
Trust Region-Guided Proximal Policy Optimization

Yuhui Wang , Hao He , Xiaoyang Tan , Yaozhong Gan

College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics
MIIT Key Laboratory of Pattern Analysis and Machine Intelligence

Collaborative Innovation Center of Novel Software Technology and Industrialization
{y.wang, hugo, x.tan, yzgancn}@nuaa.edu.cn

Abstract

Proximal policy optimization (PPO) is one of the most popular deep reinforcement
learning (RL) methods, achieving state-of-the-art performance across a wide range
of challenging tasks. However, as a model-free RL method, the success of PPO
relies heavily on the effectiveness of its exploratory policy search. In this paper, we
give an in-depth analysis on the exploration behavior of PPO, and show that PPO
is prone to suffer from the risk of lack of exploration especially under the case of
bad initialization, which may lead to the failure of training or being trapped in bad
local optima. To address these issues, we proposed a novel policy optimization
method, named Trust Region-Guided PPO (TRGPPO), which adaptively adjusts
the clipping range within the trust region. We formally show that this method not
only improves the exploration ability within the trust region but enjoys a better
performance bound compared to the original PPO as well. Extensive experiments
verify the advantage of the proposed method.

1 Introduction

Deep model-free reinforcement learning has achieved great successes in recent years, notably in
video games [11], board games [19], robotics [10], and challenging control tasks [17, 5]. Among
others, policy gradient (PG) methods are commonly used model-free policy search algorithms [14].
However, the first-order optimizer is not very accurate for curved areas. One can get overconfidence
and make bad moves that ruin the progress of the training. Trust region policy optimization (TRPO)
[16] and proximal policy optimization (PPO) [18] are two representative methods to address this
issue. To ensure stable learning, both methods impose a constraint on the difference between the new
policy and the old one, but with different policy metrics.

In particular, TRPO uses a divergence between the policy distributions (total variation divergence or
KL divergence), whereas PPO uses a probability ratio between the two policies1. The divergence
metric is proven to be theoretically-justified as optimizing the policy within the divergence constraint
(named trust region) leads to guaranteed monotonic performance improvement. Nevertheless, the
complicated second-order optimization involved in TRPO makes it computationally inefficient and
difficult to scale up for large scale problems. PPO significantly reduces the complexity by adopting
a clipping mechanism which allows it to use a first-order optimization. PPO is proven to be very
effective in dealing with a wide range of challenging tasks while being simple to implement and tune.

However, how the underlying metric adopted for policy constraints influence the behavior of the
algorithm is not well understood. It is normal to expect that the different metrics will yield RL
algorithms with different exploration behaviors. In this paper, we give an in-depth analysis on the

1There is also a variant of PPO which uses KL divergence penalty. In this paper we refer to the one clipping
probability ratio as PPO by default, which performs better in practice.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

exploration behavior of PPO, and show that the ratio-based metric of PPO tends to continuously
weaken the likelihood of choosing an action in the future if that action is not preferred by the current
policy. As a result, PPO is prone to suffer from the risk of lack of exploration especially under the
case of bad initialization, which may lead to the failure of training or being trapped in bad local
optima.

To address these issues, we propose an enhanced PPO method, named Trust Region-Guided PPO
(TRGPPO), which is theoretically justified by the improved exploration ability and better performance
bound compared to the original PPO. In particular, TRGPPO constructs a connection between the
ratio-based metric and trust region-based one, such that the resulted ratio clipping mechanism allows
the constraints imposed on the less preferred actions to be relaxed. This effectively encourages the
policy to explore more on the potential valuable actions, no matter whether they were preferred by the
previous policies or not. Meanwhile, the ranges of the new ratio-based constraints are kept within the
trust region; thus it would not harm the stability of learning. Extensive results on several benchmark
tasks show that the proposed method significantly improves both the policy performance and the
sample efficiency. Source code is available at https://github.com/wangyuhuix/TRGPPO.

2 Related Work

Many researchers have tried to improve proximal policy learning from different perspectives. Chen
et al. also presented a so-called “adaptive clipping mechanism" for PPO [3]. Their method adaptively
adjusts the scale of policy gradient according to the significance of state-action. They did not make
any alteration on the clipping mechanism of PPO, while our method adopts a newly adaptive clipping
mechanism. Fakoor et al. used proximal learning with penalty on KL divergence to utilize the
off-policy data, which could effectively reduce the sample complexity [6]. In our previous work,
we also introduced trust region-based clipping to improve boundness on policy of PPO [22]. While
in this work, we use the trust region-based criterion to guide the clipping range adjustment, which
requires additional computation but is more flexible and interpretable.

Several methods have been proposed to improve exploration in recent research. Osband et al. tried to
conduct consistent exploration using posterior sampling method [12]. Fortunato et al. presented a
method named NoisyNet to improve exploration by generating perturbations of the network weights
[7]. Another popular algorithm is the soft actor-critic method (SAC) [9], which maximizes expected
reward and entropy simultaneously.

3 Preliminaries

A Markov Decision Processes (MDP) is described by the tuple (S,A, T , c, ρ1, γ). S and A are
the state space and action space; T : S × A × S → R is the transition probability distribution;
c : S ×A → R is the reward function; ρ1 is the distribution of the initial state s1, and γ ∈ (0, 1) is
the discount factor. The return is the accumulated discounted reward from timestep t onwards, Rγt =∑∞
k=0 γ

kc(st+k, at+k). The performance of a policy π is defined as η(π) = Es∼ρπ,a∼π [c(s, a)]
where ρπ(s) = (1−γ)

∑∞
t=1 γ

t−1ρπt (s), ρπt is the density function of state at time t. Policy gradients
methods [20] update the policy by the following surrogate performance objective, Lπold

(π) =

Es∼ρπold ,a∼πold

[
π(a|s)
πold(a|s)A

πold(s, a)
]

+ η(πold), where π(a|s)/πold(a|s) is the probability ratio

between the new policy π and the old policy πold, Aπ(s, a) = E[Rγt |st = s, at = a;π]−E[Rγt |st =

s;π] is the advantage value function of policy π. Let Ds
KL (πold, π) , DKL (πold(·|s)||π(·|s)),

Schulman et al. [16] derived the following performance bound:

Theorem 1. Define that C = max
s,a
|Aπold (s, a)| 4γ

/
(1− γ)

2, Mπold
(π) = Lπold

(π) −
C maxs∈S Ds

KL (πold, π). We have η(π) ≥Mπold
(π), η(πold) = Mπold

(πold).

This theorem implies that maximizing Mπold
(π) guarantee non-decreasing of the performance of the

new policy π. To take larger steps in a robust way, TRPO optimizes Lπold
(π) with the constraint

maxs∈S Ds
KL (πold, π) ≤ δ, which is called the trust region.

2

https://github.com/wangyuhuix/TRGPPO

4 The Exploration Behavior of PPO

In this section will first give a brief review of PPO and then show that how PPO suffers from an
exploration issue when the initial policy is sufficiently far from the optimal one.

PPO imposes the policy constraint through a clipped surrogate objective function:

LCLIP
πold

(π) = E
[
min

(
π(a|s)

πold(a|s)
Aπold(s, a), clip

(
π(a|s)

πold(a|s)
, ls,a, us,a

)
Aπold(s, a)

)]
(1)

where ls,a ∈ (0, 1) and us,a ∈ (1,+∞) are called the lower and upper clipping range on state-
action (s, a). The probability ratio π(a|s)/πold(a|s) will be clipped once it is out of (ls,a, us,a).
Therefore, such clipping mechanism could be considered as a constraint on policy with ratio-
based metric, i.e., ls,a ≤ π(a|s)/πold(a|s) ≤ us,a, which can be rewritten as, −πold(a|s)(1 −
ls,a) ≤ π(a|s) − πold(a|s) ≤ πold(a|s)(us,a − 1). We call (Llπold

(s, a),Uuπold
(s, a)) ,

(−πold(a|s)(1− ls,a), πold(a|s)(us,a − 1)) the feasible variation range of policy π w.r.t. πold on
state-action (s, a) with the clipping range setting (l, u), which is a measurement on the allowable
change of policy π on state-action (s, a).

Note that the original PPO adopts a constant setting of clipping range, i.e., ls,a = 1− ε, us,a = 1 + ε
for any (s, a) [18]. The corresponding feasible variation range is (L1−ε

πold
(s, a),U1+ε

πold
(s, a)) =

(−πold(a|s)ε, πold(a|s)ε). As can be seen, given an optimal action aopt and a sub-optimal
one asubopt on state s, if πold(aopt|s) < πold(asubopt|s), then |(L1−ε

πold
(s, a

opt
),U1+ε

πold
(s, a

opt
))|<

|(L1−ε
πold

(s, a
subopt

),U1+ε
πold

(s, a
subopt

))|. This means that the allowable change of the likelihood on opti-
mal action, i.e., π(aopt|s), is smaller than that of π(asubopt|s). Note that π(aopt|s) and π(asubopt|s)
are in a zero-sum competition, such unequal restriction may continuously weaken the likelihood of
the optimal action and make the policy trapped in local optima. We now give a formal illustration.

