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Abstract

The existing Multi-View Learning (MVL) is to discuss how to learn from patterns with multiple

information sources and has been proven its superior generalization to the usual Single-View Learning

(SVL). However, in most real-world cases there are just single source patterns available such that the

existing MVL cannot work. The purpose of this paper is to develop a new multi-view regularization

learning for single source patterns. Concretely, for the given single source patterns, we first map them

into M feature spaces by M different empirical kernels, then associate each generated feature space

with our previous proposed Discriminative Regularization (DR), and finally synthesize M DRs into one

single learning process so as to get a new Multi-view Discriminative Regularization (MVDR), where

each DR can be taken as one view of the proposed MVDR. The proposed method achieves: 1) the

complementarity for multiple views generated from single source patterns; 2) an analytic solution for

classification; 3) a direct optimization formulation for multi-class problems without one-against-all or

one-against-one strategies.
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I. INTRODUCTION

Since the pattern is the dealt object of the classifier, it is important to consider the prior

knowledge of patterns in designing classifiers [13]. In practice, patterns can be obtained from

single or multiple information sources. If each information source is taken as one view, accord-

ingly there are two kinds of patterns, i.e. single-view patterns and multi-view patterns. Each

information source may induce one attribute set for patterns. Thus, single-view patterns are

composed of single attribute set and multi-view patterns are composed of multiple attribute sets.

Correspondingly, the learning on single-view and multi-view patterns can be sorted into Single-

View and Multi-View Learning (SVL and MVL), respectively. In the literature [5], [30], it has

been demonstrated that co-training (one typical MVL approach) has a superior generalization

ability to its corresponding SVL for semi-supervised learning. Given patterns that are composed

of two naturally-split attribute sets (two views), co-training requires the assumption that two views

given the class are conditionally independent. Here, the independence assumption is guaranteed

by the patterns composed of two naturally-split attribute sets.

Regularization learning [7], [8], [10], [17], [39] is viewed as one effective method for im-

proving the generalization performance of classifiers. It has a rich history which can date

back to the theory of ill-posed problem [27], [39], [40]. By incorporating the right amount

of prior information into the formulation, regularization techniques are shown to be powerful in

making the solution stable [8], [19]. Regularization theory is introduced to the machine learning

community on the premise that the learning can be viewed as a multivariate functional fitting

problem, and also is successfully applied to the classifier learning [8], [32].

The goal of this paper is: 1) to develop a new supervised MVL for single-view patterns;

2) to incorporate the proposed MVL in regularization learning for a superior classification

performance, whose underlying motivations and contributions are as follows:

• The proposed MVL can deal with single-view patterns without the independence assumption.

In most real-world applications, it is not well satisfied for the independence assumption of the

attribute sets since there are only single-view patterns available. In that case, the existing MVL

can not effectively work [2], [48], [50]. However, it is this fact that motivates us to develop a

new MVL on single-view patterns.

• The proposed MVL adopts multiple kernels. It is well-known that the types and the parame-
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ters of the kernels must be selected in practice. For a given application, there may be multiple

kernels as the candidates which can possess different types and parameters. The kernel selected

from the candidates can yield a model with good performance. Such a selection, equivalently to

model selection, can usually be achieved by some methods of optimizing kernels such as Cross

Validation (CV) or Leave-One-Out (LOO) [6], [26]. However, these methods are computationally

expensive when dealing with a large number of kernel types or parameters. Even the kernel

selected by these optimization methods also can not be guaranteed optimality in some cases.

Further, since the selected kernel is single and fixed, it can only characterize the geometrical

structure of some aspects for the input data and, thus, is not always a good fit for the applications

which involve multiple, heterogeneous data sources, which is validated in the literature [37]. To

this end, a method based Multiple Kernel Learning named MKL was proposed [4], [11], [16],

[20], [21], [31], [44]. They showed the necessity to consider multiple kernels or the combination

of kernels rather than a single fixed kernel. Generally, MKL tries to form an ensemble of

kernels so as to yield a good fit for a certain application. It has been proven that MKL can offer

some needed flexibility and well manipulate the case that involves multiple, heterogeneous data

sources [1], [3], [37]. Since MKL considers multiple kernels, it can be effectively employed for

the heterogeneous data sources under the common framework of kernel learning. To a certain

extent, MKL also relaxes the model selection about kernels. Thus, we adopt multiple kernels in

the multiple view learning framework here.

