalska, Object representation, sample size and data complexity,
in: M. Basu, T.K. Ho (Eds.), Data Complexity in Pattern Recognition, Springer,
London, 2006, pp. 25–47.

[9] A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training,
in: Proceedings of the Conference on Computational Learning Theory, 1998.

[10] K. Nigam, R. Ghani, Analyzing the effectiveness and applicability of co-
training, in: Proceedings of Information and Knowledge Management, 2000.

[11] I. Muslea, C. Kloblock, S. Minton, Activeþsemi-supervised learning ¼ robust
multi-view learning, in: ICML, 2002.

[12] W.C. Lin, F.Y. Liao, C.K. Tsao, T. Lingutla, A hierarchical multiple-view
approach to three-dimensional object recognition, IEEE Transactions on
Neural Networks 2 (1) (1991) 84–92.

[13] L. Breiman, Bagging predictors, Machine Learning 24 (1996) 123–140.
[14] R. Brylla, R. Gutierrez-Osunab, F. Queka, Attribute Bagging: improving

accuracy of classifier ensembles by using random feature subsets, Pattern
Recognition 36 (2003) 1291–1302.

[15] G. Valentini1, F. Masulli, Ensembles of learning machines, in: M. Marinaro,
R. Tagliaferri (Eds.), WIRN VIETRI, Lecture Notes in Computer Science, vol.
2486, 2002, pp. 3–20.

[16] A.K. Seewald, Towards a theoretical framework for ensemble classification,
in: Proceedings of the Eighteenth International Joint Conference on Artificial
Intelligence (IJCAI-03), Morgan Kaufmann, 2003, pp. 1443–1444.

[17] T. Windeatt, Accuracy/diversity and ensemble MLP classifier design, IEEE
Transactions on Neural Networks 17 (5) (2006) 1194–1211.

[18] B. Igelnik, Y.-H. Pao, S.R. LeClair, C.Y. Shen, The ensemble approach to neural-
network learning and generalization, IEEE Transactions on Neural Networks
10 (1) (1999) 19–30.

[19] E. Ho, R.L. Kashyap, An algorithm for linear inequalities and its applications,
IEEE Transactions on Electronics Computers 14 (1965) 683–688.

[20] J. Leski, Ho-Kashyap classifier with generalization control, Pattern Recogni-
tion Letters 24 (14) (2003) 2281–2290.

[21] S. Chen, Z. Wang, Y. Tian, Matrix-pattern-oriented Ho–Kashyap classifier with
regularization learning, Pattern Recognition 40 (5) (2007) 1533–1543.

[22] V. Vapnik, Statistical Learning Theory, John Wiley, New York, 1998.
[23] Z. Wang, S. Chen, New least squares support vector machines based on
matrix patterns, Neural Processing Letters 26 (2007) 41–56.

[24] D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine
learning databases. Available from: /http://www.ics.uci.edu/�mlearn/MLRe
pository.htmlS, 1998.

[25] R.O. Duda, P.E. Hart, D.G. Stock, Pattern Classification, second ed., John Wiley
and Sons, Inc., New York, 2001.

[26] Z. Wang, S. Chen, Matrix-pattern-oriented least squares support vector
classifier with AdaBoost, Pattern Recognition Letters 29 (6) (2008) 745–753.

[28] Q.S. Xu, Y.Z. Liang, Monte Carlo cross validation, Chemometrics and Intelli-
gent Laboratory Systems 56 (2001) 1–11.

[29] M. Hubert, S. Engelen, Fast cross-validation of high-breakdown resampling
methods for PCA, Computational Statistics & Data Analysis 51 (10) (2007)
5013–5024.

[30] X. Geng, D.-C. Zhan, Z.-H. Zhou, Supervised nonlinear dimensionality reduc-
tion for visualization and classification, IEEE Transactions on Systems, Man
and Cybernetics, Part B 35 (6) (2005) 1098–1107.

[32] T.M. Mitchell, Machine Learning, McGraw-Hill, Boston, 1997.
[33] D. Beymer, T. Poggio, Image representations for visual learning, Science 272

(1996) 1905–1909.
[34] L.F. Chen, H.Y.M. Liao, M.T. Ko, J.C. Lin, G.J. Yu, A new LDA-based face

recognition system which can solve the small sample size problem, Pattern
Recognition 33 (2000) 1713–1726.

[35] S. Haykin, Neural Networks, A Comprehensive Foundation, second ed.,
Prentice-Hall, Upper Saddle River, 1999.

[36] S. Chen, Y. Zhu, D. Zhang, J. Yang, Feature extraction approaches based on
matrix pattern: MatPCA and MatFLDA, Pattern Recognition Letters 26 (2005)
1157–1167.

[38] Z. Wang, S. Chen, H. Xue, Z.S. Pan, A novel regularization learning for single-
view patterns: multi-view discriminative regularization, Neural Processing
Letters 31 (2010) 159–175.

[40] Z. Wang, S. Chen, J. Liu, D. Zhang, Pattern representation in feature extraction
and classifier design: matrix versus vector, IEEE Transactions on Neural
Networks 19 (5) (2008) 758–769.

[41] A. Graham, Kronecker Products and Matrix Calculus: with Applications,
Halsted Press, John Wiley and Sons, NY, 1981.

[42] P. Zhang, J. Peng, SVM vs regularized least squares classification, in:
Proceedings of the 17th International Conference on Pattern Recognition,
2004.