Algorithm 1 Simplified Policy Iteration with PPO
1: Initialize a policy π0, t← 0.
2: repeat
3: Sample an action ât ∼ πt.
4: Get the new policy πt+1 by optimizing the empirical surrogate objective function of PPO based on ât:

π̂t+1(a) =


πt(a)ua a = ât and c(a) > 0

πt(a)la a = ât and c(a) < 0

πt(a)− πt(ât)uât
−πt(ât)

|A|−1
a 6= ât and c(ât) > 0

πt(a) +
πt(ât)(1−lât)
|A|−1

a 6= ât and c(ât) < 0

πt(a) c(ât) = 0

(2)

5: πt+1 = Normalize(π̂t+1)
2. t← t+ 1.

6: until πt converge

We investigate the exploration behavior of PPO under the discrete-armed bandit problem, where there
are no state transitions and the action space is discrete. The objective function of PPO in this problem
is LCLIP

πold
(π) = E

[
min

(
π(a)
πold(a)c(a), clip

(
π(a)
πold(a) , la, ua

)
c(a)

)]
. Let A+ , {a ∈ A|c(a) > 0},

A− , {a ∈ A|c(a) < 0} denote the actions which have positive and negative reward respectively,
and Asubopt = A+/{aopt} denote the set of the sub-optimal actions. Let aopt = argmaxa c(a)
and asubopt ∈ Asubopt denote the optimal 3 and a sub-optimal action. Let us consider a simplified
online policy iteration algorithm with PPO. As presented in Algorithm 1, the algorithm iteratively
sample an action ât based on the old policy πold at each step and obtains a new policy πnew.

We measure the exploration ability by the expected distance between the learned policy πt and the
optimal policy π∗ after t-step learning, i.e., ∆π0,t , Eπt [‖πt − π∗‖∞|π0], where π∗(aopt) = 1,
π∗(a) = 0 for a 6= aopt, π0 is the initial policy, πt is a stochastic element in the policy space and

2π̂t+1 may violate the probability rules, e.g.,
∑
a π̂t+1(a) > 1. Thus we need to enforce specific normaliza-

tion operation to rectify it. To simplify the analysis, we assume that πt+1 = π̂t+1.
3Assume that there is only one optimal action.

3

depends on the previous sampled actions {at′}t−1
t′=1 (see eq. (2)). Note that smaller ∆π0,t means

better exploration ability, as it is closer to the optimal policy. We now derive the exact form of ∆π0,t.

Lemma 1. ∆π0,t , Eπt [‖πt − π∗‖∞|π0] = 1− Eπt [πt(aopt)|π0].

Lemma 2. Eπt+1
[πt+1(a)|π0] = Eπt

[
Eπt+1

[πt+1(a)|πt] |π0

]
.

We provide all the proofs in Appendix E. Lemma 1 implies that we can obtain the exploration ability
∆π0,t by computing the expected likelihood of the optimal action aopt, i.e., Eπt [πt(aopt)|π0]. And
Lemma 2 shows an iterative way to compute the exploration ability. By eq. (2), for action a which
satisfies c(a) > 0, we have

Eπt+1

[
πt+1(a)|πt

]
= πt(a) +


π2
t (a)(ua − 1)−

∑

a+∈A+/{a}

π2
t (a

+)

|A|−1
(u
a+
− 1) +

∑

a−∈A−

π2
t (a
−)

|A|−1
(1− l

a−)


 (3)

This equation provides a explicit form of the case when the likelihood of action a would decrease.
That is, if the second term in RHS of eq. (3) is negative, then the likelihood on action a would
decrease. This means that the initialization of policy π0 profoundly affects the future policy πt. Now
we show that if the policy π0 initializes from a bad one, π(aopt) may continuously be decreased.
Formally, for PPO, we have the following theorem:
Theorem 2. Given initial policy π0, if π2

0(aopt) · |A|<
∑
asubopt∈Asubopt

π2
0(asubopt) −∑

a−∈A− π
2
0(a−), then we have

(i)
∑
asubopt∈Asubopt

π0(asubopt) <
∑
asubopt∈Asubopt

EπPPO
1

[
πPPO

1 (asubopt)|π0

]
< · · · <∑

asubopt∈Asubopt
EπPPO

t

[
πPPO
t (asubopt)|π0

]
;

(ii) π0(aopt) > EπPPO
1

[
πPPO

1 (aopt)|π0

]
> · · · > EπPPO

t

[
πPPO
t (aopt)|π0

]
;

(iii) ∆π0,0 < ∆PPO
π0,1 < · · · < ∆PPO

π0,t .

Conclusion (i) and (ii) implies that if the optimal action aopt is relatively less preferred than the
sub-optimal action asubopt by the initial policy, then the preference of choosing the optimal action
would continue decreasing while that of the sub-optimal action would continue increasing. This is
because the feasible variation of probability on the optimal action π(aopt) is larger than that on the
sub-optimal one π(asubopt), increasing probability on the latter one could diminish the former one.
Conclusion (iii) implies that the policy of PPO is expected to diverge from the optimal one (in terms
of the infinity metric). We give a simple example below.
Example 1. Consider a three-armed bandit problem, the reward function is c(aopt) =
1, c(asubopt) = 0.5, c(aworst) = −50. The initial policy is π0(aopt) = 0.2, π0(asubopt) =
0.6, π0(aworst) = 0.2. The hyperparameter of PPO is ε = 0.2. We have ∆PPO

π0,0 = 0.8,
∆PPO
π0,1 = 0.824,. . . , ∆PPO

π0,6 ≈ 0.999, which means the policy diverges from the optimal one.

Note that the case that the optimal action aopt is relatively less preferred by the initial policy may be
avoided in discrete action space, where we can use uniform distribution as initial policy. However,
such a case could hardly be avoided in the high dimensional action space, where the policy is possibly
initialized far from the optimal one. We have experimented Example 1 and a continuous-armed bandit
problem with random initialization for multiple trials; about 30% of the trials were trapped in the
local optima. See Section 6.1 for more detail.

In summary, PPO with constant clipping range could lead to an exploration issue when the policy is
initialized from a bad one. However, eq. (3) inspires us a method to address this issue − enlarging the
clipping range (la, ua) when the probability of the old policy πold(a) is small.

5 Method

5.1 Trust Region-Guided PPO

In the previous section, we have concluded that the constant clipping range of PPO could lead to an
exploration issue. We consider how to adaptively adjust the clipping range to improve the exploration

4

behavior of PPO. The new clipping range (lδs,a, u
δ
s,a), where δ is a hyperparameter, is set as follows:

lδs,a = min
π

{
π(a|s)
πold(a|s) : Ds

KL(πold, π) ≤ δ
}
, uδs,a = max

π

{
π(a|s)
πold(a|s) : Ds

KL(πold, π) ≤ δ
}

(4)

To ensure the new adaptive clipping range would not be over-strict, an additional truncation operation
is attached: lδ,εs,a = min(lδs,a, 1− ε), uδ,εs,a = max(uδs,a, 1 + ε). This setting of clipping range setting
could be motivated from the following perspectives.

First, the clipping range is related to the policy metric of constraint. Both TRPO and PPO imposes
a constraint on the difference between the new policy and the old one. TRPO uses the divergence
metric of the distribution, i.e., Ds

KL(πold, π) = Ea
[
log πold(a|s)

π(a|s)

]
≤ δ for all s ∈ S, which is more

theoretically-justified according to Theorem 1. Whereas PPO uses a ratio-based metric on each action,
i.e., 1− ε ≤ π(a|s)

πold(a|s) ≤ 1 + ε for all a ∈ A and s ∈ S . The divergence-based metric is averaged over
the action space while the ratio-based one is an element-wise one on each action point. If the policy
is restricted within a region with the ratio-based metric, then it is also constrained within a region
with divergence-based one, but not vice versa. Thus the probability ratio-based metric constraint is
somewhat more strict than the divergence-based one. Our method connects these two underlying
metrics − adopts the probability ratio-based constraint while getting closer to the divergence metric.