• The proposed MVL first adopts multiple empirical kernel mappings [35], [45] for the given

single-view patterns. Then it synthesizes different mappings so as to achieve the complementarity

among the generated views and get a superior classification performance to the original SVL,

where each associated empirical kernel mapping is taken as one view of the original single-view

patterns. Each view is expected to be able to exhibit some geometrical structure of the original

patterns from its own perspective such that all the views can complement each other. In practice,

the complementarity among multiple views is achieved by the following so-called Inter-Function

Similarity Loss term RIFSL [44]:

RIFSL(x) =
M∑

l=1

(fl(x)−
M∑

j=1

αjfj(x))2, (1)

where x ∈ Rn is a given single-view pattern, fj is a classifier learnt from the jth kernel mapping

space of the original patterns, and αj ≥ 0,
∑M

j=1 αj = 1, αj denotes the importance of the
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corresponding view. It can be found that for a given pattern, RIFSL expects to make all the M

classifiers fl achieve as much agreement on their outputs as possible.

• The proposed MVL adopts our previous work [47] of Discriminative Regularization (DR) as

fj in the term RIFSL, and thus is named as Multi-view Discriminative Regularization (MVDR).

MVDR inherits the advantages of DR and owns: 1) an analytic solution for classification; 2) a

direct optimization formulation for multi-class problems without one-against-all or one-against-

one strategies. Meanwhile, since the proposed MVDR considers multiple views generated from

the original pattern and achieves the complementarity among these views, it has a superior

classification performance to the original DR, which is validated in the experiments of this

paper.

• The proposed MVL is applied into supervised problems and experimentally shows that a

weaker correlation between the views of the proposed method leads to a performance improve-

ment. Most of the existing MVL works along semi-supervised problems [5], [28], [30]. But

this paper changes it and applies the MVL technique into supervised problems. Meanwhile, the

literature [43] has theoretically and experimentally given that if the base learners of co-training

style algorithms have enough differences in semi-supervised cases, an improved performance

can be got. This paper extends the similar conclusion of the literature [43] to supervised cases

and experimentally gives that a weaker correlation between the views can lead to a superior

performance.

This paper is organized as follows. Section II describes the related work in MVL. Section III

reviews our previous work DR. The architecture of the proposed MVDR is given in Section IV.

Section V reports the experimental results on some benchmark data sets and shows the feasibility

and effectiveness of the proposed MVDR. Finally, the conclusion is given.

II. RELATED WORK

One typical example of the existing MVL is web-page classification [5], where each web page

can be represented by either the words on itself (view one) or the words contained in anchor

texts of inbound hyperlinks (view two). In [5], Blum and Mitchell design a co-training algorithm

on the labeled and unlabeled web pattern sets composed of the two naturally-split views. For

the co-training style algorithm, two classifiers are incrementally built with the corresponding

views on the labeled web set. On each cycle, each classifier labels the unlabeled webs and picks
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those with the highest confidence into the labeled set. The co-training process repeats until the

terminated condition is satisfied. It is well-known that the co-training algorithm requires two

assumptions: 1) the compatibility assumption that the base classifiers in each view farthest agree

on labels of web patterns and 2) the independence assumption that the different views given the

class are conditionally independent. But in most cases, it is hard to satisfy the independence

assumption due to the nonexistence of naturally-split attribute sets (naturally-split views) such

as the single-view patterns. Thus Nigam and Ghani [30] experimentally explore the co-training

algorithm with or without the independence assumption. They demonstrate that the co-training

algorithm with a natural split of the attributes outperforms the one without, and further propose

a semi-supervised, multi-view algorithm co-EM that is a probabilistic version of co-training and

outperforms co-training. Moreover, Muslea et al. [28] incorporate active learning in co-EM, and

present an algorithm named co-EMT that outperforms both co-training and co-EM and has a

robustness in view-correlation cases to some extent.