[43] J. Basak, R. Kothari, Classification paradigm for distributed vertically parti-
tioned data, Neural Computation 16 (7) (2004) 1525–1544.

[44] T. Evgeniou, M. Pontil, T. Poggio, Regularization networks and support
vector machines, Advances in Computational Mathematics 13 (1) (2000)
1–50.

[45] K.R. Muller, S. Mika, G. Ratsch, K. Tsuda, B. Scholkopf, An introduction to
kernel-based learning algorithms, IEEE Transactions on Neural Networks 12
(2) (2001) 181–202.

[46] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, Cam-
bridge University, 2004.

[47] L.I. Kuncheva, Combining Pattern Classifiers, J. Wiley & Sons, 2004.
[48] R.E. Schapire, The boosting approach to machine learning: an overview, in:

D.D. Denison, M.H. Hansen, C. Holmes, B. Mallick, B. Yu (Eds.), Nonlinear
Estimation and Classification, Springer, , 2003.

[49] V. de Sa, Learning classification with unlabeled data, in: Proceedings of
Neural Information Processing Systems, 1994.

[50] U. Brefeld, T. Gartner, T. Scheffer, S. Wrobel, Efficient co-regularised least
squares regression, in: Proceedings of the 23rd International Conference on
Machine Learning (ICML’06), Pittsburgh, PA, 2006.

[51] Z.H. Zhou, When semi-supervised learning meets ensemble learning, in:
Proceedings of the 8th International Workshop on Multiple Classifier Sys-
tems (MCS’09), Lecture Notes in Computer Science, vol. 5519, Reykjavik,
Iceland, 2009, pp. 529–538.

[52] W. Wang, Z.-H. Zhou, Analyzing co-training style algorithms, in: Proceedings
of the 18th European Conference on Machine Learning (ECML’07), Warsaw,
Poland, 2007, pp. 454–465.

[53] G. Brown, J.L. Wyatt, P. Tino, Managing diversity in regression ensembles,
Journal of Machine Learning Research 6 (2005) 1621–1650.

[54] D. Hardoon, J.D.R. Farquhar, H. Meng, J. Shawe-Taylor, S. Szedmak, Two view
learning: SVM-2K, theory and practice, in: Advances in Neural Information
Processing Systems (NIPS’06), 2006.

[55] Z. Wang, S. Chen, Multi-view kernel machine on single-view data, Neuro-
computing 72 (2009) 2444–2449.

[56] J.X. Dong, A. Krzyzak, C.Y. Suen, Fast SVM training algorithm with decom-
position on very large data sets, IEEE Transactions on Pattern Analysis and
Machine Intelligence 27 (4) (2005) 603–618.

[57] H.T. Chen, T.L. Liu, C.S. Fuh, Learning effective image metrics from few
pairwise examples, in: Proceedings of the 10th IEEE International Conference
on Computer Vision (ICCV’05), 2005.
Zhe Wang received the B.Sc. and Ph.D. degrees in Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing,
China, in 2003 and 2008, respectively. He is now an Associate Professor in Department of Computer Science and Engineering, East China University of Science and
Technology (ECUST), Shanghai, China. His research interests include machine learning, pattern recognition, and image processing.

http://www.ics.uci.edu/&sim;mlearn/MLRepository.html
http://www.ics.uci.edu/&sim;mlearn/MLRepository.html
http://www.ics.uci.edu/&sim;mlearn/MLRepository.html


Z. Wang et al. / Pattern Recognition 44 (2011) 2395–2413 2413
Songcan Chen received the B.Sc. degree in mathematics from Hangzhou University (now merged into Zhejiang University), Hangzhou, China, in 1983, the M.Sc. degree in
computer applications from Shanghai Jiaotong University, Shanghai, China, in 1985, and the Ph.D. degree in communication and information systems from the Nanjing
University of Aeronautics and Astronautics (NUAA), Nanjing, China, in 1997. He was an Assistant Lecturer at NUAA, where since 1998, he has been a Full Professor at the
Department of Computer Science and Engineering. He has authored or coauthored over 130 scientific journal papers. His research interests include pattern recognition,
machine learning, and neural computing.
Daqi Gao received the Ph.D. degree from Zhejiang University, China, in 1996. Currently, he is a Professor in East China University of Science and Technology. He is a
member of the International Neural Network Society (INNS). He has published over 50 scientific papers. His research interests are pattern recognition, neural networks,
and machine olfactory.


	A novel multi-view learning developed from single-view patterns
	Introduction
	Related work
	Creating multiple pattern representations from single-view patterns
	The way of multiviewization
	Advantages of multiviewization

	Joint learning on multiple views
	MHKS classifier
	MatMHKS classifier
	Proposed multi-view-joint classifier (MultiV-MHKS)

	Experiments
	Experimental setting
	Multi-view learning vs. single-view learning
	Multiviewization vs. Bagging and Attribute Bagging
	Joint vs. separate learning on multiple views
	Joint vs. co-training learning on multiple views
	Analysis of computational complexity in MultiV-MHKS
	Analysis on large dimensional patterns
	Further discussion
	MHKS vs. MatMHKS
	The Rademacher complexity of MultiV-MHKS, MatMHKS and MHKS
	Complementarity analysis of MultiV-MHKS
	Reshaping analysis of MultiV-MHKS


	Conclusions and future work
	Acknowledgment
	References