Second, a different underlying metric of the policy difference may result in different algorithm
behavior. In the previous section, we have concluded that PPO’s metric with constant clipping range
could lead to an exploration issue, due to that it imposes a relatively strict constraint on actions which
are not preferred by the old policy. Therefore, we wish to relax such constraint by enlarging the
upper clipping range while reducing the lower clipping range. Fig. 1a shows the clipping range of
TRGPPO and PPO. For TRGPPO (blue curve), as πold(a|s) gets smaller, the upper clipping range
increases while the lower one decreases, which means the constraint is relatively relaxed as πold(a|s)
gets smaller. This mechanism could encourage the agent to explore more on the potential valuable
actions which are not preferred by the old policy. We will theoretically show that the exploration
behavior with this new clipping range is better than that of with the constant one in Section 5.2.

Last but not least, although the clipping ranges are enlarged, it will not harm the stability of learning,
as the ranges are kept within the trust region. We will show that this new setting of clipping range
would not enlarge the policy divergence and has better performance bound compared to PPO in
Section 5.3.

Our TRGPPO adopts the same algorithm procedure as PPO, except that it needs an additional
computation of adaptive clipping range. We now present methods on how to compute the adaptive
clipping range defined in (4) efficiently. For discrete action space, by using the KKT conditions, the
problem (4) is transformed into solving the following equation w.r.t X .

g(πold(a|s), X) , (1− πold(a|s)) log
1− πold(a|s)

1− πold(a|s)X − πold(a|s) logX = δ (5)

which has two solutions, one is for lδs,a which is within (0, 1), and another one is for uδs,a which is
within (1,+∞). We use MINPACK’s HYBRD and HYBRJ routines [15] as the solver. To accelerate
this computation procedure, we adopt two additional measures. First, we train a Deep Neural Network

0 0.2 0.4 0.6 0.8 1
old(a|s)

1.0

2.0

3.0

4.0

Clipping Range
us, a of TRGPPO
ls, a of TRGPPO
1 + of PPO
1 of PPO

(a)

0 0.2 0.4 0.6 0.8 1.0
old(a|s)

-0.2
-0.15
-0.1

-0.05

0.05
0.1

0.15
0.2

Variation

TRGPPO
TRGPPO
PPO
PPO

(b)

3 2 1 0 1 2 3 a

1.0

2.0

3.0

4.0

5.0 ua of TRGPPO
la of TRGPPO
1 of PPO
1 + of PPO

old(a)

(c)
Figure 1: (a) and (b) plot the clipping range and the feasible variation range under different πold(a|s)
for discrete action space task. (c) plots the clipping range under different a for continuous action
space task, where πold(a|s) = N (a|0, 1) (black curve).

5

(DNN) which input πold(a|s) and δ, and approximately output the initial solution. Note that the
solution in (5) only depends on the probability πold(a|s) and the hyperparameter δ, and it is not
affected by the dimension of the action space. Thus it is possible to train one DNN for all discrete
action space tasks in advance. Second, with fixed δ, we discretize the probability space and save all
the solutions in advance. This clipping range computation procedure with these two acceleration
measures only requires only additional 4% wallclock computation time of the original policy learning.
See Appendix B.3 for more detail.

While for the continuous actions space task, we make several transformations to make the problem in-
dependent of the dimension of the action space, which makes it tractable to apply the two acceleration
measures above. See Appendix B.2 for more detail.

5.2 Exploration Behavior

In this section, we will first give the property of the clipping range of TRGPPO, which could affect
the exploration behavior (as discussed in Section 4). Then a comparison between TRGPPO and PPO
on the exploration behavior will be provided.

Lemma 3. For TRGPPO with hyperparameter δ, we have
duδs,a

dπold(a|s) < 0,
dlδs,a

dπold(a|s) > 0.

This result implies that the upper clipping range becomes larger as the preference on the action by the
old policy πold(a|s) approaches zero, while the lower clipping range is on the contrary. This means
that the constraints are relaxed on the actions which are not preferred by the old policy, such that it
would encourage the policy to explore more on the potential valuable actions, no matter whether they
were preferred by the previous policies or not.

We now give a formal comparison on the exploration behavior. As mentioned in Section 4, we
measure the exploration ability by the expected distance between the learned policy πt and the
optimal policy π∗ after t-step learning, i.e., ∆π0,t , Eπt [‖πt − π∗‖∞|π0]. Smaller ∆π0,t means the
better exploration ability. The exploration ability of TRGPPO is denoted as ∆TRGPPO

π0,t while that of
PPO is denoted as ∆PPO

π0,t . By eq. (3) and Lemma 3, we get the following conclusion.

Theorem 3. For TRGPPO with hyperparameter (δ, ε) and PPO with same ε. If δ ≤
g(maxa∈Asubopt

πt(a), 1 + ε) for all t, then we have ∆TRGPPO
π0,t ≤ ∆PPO

π0,t for any t.

This theorem implies that our TRGPPO has better exploration ability than PPO, with proper setting
of the hyperparameter δ.

5.3 Policy Divergence and Lower Performance Bound

To investigate how TRGPPO and PPO perform in practical, let us consider an empirical version
of lower performance bound: M̂πold

(π) = L̂πold
(π) − C maxtD

st
KL (πold, π) , where L̂πold

(π) =
1
T

∑T
t=1

[
π(at|st)
πold(at|st)At

]
+ η̂πold , st ∼ ρπold

, at ∼ πold(·|st) are the sampled states and actions,
where we assume si 6= sj for any i 6= j, At is the estimated value of Aπold(st, at), η̂πold is the
estimated performance of old policy πold.

Let ΠPPO
new denote the set of all the optimal solutions of the empirical surrogate objective function of

PPO, and let πPPO
new ∈ ΠPPO

new denote the optimal solution which achieve minimum KL divergence
over all optimal solutions, i.e., Dst

KL(πold, π
PPO
new) ≤ Dst

KL(πold, π) for any π ∈ ΠPPO
new under all st.

This problem can be formalized as πPPO
new = argminπ∈ΠPPO

new
(Ds1

KL(πold, π), . . . , DsT
KL(πold, π)).

Note that π(·|st) is a conditional probability and the optimal solution on different states are
independent from each other. Thus the problem can be optimized by independently solving
minπ(·|st)∈{π(·|st):π∈ΠPPO

new }DKL (πold(·|st), π(·|st)) for each st. The final πPPO
new is obtained by

integrating these independent optimal solutions πPPO
new (·|st) on different state st. Similarly, πTRGPPO

new
is the one of TRGPPO which has similar definition as πPPO

new . Please refer to Appendix E for more
detail.

To analyse TRGPPO and PPO in a comparable way, we introduce a variant of TRGPPO.
The hyperparameter δ of TRGPPO in eq. (4) is set adaptively by ε. That is, δ =

max
(

(1− p+) log 1−p+
1−p+(1+ε) − p+ log(1 + ε), (1− p−) log 1−p−

1−p−(1−ε) − p− log(1− ε)
)
, where

6

p+ = max
t:At>0

πold(at|st), p− = max
t:At<0

πold(at|st). One may note that this equation has a simi-

lar form to that of eq. (5). In fact, if TRGPPO and PPO share a similar ε, then they have the same KL
divergence theoretically. We conclude the comparison between TRGPPO and PPO by the following
theorem.

Theorem 4. Assume that maxtD
st
KL(πold, π

PPO
new) < +∞ for all t. If TRGPPO and PPO have the

same hyperparameter ε, we have:

(i) uδst,at ≥ 1 + ε and lδst,at ≤ 1− ε for all (st, at);

(ii) maxtD
st
KL(πold, π

TRGPPO
new) = maxtD

st
KL(πold, π

PPO
new);

(iii) M̂πold
(πTRGPPO

new) ≥ M̂πold
(πPPO

new). Particularly, if there exists at least one (st, at) such that
πold(at|st) 6= max

t̂:At̂<0
πold(at̂|st̂) and πold(at|st) 6= max

t̂:At̂>0
πold(at̂|st̂), then M̂πold

(πTRGPPO
new) >

M̂πold
(πPPO

new).

Conclusion (i) implies that TRGPPO could enlarge the clipping ranges compared to PPO and
accordingly allow larger update of the policy. Meanwhile, the maximum KL divergence is retained,
which means TRGPPO would not harm the stability of PPO theoretically. Conclusion (iii) implies
that TRGPPO has better empirical performance bound.

6 Experiment

We conducted experiments to answer the following questions: (1) Does PPO suffer from the lack of
exploration issue? (2) Could our TRGPPO relief the exploration issue and improve sample efficiency
compared to PPO? (3) Does our TRGPPO maintain the stable learning property of PPO? To answer
these questions, we first evaluate the algorithms on two simple bandit problems and then compare
them on high-dimensional benchmark tasks.

