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Abstract: Recently, a great amount of efforts have been spent in the research of unsupervised and 

(semi-)supervised dimensionality reduction (DR) techniques, and DR as a preprocessor is widely 

applied into classification learning in practice. However, on the one hand, many DR cannot 

necessarily lead to a better classification performance. On the other hand, DR is often plagued in 

the problem of estimation of retained dimensionality for real-world data. Alternatively, in this 

paper, we propose a new semi-supervised data preprocessing technique, named semi-supervised 

pattern shift (SSPS). The advantages of SSPS lie in the fact that not only the estimation of retained 

dimensionality can be avoided naturally, but a new shifted pattern representation that may be more 

favorable to classification is obtained as well. As a further extension of SSPS, we develop its fast 

and out-of-sample versions respectively, both of which are based on a shape-preserved subset 

selection trick. The final experimental results demonstrate that the proposed SSPS is promising 

and effective in classification application. 

Key words: dimensionality reduction; semi-supervised learning; manifold learning; classification; 

semi-supervised pattern shift; out-of-sample extension. 

 

1   Introduction 

In recent years, dimensionality reduction (DR) has become an extremely popular approach in 

computer vision and pattern recognition application with attractive theory as well [1, 2]. 

Depending on how much supervised information is provided and used, DR approaches can be 
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roughly categorized as unsupervised, semi-supervised and supervised. The most popular 

unsupervised DR approaches include principal component analysis (PCA) [3], local linear 

embedding (LLE) [7], isometric mapping (ISOMAP) [8], Laplacian-eigen (LE) mapping [9], 

kernel PCA (KPCA) [6, 17], locality preserving projection (LPP) [5], etc.. Meanwhile, the most 

noted full-supervised DR approach should be linear discriminant analysis (LDA) [4] and it is 

widely applied into classification learning including its variations. Especially, as a current hot 

topic, the semi-supervised DR approach has been developing and it mainly comprise 

semi-supervised discriminant analysis (SDA) [22], Laplacian linear discriminant analysis 

(LapLDA) [30], semi-supervised linear/kernel discriminant analysis (SSLDA/SSKLDA) [26], 

semi-supervised linear/kernel maximum margin criterion (SSMMC/SSKMMC) [26], etc.. In 

addition, Zhang et al. also proposed a semi-supervised dimensionality reduction (SSDR) [23] 

approach, which focused on incorporating both the must-link and cannot-link constraints into PCA. 

Generally, both unsupervised and (semi-)supervised DR approaches devote to capturing a new 

pattern representation through mapping original data into a lower-dimensionally latent space. 

Thereby, as another point of view, DR is a data preprocessor and it has widely given services to 

applications such as classification [10], clustering [11] and metric learning [12, 13]. 

However, on the one hand, some DR can not necessarily lead to better performance in 

classification application. For instance, following the Bengio’s and Maaten’s experimental results 

on many benchmark datasets [18, 19], it shows that some classification accuracies on data reduced 

by DR are even lower than those without DR. The main reason may be that, for these DRs, they 

are hard to balance global and local structure since they heavily focus on either globally geometric 

structure such as PCA or locally geometric structure such as LLE. As a consequence, omitting 

local structure will ignore within-class cohesion and omitting global structure will lose 

between-class separation partly. 

On the other hand, many DR approaches nearly involve a crux — how many leading 

dimensionalities or components should be kept for reduced data. At the same time, it has been 

found that the algorithmic performance is extremely sensitive to the retained dimensionality 

sometimes. Despite many researchers have paid much attention to the intrinsic dimensionality 

estimation [14~16], such a problem is still open so far. Moreover, a more complicated problem 
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aroused is whether the intrinsic dimensionality is identical to the best retained dimensionality in 

classification learning. In fact, DR may bear a danger to yield worse separability than without DR 

sometimes since the patterns of high-dimensional space may be more linearly separable rather 

than those of lower-dimensional space by the Cover Theorem [25]. In other word, an improper 

retained dimensionality is more dangerous to overlap different-class patterns each other such that 

the between-class separation will be weaken. 

To avoid the problem of retained dimensionality, a natural method is to preprocess data 

directly in original space. This implies to seek a new pattern representation through pattern shift 

instead of DR. In this way, we propose a semi-supervised data preprocessing technique called 

SSPS in this paper. The advantage of SSPS is that we can not only sidestep the plague of retained 

dimensionality problem but also generate a classification-oriented pattern representation in 

original space. Furthermore, in order to lessen time consumption, we develop a faster SSPS 

(F-SSPS for short), which bases on a shape-preserved subset selection scheme (SPSub for short). 

Meanwhile, an out-of-sample extension [20, 21] of SSPS can be naturally derived from F-SSPS. 