Although both co-EMT and co-EM have the superior generalization to co-training, all these

algorithms can not effectively work on the patterns with the non-naturally split attributes, es-

pecially the single-view patterns. In order to solve the problem, Zhang et al. [48] design an

algorithm called Correlation and Compatibility based Feature Partitioner (CCFP) to automate

multi-view detection, where the attributes of patterns can be partitioned into two views that are

low correlated, compatible and sufficient enough. But, as the authors themselves said in [48],

CCFP has two limitations: 1) the two views must have the same number of attributes and certain

correlation; 2) it is hard to get the optimal parameters of CCFP. Farquhar et al. [15] present a

process named SVM-2K that combines Kernel Canonical Correlation Analysis (KCCA) [18] by

Support Vector Machine (SVM) [42] on two views. SVM-2K utilizes the multi-kernel trick on

the single-view patterns, where for the same pattern the two views are generated through two

feature projections φA and φB with their corresponding kernels kA and kB. However, due to

SVM itself, SVM-2K also suffers from similar problems such as the scalability to the number of

the patterns and time-consuming Quadratic Programming (QP). On the other hand, rather than

dealing with the single-view patterns themselves, the democratic co-learning [50] runs different

algorithms on the single-view patterns, whose motivations are that different learning algorithms

yield different inductive biases and that better performance can be made by the voted majority.

However, in the democratic co-learning, how to select those base learning algorithms is still a
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problem due to lack of a measurable selection criterion.

Compared with CCFP, SVM-2K and the democratic co-learning, the proposed MVDR has

the following advantages: 1) it does not need to split the attributes of the original single-view

patterns but just maps the original single-view patterns into M feature spaces with M empirical

kernels, respectively; 2) it can achieve the complementarity among the so-generated feature

spaces through introducing the term RIFSL; 3) it employs our previous work of DR as the base

learner in the individual feature spaces, and thus owns a nice analytic solution and a direct

optimization formulation for multi-class problems.

III. DISCRIMINATIVE REGULARIZATION (DR)

It has be demonstrated that the traditional regularization learning usually just considers one side

of classification problems. Regularization Network (RN) [19] only emphasizes the smoothness of

the classifier, and does not sufficiently incorporate the prior intra-class and inter-class information

into its formulation which is vital for classification. Generalized Radial Basis Function Network

(GRBFN) [32], as an approximation to RN, actually just incorporates the intra-class information

generated from the clusters into the traditional regularization learning. But, GRBFN still partially

neglects the inter-class information which is crucial for classification. SVM uses the hinge-loss

function and thus emphasizes the prior inter-class discriminative knowledge more than GRBFN.

Furthermore, Regularized Least Squares (RLS) method [33] is established by minimizing a

regularized function directly in a Reproducing Kernel Hilbert Space (RKHS). RLS is proved to

have a similar performance to SVM [49]. However, both RLS and SVM do not take the intra-class

information into account yet and thus do not sufficiently use the prior data structural knowledge,

which may influence classification effectiveness to some degree. Discriminative Regularization

(DR) [47] was proposed to improve the traditional regularization for classification, but does not

change the original formulation. DR directly introduces the prior not only intra-class but also

inter-class information into the objective function as discriminative knowledge [47].