6.1 Didactic Example: Bandit Problems

We first evaluate the algorithms on the bandit problems. In the continuous-armed bandit problem, the
reward is 0.5 for a ∈ (1, 2); 1 for a ∈ (2.5, 5); and 0 otherwise. And a Gaussian policy is used. The
discrete-armed bandit problem is defined in section 4.We use a Gibbs policy π(a) ∝ exp(θa), where
the parameter θ is initialized randomly from N (0, 1). We also consider the vanilla Policy Gradient
method as a comparison. Each algorithm was run for 1000 iterations with 10 random seeds.

0 250 500 750 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Discrete Bandit

TRPPO
PPO
Vanilla PG

0 250 500 750 1000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Re
wa

rd

Continuous Bandit

TRPPO
PPO
Vanilla PG

TRGPPO TRGPPO

Figure 2: The performance on discrete
and continuous-armed bandit problems
during training process.

Fig. 2 plots the performance during the training process.
PPO gets trapped in local optima at a rate of 30% and 20%
of all the trials on discrete and continuous cases respec-
tively, while our TRGPPO could find the optimal solution
on almost all trials. For continuous-armed problem, we
have also tried other types of parametrized policies like
Beta and Mixture Gaussian, and these policies behaves
similarly as the Gaussian policy. In discrete-armed prob-
lem, we find that when the policy is initialized with a local
optima, PPO could easily get trapped in that one. Notably,
since vanilla PG could also find the optimal one, it could
be inferred that the exploration issue mainly derives from
the ratio-based clipping with constant clipping range.

6.2 Evaluation on Benchmark Tasks

We evaluate algorithms on benchmark tasks implemented in OpenAI Gym [2], simulated by MuJoCo
[21] and Arcade Learning Environment [1]. For continuous control tasks, we evaluate algorithms on
6 benchmark tasks. All tasks were run with 1 million timesteps except that the Humanoid task was
20 million timesteps. The trained policies are evaluated after sampling every 2048 timesteps data.
The experiments on discrete control tasks are detailed in Appendix C.

7

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd

Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0

20

40

60

80

100

120

Re
wa

rd

Swimmer

0 4 8 12 16 20
Timesteps(×106)

0

1000

2000

3000

4000

5000

6000

7000

8000

Re
wa

rd

Humanoid

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

18

16

14

12

10

8

6

4

Re
wa

rd

Reacher

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0

1000

2000

3000

4000

Re
wa

rd

Walker2d

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0

2000

4000

6000

8000

10000

Re
wa

rd

HalfCheetah
TRGPPO
PPO
SAC
PPO-penalty
PPO-entropy
PPO-0.6

Figure 3: Episode rewards during the training process; the shaded area indicate the standard deviation
over 10 random seeds.

Table 1: Results of timesteps to hit a threshold within 1 million timesteps (except Humanoid with 20
million) and averaged rewards over last 40% episodes during training process.

(a) Timesteps to hit threshold (×103) (b) Averaged rewards

Threshold TRGPPO PPO PPO-
penalty SAC TRGPPO PPO PPO-

penalty SAC

Humanoid 5000 4653 7241 13096.0 343.0 7074.9 6620.9 3612.3 6535.9
Reacher -5 201 178.0 301.0 265 -7.9 -6.7 -6.8 -17.2

Swimmer 90 353.0 564 507.0 /4 101.9 100.1 94.1 49
HalfCheetah 3000 117 148 220.0 53.0 4986.1 4600.2 4868.3 9987.1

Hopper 3000 168.0 267 188.0 209 3200.5 2848.9 3018.7 3020.7
Walker2d 3000 269.0 454 393.0 610 3886.8 3276.2 3524 2570

For our TRGPPO, the trust region coefficient δ is adaptively set by tuning ε (see Appendix B.4
for more detail). We set ε = 0.2, same as PPO. The following algorithms were considered in the
comparison. (a) PPO: we used ε = 0.2 as recommended by [18]. (b) PPO-entropy: PPO with an
explicit entropy regularization term βEs [H (πold(·|s), π(·|s))], where β = 0.01. (c) PPO-0.6: PPO
with a larger clipping range where ε = 0.6. (d) PPO-penalty: a variant of PPO which imposes
a penalty on the KL divergence and adaptively adjust the penalty coefficient [18]. (e) SAC: Soft
Actor-Critic, a state-of-the-art off-policy RL algorithm [9]. Both TRGPPO and PPO adopt exactly
same implementations and hyperparameters except the clipping range based on OpenAI Baselines
[4]. This ensures that the differences are due to algorithm changes instead of implementations or
hyperparameters. For SAC, we adopt the implementations provided in [9].

Sample Efficiency: Table 1 (a) lists the timesteps required by algorithms to hit a prescribed threshold
within 1 million timesteps and Figure 3 shows episode rewards during the training process. The
thresholds for all tasks were chosen according to [23]. As can be seen in Table 1, TRGPPO requires
about only 3/5 timesteps of PPO on 4 tasks except HalfCheetah and Reacher.

Performance/Exploration: Table 1 (b) lists the averaged rewards over last 40% episodes during
training process. TRGPPO outperforms the original PPO on almost all tasks except Reacher. Fig. 4a
shows the policy entropy during training process, the policy entropy of TRGPPO is obviously higher
than that of PPO. These results implies that our TRGPPO method could maintain a level of entropy
learning and encourage the policy to explore more.

4‘/’ means that the method did not reach the reward threshold within the required timesteps on all the seeds.

8

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

1

0

1

2

3

4

po
lic

y
en

tro
py

Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

4

3

2

1

0

1

2

3

po
lic

y
en

tro
py

Reacher

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

po
lic

y
en

tro
py

Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

2

0

2

4

6

8

po
lic

y
en

tro
py

Walker2d
TRGPPO
PPO

(a) Policy entropy

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
clip range

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge

Hopper

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
clip range

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge

Reacher

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
clip range

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge

Swimmer

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
clip range

0.0

0.2

0.4

0.6

0.8

1.0

pe
rc

en
ta

ge

Walker2d
PPO
TRGPPO

(b) Upper clipping range

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

KL
 d

iv
er

ge
nc

e

Hopper

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

KL
 d

iv
er

ge
nc

e

Reacher

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

KL
 d

iv
er

ge
nc

e

Swimmer

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps(×106)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

KL
 d

iv
er

ge
nc

e

Walker2d
TRGPPO
PPO
PPO-0.6

(c) KL divergence
Figure 4: (a) shows the policy entropy during training process. (b) shows the statistics of the computed
upper clipping ranges over all samples. (c) shows the KL divergence during the training process.

The Clipping Ranges and Policy Divergence: Fig. 4b shows the statistics of the upper clipping
ranges of TRGPPO and PPO. Most of the resulted adaptive clipping ranges of TRGPPO are much
larger that of PPO. Nevertheless, our method has similar KL divergences with PPO (see Fig. 4c).
However, the method of arbitrary enlarging clipping range (PPO-0.6) does not enjoy such property
and fails on most of tasks.

Training Time: Within one million timesteps, the training wall-clock time for our TRGPPO is 25
min; for PPO, 24 min; for SAC, 182 min (See Appendix B.3 for the detail of evaluation). TRGPPO
does not require much additional computation time than PPO does.

Comparison with State-of-the-art Method: TRGPPO achieves higher reward than SAC on 5
tasks while is not as good as it on HalfCheetah. And TRGPPO is not sample efficient as SAC on
HalfCheetah and Humanoid. This may due to that TRGPPO is an on-policy algorithm while SAC
is an off-policy one. However, TRGPPO is much more computationally efficient (25 min vs. 182
min). In addition, SAC tuned hyperparameters specifically for each task in the implementation of the
original authors. In contrast, our TRGPPO uses the same hyperparameter across different tasks.

7 Conclusion

In this paper, we improve the original PPO by an adaptive clipping mechanism with a trust region-
guided criterion. Our TRGPPO method improves PPO with more exploration and better sample
efficiency and is competitive with several state-of-the-art methods, while maintains the stable learning
property and simplicity of PPO.

To our knowledge, this is the first work to reveal the effect of the metric of policy constraint on the
exploration behavior of the policy learning. While recent works devoted to introducing inductive
bias to guide the policy behavior, e.g., maximum entropy learning [24, 8], curiosity-driven method
[13]. In this sense, our adaptive clipping mechanism is a novel alternative approach to incorporate
prior knowledge to achieve fast and stable policy learning. We hope it will inspire future work on
investigating more well-defined policy metrics to guide efficient learning behavior.

Acknowledgement

This work is partially supported by National Science Foundation of China (61976115,61672280,
61732006), AI+ Project of NUAA(56XZA18009), Postgraduate Research & Practice Innovation
Program of Jiangsu Province (KYCX19_0195). We would also like to thank Yao Li, Weida Li, Xin
Jin, as well as the anonymous reviewers, for offering thoughtful comments and helpful advice on
earlier versions of this work.