In addition, we can conveniently combine SSPS with DR to form a two-sides preprocessing 

technique, e.g., “SSPS+PCA” method is tested in our experiments. 

To the best of our knowledge, we have not noticed any similar work like SSPS before. The 

remainder of this paper is organized as: In Section 2, we introduce some basic conception and 

formulate SSPS. In Section 3, with SPSub scheme, F-SSPS and an out-of-sample extension of 

SSPS are developed further and combining SSPS with DR such as “SSPS+DR” is also presented. 

In Section 4, some experimental results on both synthetic and real-world datasets are reported 

respectively. Discussions and conclusions are offered in the last Section 

2   Semi-supervised pattern shift 

The main idea of the SSPS is to draw intra-class points together while keep between-class points 

far away relatively so that the within-class distances become smaller and the between-class 

distances change further simultaneously. In order to help understand the proposed SSPS in 

advance, a comparative illustration of SSPS to SSKLDA, SSKMMC, LapLDA and ISOMAP is 

showed in Fig. 1. More specifically, in the top left of Fig. 1, a toy data consist of 4 Arcs. Where, 
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the class-distributions of 4 arcs are interlaced each other since 1-th, 3-th arcs belong to one class 

and 2-th, 4-th arcs to the other class. The semi-supervised information is five labeled points (filled 

with black color face) for each class. For such 4arcs data, its different 1-dimensional embeddings 

performed by SSKLDA, SSKMMC, LapLDA and ISOMAP1 are respectively showed in the top 

row. Meanwhile, the shifted patterns of 4arcs with different parameters μ (interpreted later) are 

displayed in the bottom row. 
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Fig. 1  Top row: original 4Arcs and 1-dimensional embeddings performed by SSKLDA, 
SSKMMC, LapLDA and SISOMAP. Bottom row: shifted patterns by SSPS with different μs. 

From Fig. 1, we can clearly observe: 1) LapLDA and ISOMAP make between-class points 

overlapping each other seriously; 2) at a proper μ, the intra-class labeled points are drawn into 

together respectively and all unlabeled points are agglomerated into two more compact clusters; 2) 

both SSKLDA and SSKMMC also separate two classes away, but their resulting intra-class 

cohesion is less than that in shifted patterns with μ = 0.9999 and 0.99999. In summary, both the 

intra-class cohesion and the inter-class separation in Fig. 1 partially imply that SSPS may make 

benefit to classification learning than some DRs. 

Now, we begin to formulate the proposed SSPS. Let { }1 2, , ,l lX x x x= L  and 

{ }1, ,u l l uX x x+ += L  be respectively the labeled samples and unlabeled samples and 

[ ; ]l uX X X=  is the entire samples. Sometimes,  is also 

denoted as a sample-matrix and a reader can distinguish “sample-set” from “sample-matrix” by 

1 2 1[ , , , , , , ]T
l l l uX x x x x x+ += L L

                                                        
1 The nearest neighbor number is uniformly set 15 in SSPS, SSKLDA, SSKMMC, LapLDA and SISOMAP. 
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context. Let  consists of k-nearest neighbors of sample ( )k iN x ix  and  reflect how close 

between 

ijs

ix  and jx , which is defined as 

      

2

2

exp{ } 1 if

exp{ } if ( ) or ( )

0 otherwise

i j ij

ij i j i k j j k i

x x t        L = 1 

s x x t              x N x   x N x

                                        

⎧ − − +
⎪
⎪= − − ∈ ∈⎨
⎪
⎪
⎩

.            (1) 

Where, Lij indicates whether a sample pair (xi, xj) belongs to same class or not, i.e., Lij = 1 if label 

(xi) = label (xj) and xi, xj ∈Xl, otherwise zero. For each xi∈X, denoting its shifted representation as 

*
ix  such that the shifted pattern set of  can be naturally written 

. Thus, we can formulate SSPS by minimizing the follows objective: 

1 1[ , , , , ]T
l l l uX x x x x+ += L L

* * * * *
1 1[ , , , , ]T

l l l uX x x x x+ += L L

( )2 2* * *
, 1 1

1( ) (1 )
2

l u l u
ij i j i ii j i

X s x x xμ μ+

= =
ℜ = − + − −∑ ∑ *x+ .                (2) 

Within parenthesis of eq. (2), the first and second terms respectively model locally and 

globally geometric structures of original data X, and both of them are integrated by a tradeoff 

parameter μ restricted to [0,1). More specifically, in the first term, the distance of a pair (xi, xj) will 

become small if sij is large (i.e. xi and xj are close to each other in original space or they have same 

class label), implying that the first term aims at preserving not only local structure but also class 

relationship. In the second term, the distance between ix  and *
ix  measure a shift level of ix . 