Suppose that we are given the binary-class problem {(xi, yi)}N
i=1 ⊆ Rn × {−1, +1}, where yi

is the class label of the training pattern xi. The linear discriminant function of DR is given as

follows

f(x) = wT x + b, (2)
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where w ∈ Rn is the weight vector and b ∈ R is a bias. w and b is optimized by the following

objective function

min
w,b

1

2

N∑
i=1

[yi − (wT xi + b)]2 +
1

2
wT [ηSe

w + (η − 1)Se
b ]w, (3)

where

Se
w =

2∑

k=1

1

Nk

Nk∑
i=1

(x
(k)
i − x(k))(x

(k)
i − x(k))T

Se
b =

2∑

k=1

∑

p6=k

(x(k) − x(p))(x(k) − x(p))T ,

Nk is the number of the kth class patterns, x
(k)
i denotes the ith pattern of the kth class, xk

denotes the average pattern of the kth class, and η is the parameter that regulates the relative

significance of the intra-class compactness versus the inter-class separability, 0 ≤ η ≤ 1. The

second term of the formulation (3) is exactly called as Discriminative Regularization Term that

contains both the prior intra-class and inter-class information.

It should be stated that both Se
w and Se

b are much similar to the well-known ”within-class scatter

matrix” and ”between-class scatter matrix” in Linear Discriminant Analysis (LDA), respectively

[24]. Hence actually, the regularization term in DR is naturally coincident with the formulation

of Maximum Margin Criterion (MMC) [23]. Although DR is a classifier learning method rather

than traditional dimensionality reduction, i.e., the optimized w is actually the weight vector in

the classifier functional rather than the projection vector, DR more likely provides us a brand-

new viewpoint of combining regularization with supervised dimensionality reduction methods

effectively. The general goal of supervised dimensionality reduction methods, such as LDA and

MMC, is to find an orientation in which the projected samples are well separated [12], which

is much similar to the intuitive motivation in DR. Hence through introducing these methods

into the regularization framework as a regularization term, DR virtually provides a general way

to incorporate the prior information into the formulation of designing a new classifier, which

extends the traditional regularization to classification. The detailed description about DR can be

found in [47].
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IV. MULTIPLE VIEWS OF DISCRIMINATIVE REGULARIZATION (MVDR)

In the proposed MVL, given the single-view training patterns {(xi, yi)}N
i=1 ⊆ Rn × {C1, ..., Cc},

we can map each pattern xi from the input space X into M feature spaces {Fnl
l }M

l=1 with M

kernels, i.e., Φl : X → Fnl
l , l = 1...M . Each generated feature space F nl

l has nl dimension.

The aim of the proposed MVL is to use all the M generated feature spaces and achieve the

complementarity among all the feature spaces.

In the literature [35], [36], the mapping Φ also called the Implicit Kernel Mapping (IKM) is

implicitly represented by specifying a kernel function as the inner product between each pair

of samples in the feature space. For the sample set {xi}N
i=1, X denotes the N × n sample

matrix where each row is the vector xT
i . K = [kerij]N×N denotes the N × N kernel matrix

where kerij = Φ(xi) · Φ(xj) = ker(xi, xj). K is a symmetrical positive-semidefinite matrix.

Conversely, the mapping Φ in this paper, is given in an explicit form as describe in [35], [45].

If the rank of K is r, the kernel matrix K can be decomposed as

KN×N = QN×rΛr×rQ
T
r×N , (4)

where Λ is a diagonal matrix consisting of the r positive eigenvalues of K, and Q consists of the

corresponding orthonormal eigenvectors. Then, the explicit mapping also called the Empirical

Kernel Mapping (EKM) in this paper, is given as

Φe : X → F r

x → Λ−1/2QT [ker(x, x1), ..., ker(x, xN)]T . (5)

Let B = KQΛ−1/2, and then the dot product matrix of {Φe(xi)}N
i=1 generated by EKM can be

calculated as

BBT = KQΛ−1/2Λ−1/2QT K = K. (6)

The equation (6) of EKM is exactly equal to the kernel matrix (4) of IKM. Thus the mapped

samples respectively generated by EKM and IKM have the same geometrical structure. In [35],

[45], it is shown that comparing EKM with IKM, the former is easier to access and easier to

study the adaptability of a kernel to the input space than the latter. That is why we select EKM

here.