References
[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

9

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[3] Gang Chen, Yiming Peng, and Mengjie Zhang. An adaptive clipping approach for proximal
policy optimization. CoRR, abs/1804.06461, 2018.

[4] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https://github.
com/openai/baselines, 2017.

[5] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. International Conference on Machine Learning,
pages 1329–1338, 2016.

[6] Rasool Fakoor, Pratik Chaudhari, and Alexander J Smola. P3o: Policy-on policy-off policy
optimization. In Uncertainty in Artificial Intelligence, 2019.

[7] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel,
Ian Osband, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin,
Charles Blundell, and Shane Legg. Noisy networks for exploration. International Conference
on Learning Representations, 2018.

[8] Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. International Conference on Machine Learning, pages 1352–1361,
2017.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. International Conference
on Machine Learning, pages 1856–1865, 2018.

[10] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[12] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration
via bootstrapped dqn. Advances in Neural Information Processing Systems, pages 4026–4034,
2016.

[13] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML),
volume 2017, 2017.

[14] Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients.
Neural networks, 21(4):682–697, 2008.

[15] Michael JD Powell. A hybrid method for nonlinear equations. Numerical methods for nonlinear
algebraic equations, 1970.

[16] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897,
2015.

[17] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. International Confer-
ence on Learning Representations, 2016.

[18] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

10

https://github.com/openai/baselines
https://github.com/openai/baselines

[19] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering
chess and shogi by self-play with a general reinforcement learning algorithm. arXiv preprint
arXiv:1712.01815, 2017.

[20] Richard S Sutton, David A. McAllester, Satinder P. Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. pages 1057–1063, 2000.

[21] E Todorov, T Erez, and Y Tassa. Mujoco: A physics engine for model-based control. In
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.

[22] Yuhui Wang, Hao He, Xiaoyang Tan, and Yaozhong Gan. Truly proximal policy optimization.
In Uncertainty in Artificial Intelligence, 2019.

[23] Yuhuai Wu, Elman Mansimov, Roger B. Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. Advances in
Neural Information Processing Systems, pages 5279–5288, 2017.

[24] Brian D. Ziebart, J. Andrew Bagnell, and Anind K. Dey. Modeling interaction via the principle
of maximum causal entropy. In ICML, 2010.

11

A Example: Continuous-Armed Bandit

3 2 1 0 1 2 3 a

1.0

2.0

3.0

4.0

5.0 ua of TRGPPO
la of TRGPPO
1 of PPO
1 + of PPO

old(a)

Figure 1: Clipping Range of
TRGPPO (blue curve) and PPO
(orange curve) on different actions.
For TRGPPO, δ = 0.05, while for
PPO, ε = 0.2. The distribution of
old policy is πold(a) = N (a|0, 1).

In this section, we show how PPO and TRGPPO perform in
continuous action space by a simple continuous-armed ban-
dit problem. Fig. 2 (b) shows the plot of reward function
(black dashed curve). Let asubopt denote any sub-optimal ac-
tion which achieves second-highest reward; and let aopt de-
note the optimal one. The policy is a parametrized Gaussian
(orange solid curve).

Fig. 1 shows the clipping ranges for different actions in con-
tinuous action space, where dim(A) = 1. The old policy is
πold(a) = N (a|0, 1) (black curve). Note that the probability
πold(a) goes smaller as a is away from zero which the mode of
the Gaussian distribution. As the figure shows, in continuous
action space, our TRGPPO method sets larger clipping range
for action which is less likely to be chosen, while PPO sets a
constant clipping range under all actions.

Fig. 2 shows the training process of PPO on the continuous-
armed bandit problem. As can be seen, the allowable improve-
ment of π(aopt) of PPO is quite limited. It will require quite a
large number of steps for π(aopt) to peak. On the other hand, the limited improvement at π(aopt)
will prevent the policy from allocating more probability at aopt. In other words, it will explore less
at aopt. Whereas the allowable improvement at asubopt is relatively relax. This uneven restriction
may result in a growing improvement of π(asubopt) and a diminishment of π(aopt). Consequently,
the policy is trapped in local optima, as Fig. 2 (c) shows. Note that although we use Gaussian distri-
bution as our policy in the example, these issues could also happen on multimodal distribution like
Mixture Gaussian or heavy tailed distribution like Beta distribution.

Fig. 3 shows the training process of TRGPPO. When the policy enters into a locally optimal one,
the corresponding feasible variation of π(aopt) is close to that of π(asubopt) in TRGPPO, as Fig. 3
(b) shows. Note that the advantage value at aopt is larger than that at asubopt. This could result in
a growing reinforcement of π(aopt), which accordingly leads to a diminishment of π(asubopt). In
this way, the policy jumps out of the local optima and converges to the optimal policy, as Fig. 3 (c)
shows.

−1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

/
D

en
si

ty

(a) The beginning of training process (1-th iteration)

Reward Function

PDF of Policy π

-1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0
feasible variation
range of π(aopt) is
much smaller than
that of π(asubopt)

π(asubopt)

asubopt

π(aopt)

aopt

(b) The middle of training process (200-th iteration)

Reward Function

PDF of Policy π

Feasible Variation Range of π(a)

−1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0

(c) The end of training process (400-th iteration)

Reward Function

PDF of Policy π

Figure 2: Training process of PPO. The orange solid curve plots the probability density function
(PDF) of policy at the training process. The black dashed curve plots the reward function of the
bandit problem.

−1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0

R
ew

ar
d

/
D

en
si

ty

(a) The beginning of training process (1-th iteration)

Reward Function

PDF of Policy π

-1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0
feasible variation
range at π(aopt) is
close to that at
π(asubopt)

π(asubopt)

asubopt

π(aopt)

aopt

(b) The middle of training process (200-th iteration)

Reward Function

PDF of Policy π

Feasible Variation Range of π(a)

−1 0 1 2 3 4
Action

0

0.2

0.4

0.6

0.8

1.0

(c) The end of training process (400-th iteration)

Reward Function

PDF of Policy π

Figure 3: Training process of TRGPPO.

B Computation of Adaptive Clipping Range

In this section, we detail the method for adaptive clipping range computation, which is formalized
as the following problem.

lδst,at = min
π

{
π(at|st)
πold(at|st)

: Dst
KL(πold, π) ≤ δ

}

uδst,at = max
π

{
π(at|st)
πold(at|st)

: Dst
KL(πold, π) ≤ δ

}
(1)

(2)

To be abbreviated, we describe the approach for minimization case under discrete and continuous
action space respectively, while that for the maximization case is similar.

B.1 Discrete Action Space

For discrete action space tasks, it is standard to use a DNN with softmax output layer to represent
the policy, i.e., π(a|s) = [fpθ (s)]a, where fpθ (s) is the parameter of categorical distribution on state
s and the subscript a denote the a-th entry of the vector. The optimal clipping range should be
computed should be independent of special parametrization of fpθ . Thus the problem is formalized
as an optimization problem of two Categorical distributions. Given st and at, let p′ = fpθ′(st), where
θ′ is the parameter of old policy πold, the computation of lδst,at in (1) is formalized as the following
optimization problem:

min
p

pat
p′at

s.t.
∑

a∈A
p′a log

p′a
pa
≤ δ,

∑

a∈A
pa = 1,

0 ≤ pa ≤ 1 for a ∈ A

(3)

While the optimization problem for uδst,at is the maximization case of problem (3). Let λ and ν be
the Lagrangian multipliers.





λ

(
−p
′
a

pa

)
+ ν = 0, for a 6= at

1

p′at
+ λ

(
−p
′
at

pat

)
+ ν = 0

λ

(∑

a∈A
p′a log

p′a
pa
− δ
)

= 0

∑

a

pa = 1

(4a)

(4b)

(4c)

(4d)

By (a)(b), we have λ 6= 0, since if λ = 0 then ν = 0 (by (a)), which contradicts (b). Second, by
(c) and λ 6= 0, we have

∑
a∈A p

′
a log(p′a/pa) = δ. Third, taking (a) into (d), we have p′a/pa =

ν/λ = (1− p′at)/(1− pat) for a 6= at. Then, taking this equation into
∑
a∈A p

′
a log(p′a/pa) = δ,

this problem is transformed into solving the following equation w.r.t. pat .

(
1− p′at

)
log

1− p′at
1− pat

− p′at log
pat
p′at

= δ (5)

In fact, there are two groups of solution for (5), where pat/p
′
at < 1 is the one for the minimization

case, while pat/p
′
at > 1 is the one for the maximization case.