Meanwhile, the second term has two functions: one is to prevent eq. (2) from degenerating into 

zeros; the other is to preserve global structure partially. Similar to the PCA criterion in minimizing 

reconstruction error between the original points and its reconstructed point, we can control shift 

level by the difference between the original point and its shifted point. So, analogous to using PCA 

criterion in preserving global structure in ref. [23], the second term of eq. (2) also has ability to 

global structure preservation for shifted patterns. 

As mentioned in ref. [30], global and local structures can be complementary to each other even 

though one of them may be more important than the other one in certain applications. In eq. (2), if 

taking a big μ value, local geometric structure will dominate the shifted result, otherwise global 

structure will act a dominative role. In fact, a big μ value will be likely to capture more compact 
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shifted patterns when classes are clearly-separated. On the contrary, a small μ value should be 

safer to avoid different-class shifted patterns further overlapping to each other when classes are 

not clearly-separated. 

Let S = (sij) and D = diag(dii) with ii ijj
d = s∑ , after the simple analysis, we can rewrite eq. 

(2) in matrix form as follows: 

( ) ( )* * * * *1( ) ( ) ( )( )
2 2

T TX trace X D S X trace X X X Xμ μ−
ℜ = − + − − . 

Thus, the optimal shifted patterns can be obtained by the following minimization objective: 

*

* arg min ( )
X

*X X= ℜ% .                             (3) 

For minimizing eq. (3), after computing and zeroing its derivative with respect to X*, we have 

 . ( )(1 ) ( ) (1 ) 0I D S X Xμ μ μ∗− + − − − =

Where, I is an identity matrix whose size is clear from the context. Consequently, we obtain 

1

( )
1

X I D Sμ
μ

−
∗ ⎛ ⎞

= + −⎜ ⎟−⎝ ⎠
% X   for [0,1)μ ∈ . 

If restricting  (i.e. D = I), then 1ijj
s =∑ ( ) 1(1 )X I S Xμ μ −∗ = − +% . After denoting 

( 1( ) (1 ) )A I Sμ μ μ −= − + , we have 

( )X A Xμ∗ =% .                              (4) 

From eq. (4), a shift transformation T can be induced as follows:  

*:T X X→ %  or ( , ) ( )X T X A Xμ μ∗ = =% .                   (5) 

According to eqs. (4)~(5), we know ( ,0)T X X=  and 
1

lim ( , )T X
μ

μ
→

= 0  (zero 

matrix). We call *X%  the shifted image of X  and name ( )A μ  shift matrix. Now, let us 

review the bottom row of Fig. 1, in which the different shifted patterns of 4Arcs with μ = 

0.9, 0.99, 0.999, 0.9999 and 0.99999 are shown in order. Below, we will give some 

extensions of the original SSPS. 
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3   Extending SSPS to F-SSPS and out-of-sample cases 

The main computation complexity of eq. (4) is O(n3) (n = l+u) from matrix inverse calculation, 

implying that SSPS cannot scale well. At the same time, SSPS hasn’t out-of-sample predicting 

ability due to its transductive property [29]. Therefore, in this section, we will further discuss two 

issues: 1) how to reduce computation cost in eq. (4) further. 2) how to extend SSPS to adapt 

out-of-sample data. In addition, we combine SSPS with DR such as “SSPS+PCA” scheme when a 

DR preprocessing is needed too. 

3.1   SPSub and F-SSPS 

In order to speed up SSPS, we use a shape-preserved subset selection scheme named SPSub to 

reduce work-set in eq. (4). Inspired by the subset selection trick “SmartSub” in ref. [24], points 

located in high density region should have a higher priority to be sampled, i.e., the geometry shape 

of data’s distribution can be preserved as much as possible after “SmartSub” selection. 

Considering that a too small-size work-set cannot maintain the distributive shape of original data, 

we need control the ratio of sizes of work-set size to off-work-set.  

Let Iin and Iout respectively correspond to the indices of work-set XS (i.e., selected points) and 

off-work set XR. Especially, we should ensure that all labeled samples are chosen in Iin. Thus, 

instead of calculating *
RX%  by ( ,RT X )μ , our F-SSPS aims at approximately obtaining *

RX%  

through the locally lest square error reconstruction from *
SX% . The reconstruction coefficients wijs 

can be gotten as follows: 

2

( )
arg min

i S k j

ji j ji ix
x X N x

w x w
∈  ∩

= − ∑ j R, x X∀ ∈ .                (6) 

Thus, we will get { }* *
R j j RX x x X= ∈% % , in which each xj’s shifted pattern *

jx%  is 

approximately reconstructed as 

* *
*

i S
j x X

*
ji ix w x

∈
= ∑ %%

% .                                (7) 
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We outline SPSub and F-SSPS in Tab. 1 and Tab. 2 respectively. 