This paper generates M different feature spaces with M EKMs, where each feature space

is taken as one view of the given training patterns. Each view only shows one-facet structural
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information of the original patterns. Thus, the learning in one certain feature space might be

just local or partial. The proposed MVL is expected to employ all the generated feature spaces

and complement all the individual learnings in M feature spaces. Such a complementarity in the

proposed MVL can be achieved through utilizing the prior knowledge in the training patterns,

which is also validated in the literature [22]. It can be found that though xi can be mapped

into different feature patterns {Φe
l (xi)}M

l=1, {Φe
l (xi)}M

l=1 still share a common class label yi.

Therefore, denote fl as the classifier learnt from the lth feature space Fl, and then the outputs

of all the classifiers {fl}M
l=1 on xi should achieve as much agreement as possible, which is here

characterized by the Inter-Function Similarity Loss term

RIFSL =
M∑

l=1

[fl(xi)−
M∑

j=1

αjfj(xi)]
2

αj ≥ 0,
M∑

j=1

αj = 1.

DR is used to construct the classifier fl in each view Fl. Further, we will give the formulation of

the proposed MVL called multi-view discriminant regularization (MVDR) in the next section.

A. Binary-class problem

This section gives the formulation of the proposed MVDR for binary-class problem. The

original single-view patterns {(xi, yi)}N
i=1 ⊆ Rn × {−1, +1} are mapped into {{Φe

l (xi)}M
l=1}N

i=1

with M empirical kernels as shown in (5). The classifier fl of each view Φe
l in the proposed

MVDR has the linear formulation

fl(x) = wT
l Φe

l (x) + bl (7)

as in DR. Then, the decision function of MVDR is formed as

F (x) =
M∑

l=1

αl[w
T
l Φe

l (x) + bl], (8)

where αl ≥ 0,
∑M

l=1 αl = 1.

As a result, the optimization problem of MVDR is characterized as below

min
wl,bl

J = Remp + RDR + λRIFSL, (9)



10

where Remp, RDR are the empirical risk term and the discriminant term of M views respectively,

and RIFSL is the inter-function similarity loss term. Remp, RDR, and RIFSL are respectively

defined as

Remp =
1

2

M∑

l=1

N∑
i=1

[yi − (wT
l Φe

l (xi) + bl)]
2, (10)

RDR =
1

2
[η

M∑

l=1

wT
l Sl

wwl + (η − 1)
M∑

l=1

wT
l Sl

bwl], (11)

RIFSL =
1

2

N∑
i=1

M∑

l=1

{[wT
l Φe

l (xi) + bl]−
M∑

j=1

αj[w
T
j Φe

j(xi) + bj]}2, (12)

where

Sl
w =

2∑

k=1

1

Nk

Nk∑
i=1

(Φe
l (x

(k)
i )− Φe

l (x
(k)))(Φe

l (x
(k)
i )− Φe

l (x
(k)))T ,

Sl
b =

2∑

k=1

∑

p6=k

(Φe
l (x

(k))− Φe
p(x

(p)))(Φe
l (x

(k))− Φe
l (x

(p)))T ,

Φe
l (.), wl ∈ Rnl , bl ∈ R. Both Remp and RDR characterize the M DR learnings in their corre-

sponding feature spaces. RIFSL achieves the complementarity among the M DRs. For conve-

niently processing wl and bl, we reformulate Remp, RDR, and RIFSL in matrix form:

Remp =
1

2
(Y − XT u)T (Y − XT u) +

M − 1

2
Y T Y, (13)

RDR =
1

2
uT [ηSe

w + (η − 1)Se
b ]u, (14)

RIFSL =
1

2

M∑

l=1

(uT
l Xl−uT ΛX)(uT

l Xl−uT ΛX)T =
1

2
(uT XXT u+MuT ΛXXT Λu−2uT XXT Λu),

(15)

where

Y = [y1, ..., yn]T ,

ul = [wT
l , bl]

T ,

u = [uT
1 , ..., uT

M ]T ,
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Λ is a diagonal matrix with its diagonal elements in the sequence being

α1
1...α

n1+1
1 , ..., α1

l ...α
nl+1
l , ..., α1

M ...αnM+1
M ,

Xl =


 Φe

l (x1) ... Φe
l (xN)

1 ... 1


 ,

X = [X1; ...; XM ].