B.2 Continuous Action Space

For continuous action space tasks, it is standard to represent the stochastic policy by a parameterized
conditional Gaussian distribution[4, 2], i.e., π(a|s) = N (a|fµθ (s), fΣ

θ (s)), where fµθ and fΣ
θ are two

DNNs which output the mean vector and covariance matrix. Note that the optimal clipping range
should be computed independent of special parametrization of fµθ and fΣ

θ . Thus the problem (1) is
formalized as an optimization problem of two Gaussian distributions. Given (st, at), let µ′ = fµθ′(st)

and Σ′ = fΣ
θ′(st), where θ′ is the parameter of old policy πold, the computation of lδst,at in (1) is

formalized as the following optimization problem:

min
µ,Σ

1

2

(
− log|Σ|−(µ− at)>Σ−1 (µ− at) + log|Σ′|+(µ′ − at)>Σ′

−1
(µ′ − at)

)

s.t.
1

2

(
log
∣∣Σ′Σ−1

∣∣+ tr
{

Σ′
−1

Σ
}

+ (µ− µ′)>Σ′
−1

(µ− µ′)−D
)
− δ ≤ 0

(6)

where µ ∈ RD, Σ ∈ RD×D is a positive semi-definite matrix, D = dim(A) is the dimension of ac-
tion space. The objective function is log of the ratio π. The covariance matrix could be decomposed
by Σ′ = Σ̄′Σ̄′

>, and we introduce a rotation matrix R ∈ RD×D (which has R>R = R−1R = I).

Second, by replacing µ with Σ̄′Rµ+µ′, and Σ with Σ̄′RΣR>Σ̄′
>, we could transform the problem

to

min
µ,Σ

1

2

(
− log|Σ|−(µ− āt)>Σ−1 (µ− āt) + ā>t āt

)

s.t.
1

2

(
log
∣∣Σ−1

∣∣+ tr {Σ}+ µ>µ−D
)
− δ ≤ 0

(7)

where āt = R>Σ̄′
−1

(µ′ − at).

Next, we constrain the covariance matrix Σ to be diagonal. The final result is sub-optima compared
to the original problem. However, we don’t require accurate clipping bound when optimizing policy.
Another reason is that in practice the diagonal Gaussian policy is widely used in RL realizations.
Then (7) is equivalent to the following problem.

min
µ,σ

1

2

D∑

d=1

(
− log σd − (µd − āt,d)2

σd
−1 + ā2

t,d

)

s.t.
1

2

D∑

d=1

[
− log σd + σd + µ2

d −D
]
− δ ≤ 0

(8)

where µ ∈ RD, σ ∈ R+D. We choose appropriate R to make āt,d = ȧt =
∥∥∥(µ′ − at) Σ̄′

−1
∥∥∥/
√
D

for d = 1, 2, · · · , D, which means that all entries of āt are equal. Let λ be the Lagrangian multiplier,
by appling the KKD condition,





− (µd−ȧt)
σd

+ λµd = 0 d = 1, · · · , D
− 1
σd

+ (µd−ȧt)2
σd2

+ λ
[
− 1
σd

+ 1
]

= 0 d = 1, · · · , D

λ

(
1
2

D∑
d=1

[
− log σd + σd + µ2

d −D
]
− δ
)

= 0

λ ≥ 0

(9)

By the equations above, we could easily know that µd and σd are equal for all d. Thus the problem
could collapse to the following problem,

min
µ,σ

1

2
D
(
− log σ − (µ− ȧt)2

σ−1 + (0− ȧt)2
)

s.t.
1

2

(
− log σ + σ + µ2 − 1

)
−D−1δ ≤ 0

(10)

Remember that ȧt =
∥∥∥(µ′ − at) Σ̄′

−1
∥∥∥/
√
D, µ ∈ R, σ ∈ R+. Until now, the original D-

dimensional optimization problem is transformed to a 1-dimensional optimization problem. By
the KKT conditions above, we could obtain the following equations w.r.t. µ, σ and λ.

When ȧt 6= 0, the problem is transformed into solving the following equations w.r.t. µ, σ, λ:




− log (µ−ȧt)(µ2−ȧtµ−1)
ȧt

+ (µ−ȧt)(µ2−ȧtµ−1)
ȧt

+ µ2 − 1− 2δD−1 = 0

σ = (µ− ȧt)(µ2 − ȧtµ− 1)
/
ȧt

λ = µ−ȧt
σµ

(11)

When ȧt = 0, the problem is transformed into solving the following equations w.r.t. µ, σ, λ:



µ = 0

− log σ + σ − 1− 2δ/D = 0

λ =
−σ+ȧ2t
−σ+σ2

(12)

There are two groups of solution for both (11) and (12), where λ > 0 is the one for the minimization
case, while λ < 0 is the one for the maximization case.

B.3 Computation Acceleration

Note the solutions in (5) only depend on the one-dimensional constant p′a and δ, while (11) and (12)
only depend on one-dimensional constant ȧ and δ/D. We use MINPACK’s HYBRD and HYBRJ
routines [3] as the solver. To accelerate this computation procedure, we propose two additional
approach. One is to train a DNN which input πold(a|s) and δ and approximately output the solutions,
which serve as the initial solutions for the solver. The other is to discretize the space of the input
and save all the solutions in advance. The experimental results in our main content are conducted
with the discretization version.

Table 2 shows the wall-clock time required by variants of TRGPPO and PPO to finish benchmark
tasks in a modern CPU. With our proposed acceleration tricks, the optimization time of calculating
clipping range can be reduced significantly. The result is obtained with the same experiment setup
as previous experiments. The experiments are applied on a computer with an Intel i5-7500 CPU,
16GB of memory and a GeForce GTX 1060 GPU.

Table 1: Input and output of the DNN for solving problems. For discrete action space, we sample
1000 p′a. For continuous action space, we sample 1000 ȧ and 1000 δ/D (note we take δ/D as an
entity). We solve these problems and obtain the corresponding solutions, and these data are used to
train our DNN.

Input Output
Discrete Action Space p′a ∼ U(0, 1) pa

Continuous Action Space ȧ ∼ U(−5, 5);D−1δ ∼ U [0.0002, 0.01] µ, σ

Table 2: Comparison of computation cost for TRGPPO with different acceleration tricks.

PPO TRGPPO
(discretization)

TRGPPO
(solver)

TRGPPO
(DNN)

Mujoco(106 timesteps) 24 min 25 min 52 min 29 min
Atari(107 timesteps) 195 min 198 min 243 min 213 min

B.4 Adaptively Setting δ with ε

We detail method about how to adaptively set δ by ε. Our goal is to make TRGPPO has theoretical
maximum KL divergence over all sampled states.

For discrete action space, let p+ = max
t:At>0

πold(at|st), p− = max
t:At<0

πold(at|st). By eq. (5), we set δ

by
δ = max(δ+, δ−)

δ+ =
(
1− p+

)
log

1− p+

1− p+(1 + ε)
− p+ log(1 + ε)

δ− =
(
1− p−

)
log

1− p−
1− p−(1− ε) − p

− log(1− ε)

(13a)

(13b)

(13c)

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

500

1000

1500

2000

2500

3000

3500

Re
wa

rd

BeamRider
PPO
TRGPPO

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

50

100

150

200

250

300

Re
wa

rd

Breakout
PPO
TRGPPO

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

20

10

0

10

20

Re
wa

rd

Pong

PPO
TRGPPO

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0

2500

5000

7500

10000

12500

15000

17500

Re
wa

rd

Qbert
PPO
TRGPPO

Figure 4: Episode rewards achieved by algorithm during the training process averaged over 4 random
seeds. TRGPPO (blue line) achieves better performance than PPO (orange line).

For continuous action space, for PPO, theoretically, it always achieves maximum KL divergence at
the sampled action which is the mode of the Gaussian. Our idea is to make the optimal clipping
range at the mode of distribution equals the clipping range of PPO. By problem eq. (10) and (12),
we set δ by

δ = max(δ+, δ−)

δ+ = log(1 + ε) +
1

2
D exp(

−2 log(1 + ε)

D
)− 1

2
D

δ− = log(1− ε) +
1

2
D exp(

−2 log(1− ε)
D

)− 1

2
D

(14a)

(14b)

(14c)

C Additional Experiment

To evaluate the proposed TRGPPO on discrete tasks, we use Atari games as a testing environment,
so the policies are learned with raw images. We present results on several atari games in Fig. 4,
the blue and orange curves visualize the results using TRGPPO and PPO. We set δ = 0.001 for all
tasks.

Both TRGPPO and PPO adopt exactly same implementations and hyperparameters given in [1] for
discrete tasks except that clipping range of TRGPPO is computed adaptively according to given δ,
and the policy entropy coefficient is 0 but not 0.01 used in PPO. This is because our TRGPPO has
better exploration property than PPO, so it does not need to add extra entropy regularization.