Tab. 1  The procedure of shape-preserved subset selection (SPSub) 
 

[XS, XR] = SPSub(X, s_ratio) 
Input :  X = {x1,…, xl, xl+1, …, xl+u} ; s_ratio − selection ratio. 
Output: XS, XR . 
Initialization :  

exp( ) ,
2

i j
ij i j

x x
x x Xυ

σ
−

=     ∀ ∈ ;  IS← {1,…,l};  IR← {l+1,…,l+u}. 

While  I
I I

S

S R+
< s_ratio 

Find 
outI

arg max( )ijji
i υ

∈
= ∑ ;  IS←IS∪{i},  IR←IR\{i}; 

end while 
Return XS = {xi|xi ∈ IS} and XR = {xi|xi ∈ IR}. 

 

Tab. 2   The main steps of fast SSPS (F-SSPS) 

Inputs:    X− original samples; μ− trade-off factor; s_ratio− selection ratio. 

Output:   *X% − the shifted pattern of X. 

Step 1:    [XS, XR] = SPSub(X, s_ratio); 

(where XS and XR are the work-set and off-work-set respectively) 

Step 2:    Obtain * ( ,S SX T X )μ=%  according to eq. (4); 

Step 3:    Get *
RX%  by eqs. (6)~(7);  

Step 4：   Return * *
S R

*X X X= ∪% % % . 

 

In Tab. 2, the main time complexities in Steps 1~3 are approximately O(|IS|2), O(|IS|3) and 

O(|IR||k|3) respectively. So, the total complexity of F-SSPS is about O(|IS|3+|IR||k|3), which is far 

lower than O((|IS|+|IR|)3) in the original SSPS at a lager |IR|. 

3.2   An out-of-sample extension of SSPS 

An out-of-sample extension of SSPS can be conveniently and naturally induced from F-SSPS. 

More specifically, Let Xin and Xout be respectively in-sample and out-of-sample data. After setting 

XS = Xin and XR = Xout, we can directly compute *
RX%  as the shifted patterns of Xout by F-SSPS. 
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3.3   SSPS+DR 

Although directly working in original space, SSPS can be also naturally and conveniently 

incorporated into DR approach. In other words, when a DR procedure is needed too, we can 

combine SSPS with DR. Concretely, if each vi is a projective vector, then V = (v1, v2, …, vd) 

becomes a projective matrix severed as DR. Based on both V and A (shift matrix), a new 

preprocessed pattern representation is obtained as 

X̂ AXV= .                                    (8) 

It is interesting that eq. (8) can be regarded as a two-side preprocessing for X, i.e., left SSPS 

and right DR. Furthermore, "SSPS+DR" can be interpreted as first SSPS then DR or first DR then 

SSPS.  

As an illustration, the results of SSPS+PCA on 4Arcs are displayed in Fig. 2, from which we 

can observe that PCA can retain the fruits of good separability obtained by SSPS with μ = 

0.999~0.99999). 
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Fig. 2  The resulted patterns of 4Arcs by SSPS+PCA(1D) for different shift levels in SSPS 
respectively. 

 

In following experiment part, we will evaluate SSPS in semi-supervised classification settings. 

4   The experimental part 

In this paper, we will use the SSPS as data preprocessor before transductive classification [29], in 

which many traditional supervised classifiers work empirically unsatisfactory due to only very few 

labeled training samples available. For testing SSPS in classification, our procedure consists of 

two steps: 1) capturing the shifted patterns of both labeled and unlabeled samples by SSPS; 2) 

training and predicting a classification algorithm on the labeled and unlabeled points of shifted 

patterns respectively. 
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4.1   Experiment settings 

We execute our experiment on 3 synthetic datasets and 4 real-world datasets throughout this paper, 

some of whose basic description are listed in Tab. 3. 

Tab. 3  Basic descriptions of seven datasets 
Dataset # of classes # of dimensionalities # of points comment citation 
4Arcs 2 2 200 synthetic  

3Circles 2 2 150 synthetic  
3Spirals 2 3 378 synthetic [28] 
Digit1 2 241 1500 real-world [18] 
USPS 10 256 1500 real-world [18] 

Control 6 60 600 real-world [28] 
Waveform 2 21 1652 Real-world [30] 

Following in ref. [18], we set the nearest neighbor number k = 5 in  uniformly such 

that many local “clusters” are firstly connected by such local relationship. To avoid “isolated 

regions”, we link all “clusters” in a global connected graph by adding some shortest edges 

generated by minimum spanning tree algorithm. 

( )kN ⋅

As a comparison, SSPS, F-SSPS and SSPS+PCA are compared with SSKLDA, SSKMMC and 

LapLDA. In addition, ISOMAP acts as a baseline. The tuning parameters (i.e., kernel parameter 

and regularization parameter, etc..) is used in SSKLDA, SSKMMC and LapLDA by 3-folds cross 

validation under labeled # = 10%, where Gaussian kernel is always used in SSKLDA and 

SSKMMC. At the same time, the tradeoff parameter μ in eq. (1) is selected by cross validation on 

set . 0 1 2 251 {1.5 ,1.5 ,1.5 ,1.5 , ,1.5 }i− − − −− L L

The reported classification accuracies respectively come from 5 typical supervised classifiers: 

nearest neighbor (NN), Fisher linear discriminator (FLD), manifold rank (MRank) [31], naïve 

Bayes (NB) and radial base function network (RBFNet). To evaluate our approach under the 

different cases of labeled sample number, we give two settings. Concretely, for datasets Digit1 and 

USPS, we follow the two settings in ref. [18], i.e., the labeled-sample number = 10 and 100 

respectively. For 4Arcs, 3Circles, 3Spirals, Control and Waveform, we provide two settings of the 

labeled-sample number = 5% and 10% respectively. Each reported accuracy on such two settings 

is averaged over 12 trials. 
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4.2   Illustrations and Classification experiments on synthetic datasets 

To help understand SPSub and F-SSPS further, for 3Circles and 3Spirals, we display their results 

of subset selection by SPSub (s_ratio = 0.5) within Figs. 3~6. Therein, we respectively mark the 

work-set points of class +1 and -1 with symbol ‘�’ and ‘ ’, while the off-work-set points with 

symbol ‘ ’ and ‘ ’ respectively. In addition, we also draw a link-line between each work-point 

pair i and j with sij ≠ 0 and fill each 5 labeled points in one circle or spiral with black face color. 

Despite only keeping 50% points in work-set, we can observe that SPSub almost doesn’t 

destroy the original geometric distribution in the middle plots of Figs. 3~4. Meanwhile, in right 

plots of Figs. 3~4, we observe that SSPS can squeeze intra-class points closer and make inter-class 

points far away relatively no matter to 3Circles or 3Spirals. 
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Fig. 3  Left: the original data 3Circles with five labeled points for each circle; Middle: the 
in-sample and out-of-sample points generated by SPSub with s_ratio = 0.5; Right: the 

shifted patterns of 3Circles by F-SSPS(0.5) with µ = 0.9999 therein. 
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Fig. 4  Left: the original 3Spirals data with five labeled points for each circle; Middle: the 

in-sample and out-of-sample points generated by SPSub with s_ratio = 0.5; Right: the 
shifted patterns of 3Spirals by F-SSPS(0.5) with µ = 0.9999 therein. 

 

As a comparison in classification performance, we tabulate the classification accuracies on 

4Arcs, 3Circles and 3Spirals in Tabs. 4~6, in which F-SSPS(0.5) meaning s_ratio=0.5 and 

PCA(1D) indicating the retained dimensionality # = 1 in PCA. 
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Tab. 4    Comparative average classification accuracies (%) on 4Arcs 

  Labeled # = 5%  Labeled # = 10% 

  NN FLD MRank NB RBFNet NN FLD MRank NB RBFNet

SSPS  100.00 100.00 100.00 94.41 100.00 100.00 100.00 100.00 97.18 100.00

F-SSPS(0.5)  94.37 94.37 100.00 88.16 94.37 96.71 94.12 100.00 90.79 94.12 

SSPS+PCA(1D)  100.00 100.00 100.00 94.02 100.00 100.00 100.00 100.00 96.11 100.00

Original-data  92.46 55.63 100.00 59.35 51.02 96.76 55.88 100.00 63.01 50.79 

SSKLDA  97.47 98.27 98.23 97.92 98.23 93.56 93.06 95.65 94.26 94.21 

SSKMMC  90.47 85.86 94.5 93.35 81.29 90.74 90.19 91.48 93.52 87.96 

LapLDA  51.2 50.53 62.41 50.8 49.65 52.59 53.66 60.93 52.36 53.06 

ISOMAP  76.51 51.33 85.9 69.33 54.43 81.2 50.88 85.51 71.99 52.55 

 