D Implementation Details

Table 3: Hyperparameters for PPO and TRGPPO on Mujoco tasks.
Hyperparameter Value

learning rate 3× 10−4

number of parallel environments
64 (Humanoid)
2 (Other tasks)

timesteps per epoch 1024

initial logstd of policy
-1.34 (HalfCheetah,Humanoid)

0 (Other tasks)

policy Gaussian
λ (GAE) 0.95

ε (clipping range) 0.2

Table 4: Hyperparameters for PPO and TRGPPO on Atari tasks.
Hyperparameter Value

learning rate 2.5× 10−4

number of parallel environments 8

timesteps per epoch 128
policy CNN
λ (GAE) 0.95

ε (clipping range) LinearAnneal(0.1,0)

E Theorem Proof

In this section, we will give theorem proofs. To make it easier to read, we will mention the related
notations again.

E.1 Theorems in Section 4

Lemma 1. ∆π0,t , Eπt [‖πt − π∗‖∞|π0] = 1− Eπt [πt(aopt)|π0].

Proof: For any a 6= aopt, then |πt(a)− π∗(a)|= |πt(a)|≤ |1− πt(aopt)|.
Thus we have ‖πt − π∗‖∞= maxa∈A‖πt(a)− π∗(a)‖= 1− πt(aopt).

Lemma 2. Eπt+1 [πt+1(a)|π0] = Eπt
[
Eπt+1 [πt+1(a)|πt] |π0

]
.

Theorem 2. Given initial policy π0, if π2
0(aopt) · |A|<

∑
asubopt∈Asubopt

π2
0(asubopt) −∑

a−∈A− π
2
0(a−), then we have

(i)
∑
asubopt∈Asubopt

π0(asubopt) <
∑
asubopt∈Asubopt

EπPPO
1

[
πPPO

1 (asubopt)|π0

]
< · · · <∑

asubopt∈Asubopt
EπPPO

t

[
πPPO
t (asubopt)|π0

]
;

(ii) π0(aopt) > EπPPO
1

[
πPPO

1 (aopt)|π0

]
> · · · > EπPPO

t

[
πPPO
t (aopt)|π0

]
;

(iii) ∆π0,0 < ∆PPO
π0,1 < · · · < ∆PPO

π0,t .

Proof: For PPO, if c(a) > 0, then we have

EπPPO
t+1

[
πPPO
t+1 (a)|πt

]
= πt(a) +


π2

t (a)−
∑

a+∈A+/{a}

π2
t (a+)

|A|−1
+

∑

a−∈A−

π2
t (a−)

|A|−1


 ε (15)

Let L(a) = π2
t (a)−∑a+∈A+/{a}

π2
t (a+)
|A|−1 +

∑
a−∈A−

π2
t (a−)
|A|−1 .

If π2
0(aopt) · |A|<

∑
asubopt∈Asubopt

π2
0(asubopt)−

∑
a−∈A− π

2
0(a−), then we have L(aopt) < 0.

Hence we obtain πPPO
0 (aopt) > EπPPO

1

[
πPPO

1 (aopt)|πt
]
.

For asubopt, we have
∑

a∈Asubopt

L(asubopt)

=
∑

a∈asubopt

π2
0(subopt)− π2

0(a+)
|Asubopt|
|A|−1

+
∑

a−∈A−

π2
0(a−)

|A|−1
> 0

(16)

Thus we have
∑

asubopt∈Asubopt

π0(asubopt) <
∑

asubopt∈Asubopt

EπPPO
1

[
πPPO

1 (asubopt)|π0

]
(17)

Then by Lemma 2, we obtain (i) and (ii). Since (ii) holds, by Lemma 1, we get (iii).

E.2 Theorems in Section 5

Lemma 3. For TRGPPO with hyperparameter δ, we have
duδs,a

dπold(a|s) < 0,
dlδs,a

dπold(a|s) > 0.

Proof: By solving (1) and (2) for discrete space, we have

(18)(1− πold(a|s)) log
1− πold(a|s)

1− πold(a|s)lδs,a
− πold(a|s) log lδs,a = δ

(19)(1− πold(a|s)) log
1− πold(a|s)

1− πold(a|s)uδs,a
− πold(a|s) log uδs,a = δ

To be abbreviated, let l = lδst,at , u = uδst,at , p = πold(at|st). By eq. (18), we have

dl

dp
=
l
(

(1− pl) log (1−p)l
1−pl + 1− l

)

p(l − 1)

=
l(1− pl)
p(l − 1)

(
log

(1− p)l
1− pl +

1− l
1− pl

)

=
l(1− pl)
p(l − 1)

(
log

(
1 +

l − 1

1− pl

)
− l − 1

1− pl

)
(20)

Note that 0 < l < 1, 1 − pl > 0, we have l−1
1−pl = − 1−l

1−pl > −1. Indeed, log(1 + x) − x < 0 for

any x > −1. Hence, log
(

1 + l−1
1−pl

)
− l−1

1−pl < 0. We obtain dl
dp > 0.

Similarly, we can get that dudp > 0.

Theorem 3. For TRGPPO with hyperparameter (δ, ε) and PPO with same ε. If δ ≤
g(maxa∈Asubopt

πt(a), 1 + ε) for all t, then we have ∆TRGPPO
π0,t ≤ ∆PPO

π0,t for any t.

Proof: If δ ≤ g(maxa∈Asubopt
πt(a), 1 + ε), then by Lemma 3 and Lemma 5 we have uδasubopt

≤
1 + ε. Hence, uδ,εasubopt

= 1 + ε.

Meanwhile, uδ,εa ≥ 1 + ε and lδ,εa ≤ 1− ε for any a.

If c(a) ≥ 0, then we have

Eπnew [πnew(a)|πt] = πt(a) +


π2

t (a)(ua − 1)−
∑

a+∈A+/{a}

π2
t (a+)

|A|−1
(ua+ − 1) +

∑

a−∈A−

π2
t (a−)

|A|−1
(1− la−)




(21)

Since uδ,εaopt
≥ 1 + ε and lδ,εa− ≤ 1 − ε while uδ,εasubopt

= 1 + ε, we can get

EπTRGPPO
t+1

[
πTRGPPO
t+1

(aopt)|πt
]
≥ EπPPO

t+1

[
πPPO
t+1

(aopt)|πt
]
.

Then by Lemma 2, we have EπTRGPPO
t+1

[
πTRGPPO
t+1

(aopt)|π0

]
≥ EπPPO

t+1

[
πPPO
t+1

(aopt)|π0

]
.

Finally, by Lemma 1, we have ∆TRGPPO
π0,t ≤ ∆PPO

π0,t .

We now derive the form of the optimal solution which achieves minimum KL divergence over all
optimal solutions. The general form of surrogate objective function of PPO is as follows:

(22)L̂CLIP
πold

(π) =
1

T

T∑

t =1

[min (rπ(st, at)At, clip (rπ(st, at), lst,at , ust,at)At))]

Let Πnew denote the set of all the optimal solutions of the empirical surrogate objective function of
PPO, and let πnew ∈ Πnew denote the optimal solution which achieves minimum KL divergence
over all optimal solutions, i.e., Dst

KL(πold, πnew) ≤ Dst
KL(πold, π) for any π ∈ Πnew under all st.

We first give the form of Πnew.
Lemma 4. Πnew = {π|for all t that At < 0, π(at|st) ≤ πold(at|st)lst,at ; for all t that At >
0, π(at|st) ≥ min(πold(at|st)ust,at , 1)}.

Proof:

We first prove that if a policy π∗ satisfies the conditions in Πnew, then π∗ ∈ Πnew.

Let L̂tπold
(π) = min (rπ(st, at)At, clip (rπ(st, at), lst,at , ust,at)At)). To prove that L̂CLIP

πold
(π∗) ≥

L̂CLIP
πold

(π) for any π, we just need to prove that L̂tπold
(π∗) ≥ L̂tπold

(π) for any π under all t.

If At < 0, L̂tπold
(π) could be rewritten as the following form:

L̂tπold
(π) =

{
lst,atAt rπ(st, at) ≤ lst,at
rπ(st, at)At rπ(st, at) > lst,at

(23)

Thus, we have L̂tπold
(π) ≤ lst,atAt = L̂tπold

(π∗) for any π.

Similarly, if At > 0, we also have L̂tπold
(π) ≤ L̂tπold

(π∗) for any π.

We then prove that if a policy π0 does not satisfy the conditions in Πnew, then π∗ is not an optimal
solution in maximization problem of eq. (22).

We can construct a policy π∗ that satisfy the conditions in the Πnew. We have L̂tπold
(π0) < L̂tπold

(π∗)

on t that does not satisfy the conditions. Hence, L̂CLIP
πold

(π0) < L̂CLIP
πold

(π∗).