Tab. 5    Comparative average classification accuracies (%) on 3Circles 

  Labeled # = 5% Labeled # = 10% 

  NN FLD MRank NB RBFNet NN FLD MRank NB RBFNet

SSPS  100.00 100.00 100.00 95.2 100.00 100.00 100.00 100.00 98.09 100.00

F-SSPS(0.5)  100.00 100.00 100.00 90.41 100.00 100.00 100.00 100.00 96.79 100.00

SSPS+PCA(1D)  100.00 100.00 100.00 91.14 100.00 100.00 100.00 100.00 92.31 100.00

Original-data  81.05 49.44 100.00 59.53 48.74 95.06 48.83 100.00 68.98 47.47 

SSKLDA  99.3 99.53 99.56 98.57 99.53 87.1 88.49 91.11 87.78 88.02 

SSKMMC  94.68 90.82 95.99 96.52 89.24 96.27 92.9 97.25 97.75 84.23 

LapLDA  50.85 50.82 64.01 52.28 50.7 54.88 49.51 63.61 53.77 50.9 

ISOMAP  83.8 80 91.43 72.46 66.58 86.76 80.99 91.76 79.04 64.48 

 

Tab. 6    Comparative average classification accuracies (%) on 3Spirals 

  Labeled # = 5% Labeled # = 10% 

  NN FLD MRank NB RBFNet NN FLD MRank NB RBFNet

SSPS  100.00 100.00 100.00 99.21 100.00 100.00 100.00 100.00 98.76 100.00

F-SSPS(0.5)  94.03 93.12 95.95 86.46 94.03 94.01 93.91 95.96 89.04 94.03 

SSPS+PCA(1D)  100.00 100.00 100.00 97.57 100.00 100.00 100.00 100.00 96.69 100.00

Original-data  72.92 52.41 95.95 55.95 62.66 83.09 52.68 95.96 52.7 64.3 

SSKLDA  91.64 91.83 95.32 93.75 93.87 97.39 97.93 98.12 98.05 98.1 

SSKMMC  72.08 74.26 74.49 69.44 71.71 69.37 73.88 73.59 66.84 67.88 

LapLDA  57.5 52.04 69.07 52.18 65.35 63.16 49.63 73.85 56.53 66.15 

ISOMAP  84.49 75.19 86.67 78.63 80.19 84.16 77.46 86.53 79.85 82.31 

 

From Tabs. 4~6, we can clearly observe that: 1) the best accuracies among SSPS, F-SSPS(0.5) 

and SSPS+PCA(1D) nearly reach 100% on all 4Arcs, 3Circles and 3Spirals except that in NB; 2) 

despite different classifier owns different strength, for all 5 classifiers except NB, their best 
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accuracies among SSPS, F-SSPS(0.5) and SSPS+PCA(1D) uniformly exceeds the corresponding 

accuracies with respect to SSKLDA, SSKMMC, Original-data and ISOMAP; 3) many accuracies 

of F-SSPS(0.5) and SSPS+PCA(1D) are comparable to those of SSPS, implying that both schemes 

of SPSub and SSPS+DR are effective for classification learning here. 

4.3   Classification experiments on real-world datasets 

We use 4 real-world data Digit1, USPS, Control and Waveform as real-world benchmark data here, 

whose basic properties can be found in their citations. Before implementing SSKMMC and 

ISOMAP, we have to firstly estimate the retained dimensionality for data used. Here, based on 

three estimators: maximum likelihood estimator, eigenvalue-based estimator and geodesic 

minimum spanning tree estimator [14~16], each retained dimensionality is calculated as the 

rounding of the average outputs of these estimators. By such way, the retained dimensionality 

values are respectively estimated as 20 for Digit-1, 11 for USPS, 10 for Control and 11 for 

Waveform.  

We tabulate the classification accuracies in Tabs. 7~10, which correspond to Digit1, USPS and 

Control in order. Where, F-SSPS(0.8) and F-SSPS(0.6) respectively mean s_ratio = 0.8 and 0.6 for 

SPSub, and PCA(95%) means that 95% variance energy is retained in PCA. 

 

Tab. 7    Comparative average classification accuracies (%) on Digit-1 

    Labeled #= 10   Labeled #= 100   

  NN FLD MRank NB RBFNet NN FLD MRank NB RBFNet

SSPS  94.62 92.80 98.39 91.63 94.71 97.75 97.45 98.40 97.67 97.75 

F-SSPS(0.8)  95.68 93.51 98.18 92.01 95.91 97.89 97.49 98.31 97.82 97.90 

F-SSPS(0.6)  92.91 88.04 98.46 88.89 93.62 97.36 96.89 98.34 97.29 97.38 

SSPS+PCA(95%)  94.67 80.88 98.37 84.61 94.68 97.76 97.76 98.38 96.79 97.76 

Original-data  76.53 67.68 97.87 68.55 61.26 93.88 86.63 97.92 94.18 75.13 

SSKLDA  91.25 95.01 93.12 91.55 90.32 93.42 97.85 95.03 96.46 95.28 

SSKMMC  76.00 53.54 51.12 87.00 96.32 77.67 57.02 51.18 91.00 98.76

LapLDA  50.51 52.84 60.54 51.25 52.70 51.34 54.47 61.69 52.61 54.20 

ISOMAP  76.57 62.61 97.73 67.43 62.34 94.21 90.70 97.79 91.17 73.57 
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Tab. 8    Comparative average classification accuracies (%) on USPS 

    Labeled #= 10   Labeled #= 100   

  NN FLD MRank NB RBFNet NN FLD MRank NB RBFNet

SSPS  81.18 70.31 96.84 83.75 78.80 94.29 95.55 97.07 82.82 84.10 

F-SSPS(0.8)  81.34 75.50 95.40 85.45 78.84 93.72 94.20 95.33 84.98 90.67 

F-SSPS(0.6)  81.27 76.24 94.33 83.23 78.88 93.70 93.80 95.30 89.88 92.96

SSPS+PCA(95%)  81.05 72.49 96.86 82.84 78.65 94.42 93.93 97.17 85.39 83.87 

Original-data  80.18 68.76 80.02 80.11 78.80 92.36 84.71 79.99 82.82 78.93 

SSKLDA  82.00 73.20 90.85 82.13 76.72 96.04 89.13 96.22 85.43 91.32 

SSKMMC  81.56 61.48 81.56 83.04 78.64 83.30 62.82 83.28 87.00 88.00 

LapLDA  53.86 55.94 82.41 80.27 67.48 55.93 59.88 84.87 83.12 68.65 

ISOMAP  79.11 69.30 80.02 79.72 78.99 92.99 84.43 79.99 88.07 78.40 

 

Tab. 9    Comparative average classification accuracies (%) on Control 

    Labeled #= 5%   Labeled #= 10%   

  NN FLD MRank NB RBFNet NN FLD MRank NB RBFNet

SSPS  97.47 97.16 99.96 96.14 96.86 98.38 97.08 99.94 97.87 98.33 

F-SSPS(0.8)  96.67 95.25 99.37 96.02 96.49 98.18 96.22 99.71 98.02 98.09 

F-SSPS(0.6)  96.51 96.01 98.74 95.72 96.39 98.06 96.98 99.27 97.56 98.02 

SSPS+PCA(95%)  97.47 96.43 100.00 96.40 96.84 98.38 98.36 99.94 98.72 98.36

Original-data  93.80 69.17 84.99 79.31 67.51 95.74 57.73 84.68 75.51 71.73 

SSKLDA  94.00 89.21 100.00 95.11 96.02 96.83 98.54 100.00 96.10 98.02 

SSKMMC  95.97 84.59 100.00 93.06 91.47 97.31 73.23 99.32 96.74 95.49 

LapLDA  55.06 57.78 65.07 56.45 57.57 58.95 63.32 67.55 59.48 62.07 

ISOMAP  94.59 71.73 93.36 68.41 65.60 97.05 73.16 93.36 68.84 69.43 

 

Tab. 10    Comparative average classification accuracies (%) on Waveform 

    Labeled #= 5%   Labeled #= 10%   

  NN FLD MRank NB RBFNet NN FLD MRank NB RBFNet

SSPS  90.06 90.41 91.25 90.62 89.92 89.94 91.22 91.30 90.69 89.90

F-SSPS(0.8)  89.33 89.42 90.33 89.59 89.21 89.28 91.26 90.40 89.28 89.22 

F-SSPS(0.6)  89.29 89.34 90.02 89.57 89.18 89.08 91.25 89.84 89.01 89.07 

SSPS+PCA(95%)  90.01 90.74 91.67 89.07 89.86 89.94 91.43 91.59 89.58 89.90

Original-data  88.40 88.83 89.79 89.09 75.90 88.23 91.22 89.61 87.80 75.13 

SSKLDA  89.02 90.69 88.24 86.44 85.06 89.12 92.08 89.14 87.20 86.35 

SSKMMC  63.63 56.51 53.38 85.72 84.55 62.22 64.07 53.56 89.67 88.52 

LapLDA  82.55 79.46 81.76 78.61 79.49 86.91 72.23 74.92 67.62 72.33 

ISOMAP  88.73 91.16 90.74 89.61 88.14 89.30 91.46 90.79 89.31 87.05 
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From Tabs. 7~10, we can get several interesting observations as follows: 

 Almost all accuracies of SSPS, SSKLDA, SSKMMC and ISOMAP outperform those of 

LapLDA on dataset Digit-1, USPS and Control, indicating that the nonlinear preprocessing 

method seems more appropriate than linear method for these three dataset. At the same time, 

some accuracies of SSKMMC, LapLDA and ISOMAP are even less than those of 

Original-data, demonstrating that DR method cannot necessarily lead to a better classification 

performance on four datasets used here. 