We now derive the form of πnew.

If At < 0, by Lemma 4, minπ∈Πnew
Dst

KL(πold, π) is formalized as the following problem:

min
π

∑

a

πold(a|st) log
πold(at|st)
π(at|st)

s.t.π(at|st) ≤ πold(at|st)lst,at ,∑

a

π(a|st) = 1, π(a|st) > 0

(24)

By using the KKT conditions, we can get that

πnew(a|st) =

{
πold(a|st)(1−πold(at|st)lst,at)

1−πold(at|st) a 6= at

πold(at|st)lst,at a = at
(25)

The according KL divergence is

Dst
KL(πold, πnew) = (1− πold(at|st)) log

1− πold(at|st)
1− πold(at|st)lst,at

− πold(at|st) log lst,at (26)

Similarly, if At > 0, we can get

πnew(a|st) =

{
πold(a|st)(1−min(πold(at|st)ust,at ,1))

1−πold(at|st) a 6= at

min(πold(at|st)ust,at , 1) a = at
(27)

If At > 0 and πold(at|st)ust,at ≤ 1, the according KL is

Dst
KL(πold, πnew) = (1− πold(at|st)) log

1− πold(at|st)
1− πold(at|st)ust,at

− πold(at|st) log ust,at (28)

If At > 0 and πold(at|st)ust,at > 1, we have Dst
KL(πold, πnew) = +∞. Equation (26) and eq. (28)

have just the same form w.r.t. lst,at and ust,at respectively. In fact, since lst,at ∈ (0, 1) and
ust,at ∈ (1,+∞), the monotonicity w.r.t. lst,at and ust,at on these two intervals are different, and
we obtain the correlation between clipping range and KL divergence.

Lemma 5. (i) If At < 0, we have dDst
KL(πold, πnew)/dlst,at < 0,

dDst
KL(πold, πnew)/dπold(at|st) > 0. (ii) If At > 0 and πold(at|st)ust,at ≤ 1, we have

dDst
KL(πold, πnew)/dust,at > 0, dDst

KL(πold, πnew)/dπold(at|st) > 0.

Proof: To be abbreviated, let D = Dst
KL(πold, πnew), l = lδst,at , u = uδst,at , p = πold(at|st).

If At < 0, by eq. (26), we have

dD

dp
= − log

(1− p)l
1− pl +

l − 1

1− pl

= − log

(
1 +

l − 1

1− pl

)
+

l − 1

1− pl

(29)

If At > 0 and πold(at|st)ust,at ≤ 1, by eq. (28), we have

dD

dp
= − log

(
1 +

u− 1

1− pu

)
+

u− 1

1− pu (30)

We have l−1
1−pl > −1 and u−1

1−pu > 0. Indeed, − log(1 + x) + x > 0 for any x > −1. Thus, we have
dD
dp > 0.

If At < 0, by eq. (26), we have
dD

dl
=

p(l − 1)

l(1− pl) < 0 (31)

If At > 0 and πold(at|st)ust,at ≤ 1, by eq. (28), we have

dD

du
=

p(u− 1)

u(1− pu)
> 0 (32)

We introduce an empirical version of lower performance bound.

M̂πold
(π) = L̂πold

(π)− C max
t
Dst

KL (πold, π) . (33)

where L̂πold
(π) = 1

T

∑T
t=1 [rπ(st, at)At] + η̂πold , η̂πold is the estimated performance of πold.

Lemma 6. (i) For PPO, assume that maxtD
st
KL(πold, π

PPO
new) < +∞, if a given (st, at)

satisfies πold(at|st) 6= max
t̂:At̂<0

πold(at̂|st̂) and πold(at|st) 6= max
t̂:At̂>0

πold(at̂|st̂), then

Dst
KL(πold, π

PPO
new) < maxt̂D

st̂
KL(πold, π

PPO
new). (ii) For TRGPPO, we have Dst

KL(πold, π
TRGPPO
new) =

maxt̂D
st̂
KL(πold, π

TRGPPO
new) for any (st, at).

Proof: We first prove (i).

If At < 0, if πold(at|st) 6= max
t̂:At̂<0

πold(at̂|st̂), then πold(at|st) < max
t̂:At̂<0

πold(at̂|st̂). By Theorem

5, we have Dst
KL(πold, π

PPO
new) < max

t̂:At̂<0
D
st̂
KL(πold, π

PPO
new) ≤ max

t̂
D
st̂
KL(πold, π

PPO
new).

Similarly, if At > 0, we also have Dst
KL(πold, π

PPO
new) < max

t̂
D
st̂
KL(πold, π

PPO
new).

We then prove (ii). If At < 0, by eq. (18) and eq. (26), we have

Dst
KL(πold, πnew) = (1− πold(at|st)) log

1− πold(at|st)
1− πold(at|st)lδst,at

− πold(at|st) log lδst,at = δ (34)

Similarly, if At > 0, we also have Dst
KL(πold, πnew) = δ.

Theorem 4. Assume that maxtD
st
KL(πold, π

PPO
new) < +∞ for all t. If TRGPPO and PPO have the

same hyperparameter ε, we have:

(i) uδst,at ≥ 1 + ε and lδst,at ≤ 1− ε for all (st, at);

(ii) maxtD
st
KL(πold, π

TRGPPO
new) = maxtD

st
KL(πold, π

PPO
new);

(iii) M̂πold
(πTRGPPO

new) ≥ M̂πold
(πPPO

new). Particularly, if there exists at least one (st, at) such that
πold(at|st) 6= max

t̂:At̂<0
πold(at̂|st̂) and πold(at|st) 6= max

t̂:At̂>0
πold(at̂|st̂), then M̂πold

(πTRGPPO
new) >

M̂πold
(πPPO

new).

Proof:

We first prove (ii). By Equation (13) and Lemma 6, we have maxtD
st
KL(πold, π

TRGPPO
new) = δ =

maxtD
st
KL(πold, π

PPO
new).

We then prove (i). By (ii) we have Dst
KL(πold, π

PPO
new) ≤ maxt̂D

st̂
KL(πold, π

PPO
new) = δ =

Dst
KL(πold, π

TRGPPO
new) for all (st, at). Thus, we have Dst

KL(πold, π
PPO
new) ≤ Dst

KL(πold, π
TRGPPO
new).

Indeed, by Lemma 5, we have dlst,at/dD
st
KL(πold, πnew) < 0, dust,at/dD

st
KL(πold, πnew) > 0.

Thus, we obtain lδst,at ≤ 1− ε and uδst,at ≥ 1 + ε.

Particularly, by Lemma 6, if a given (st, at) satisfies πold(at|st) 6= max
t̂:At̂<0

πold(at̂|st̂) and

πold(at|st) 6= max
t̂:At̂>0

πold(at̂|st̂), then Dst
KL(πold, π

PPO
new) < Dst

KL(πold, π
TRGPPO
new). Hence, we have

lδst,at < 1− ε and uδst,at > 1 + ε.

We finally prove (iii). By eq. (25) and eq. (27), we can get that

rπnew
(st, at)At =

{
lst,atAt At < 0

min(ust,at , 1)At At > 0
(35)

By (i) we have rπTRGPPO
new

(st, at)At ≥ rπPPO
new

(st, at)At on all st, at. Thus,
1
T

∑T
t=1

[
rπTRGPPO

new
(st, at)At

]
≥ 1

T

∑T
t=1

[
rπPPO

new
(st, at)At

]
. By (ii) and the definition of

M̂πold
, we obtain M̂πold

(πTRGPPO
new) ≥ M̂πold

(πPPO
new).

Particularly, if there exists one (st, at) that satisfies πold(at|st) 6= max
t̂:At̂<0

πold(at̂|st̂) and

πold(at|st) 6= max
t̂:At̂>0

πold(at̂|st̂), then we have rπTRGPPO
new

(st, at)At > rπPPO
new

(st, at)At. Hence,

we obtain M̂πold
(πTRGPPO

new) > M̂πold
(πPPO

new).

References
[1] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec Rad-

ford, John Schulman, Szymon Sidor, and Yuhuai Wu. Openai baselines. https://github.
com/openai/baselines, 2017.

[2] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937, 2016.

[3] Michael JD Powell. A hybrid method for nonlinear equations. Numerical methods for nonlinear
algebraic equations, 1970.

[4] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

	Introduction
	Related Work
	Preliminaries
	The Exploration Behavior of PPO
	Method
	
	Exploration Behavior
	Policy Divergence and Lower Performance Bound

	Experiment
	Didactic Example: Bandit Problems
	Evaluation on Benchmark Tasks

	Conclusion