 For the most part, on all these datasets, the best one of SSPS, F-SSPS(0.8), F-SSPS(0.6) and 

SSPS+PCA(95%) get a comparable or even higher accuracy than SSKLDA and SSKMMC 

by the most classification algorithms used here. This implies that our starting-point or 

motivation in eq. (2) is reasonable. 

 Many accuracies of F-SSPS(0.8) and F-SSPS(0.6) are comparable or even occasionally 

exceed those of SSPS such as the accuracies on Digit1, demonstrating that the proposed 

SPSub and F-SSPS can work well in most cases. Meanwhile, the most accuracies of 

SSPS+PCA(95%) exceed those of SSPS on the dataset USPS, Control and Waveform, which 

indicates that the proposed “SSPS+DR” scheme is effective and PCA can preserve the main 

fruit of SSPS. 

4.4   Testing on out-of-sample data 

In order to evaluate SSPS on out-of-sample data, we randomly split a dataset into in-sample data 

and out-of-sample data, of which the classification accuracies generated by NN classifier are 

compared. Under setting of labeling 10% samples, the comparative results as the ratio of 

out-of-sample data descends are shown in Figs. 5~6. 

From Figs. 5~6, we can observe that: 1) the most accuracies of in-sample data are higher than 

those of corresponding out-of-sample data in general; 2) as the size of out-of-sample data lessen 

(i.e., the size of in-sample data grows), the difference between two accuracies of out-of-sample 

and in-sample data becomes smaller; 3) in comparison with Tabs. 4~10, the corresponding 

accuracies here are less than those of F-SSPS, demonstrating the effectiveness of our subset 

selection scheme since no SPSub is used for out-of-sample data selection. These above 
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observations consist with an intuition that a large-size in-sample data is more likely to preserve 

and recover data’s underlying distribution, hence implying that not only the better shifted patterns 

of in-sample data but also the exacter shifted patterns of out-of-sample data can be captured under 

a larger-size work-set case. 

0.5 0.4 0.3 0.2 0.1

90

92

94

96

98

100

3Arcs

Ac
cu

ra
cy

 (%
)

Out-of-sample ratio

 

 

0.5 0.4 0.3 0.2 0.1

86

88

90

92

94

96

98

3Circles

Ac
cu

ra
cy

 (%
)

Out-of-sample ratio

 

 

0.5 0.4 0.3 0.2 0.1

75

80

85

90

95

3Spirals

Ac
cu

ra
cy

 (%
)

Out-of-sample ratio

 

 

Out-of-Samples
In-Samples

Out-of-Samples
In-Samples

Out-of-Samples
In-Samples

Fig. 5  Comparative accuracies on out-of-sample and in-sample data generated by NN classifier 
for three synthetic datasets (labeled # = 10% therein). 
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Fig. 6  Comparative accuracies on out-of-sample and in-sample data generated by NN classifier 
for three real-world datasets (labeled # = 10% therein). 

5   Discussions and conclusions 

In recent years, the research of semi-supervised DR has received significant attentions [6~9, 22, 

23]. Some spectral graph-based DRs such as ISOMAP, LLE and LE are usually plagued in the 

retained dimensionality estimation problem. Different from DR methods, Our SSPS naturally 

avoids the problem of retained dimensionality estimation since it shifts pattern directly in original 

space. Additionally, despite other methods such as semi-supervised metric learning method may 

get better performance in certain classification applications, a learnt metric cannot always 

conveniently apply into some classification algorithms such as Fisher linear discriminator (FLD), 

manifold rank (MRank) [31], naïve Bayes (NB) and radial base function network (RBFNet). In 
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this sense, a data preprocessor such as SSPS and semi-supervised DR is more extensive than 

semi-supervised metric learning. 

The main advantages of our SPSS can be summarized as: 1) instead of DR, SSPS naturally 

avoid reducing original data into a lower-dimensional space, which make us to be far away from 

the problem of estimation of retained-dimensionality; 2) SSPS can be conveniently speeded up by 

F-SSPS based on the developed SPSub scheme; 3) through its out-of-sample extension, SSPS can 

work on not only in-sample but also out-of sample data, meaning that a unseen sample can be also 

shifted easily; 4) SSPS can be naturally and conveniently combined with DR technique, e.g., 

SSPS+PCA in our experiments. 

Nevertheless, we also have to point out that, in analogy to many spectral-graph methods, SSPS 

also inherits some common problems, e.g., how to determine the best nearest neighbor number k, 

how to repair an under-sampling density distribution and how to eliminate outliers and noises. If 

such open problems can be partially resolved by some new techniques in future, they will benefit 

our SSPS too. 
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