Denote X = [z1, ..., zN ], then

Se
w =

2∑

k=1

1

Nk

Nk∑
i=1

(z
(k)
i − z(k))(z

(k)
i − z(k))T ,

Se
b =

2∑

k=1

∑

p6=k

(z(k) − z(p))(z(k) − z(p))T .

Thus, to get the minimizer of the objective function J in the equation (9), we make the gradient

of J with respect to u = [uT
1 , ..., uT

M ]T (ul = [wT
l , bl]

T ) be zero and get

∂J

∂u
=

∂Remp

∂u
+

∂RDR

∂u
+ λ

∂RIFSL

∂u
= 0. (16)

Then, the equation (17) can be induced through settling the equation (16) as following

{(1 + λ)A + [ηSe
w + (η − 1)Se

b ] + λMΛAΛ− λ(AΛ + ΛA)}u = XY , (17)

where A = XXT . An analytic solution to the u can be obtained.

B. Multi-class problem

In the c-class problem (c ≥ 2), we adopt the vector-labeled outputs that can make the

computational complexity independent of the number of classes and require no more computation

than a single binary classifier [14]. Furthermore, Szedmak et al. [38] presents that this technique

of the vector-labeled outputs does not diminish classification performance but in some cases can

improve it, relatively to one-against-one and one-against-all for multi-class problems. Therefore,

this paper codes the class labels with the one-of-c rule. If xi belongs to the kth class, then its

label yi = [0...1...0]T ∈ Rc, where the kth element is 1 and the other elements are 0. Then the

classifier (8) of the proposed MVDR for the c-class problem can be formulated as

F (x) =
M∑

l=1

αl[WT
l Φe

l (x) + bl], (18)
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where Wl ∈ Rnl×c, bl ∈ Rc. Correspondingly, the objective function of the proposed MVDR for

the c-class problem is formulated as

min
Wl,bl

J = Remp + RDR + λRIFSL, (19)

where

Remp =
1

2
tr[(Y− UT X)T (Y− UT X)], (20)

RDR =
1

2
[ηS̃e

w + (η − 1)S̃e
b ], (21)

RIFSL = 1
2

∑M
l=1 tr[(UT

l Xl − UT ΛX)(UT
l Xl − UT ΛX)T ]

= 1
2
(UT XXT U + MUT ΛXXT ΛU− 2UT XXT ΛU),

(22)

tr[.] is a matrix trace operation. In this case,

Y = [y1, ..., yN ] ∈ Rc×N , yi ∈ Rc,

U = [UT
1 , ..., UT

M ]T , Ul = [WT
l , bl]

T ,

both X and Λ follow the definition of the binary-class problem. Denote X = [z1, ..., zN ] again,

then

S̃e
w =

c∑

k=1

1

Nk

Nk∑
i=1

(z
(k)
i − z(k))T UUT (z

(k)
i − z(k)),

S̃e
b =

c∑

k=1

∑

p6=k

(z(k) − z(p))T UUT (z(k) − z(p)).

Similarly, to get the minimizer of the objective function J in the multi-class problem (19), we

zero the gradient of J of (19) with respect to U = [UT
1 , ..., UT

M ]T (Ul = [WT
l , bl]

T ) and get

∂J

∂U
=

∂Remp

∂U
+

∂RDR

∂U
+ λ

∂RIFSL

∂U
= 0. (23)

Then, the equation (24) can be induced through settling the equation (23) as following

{(1 + λ)A + [ηSe
w + (η − 1)Se

b ] + λMΛAΛ− λ(AΛ + ΛA)}U = XY T , (24)
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TABLE I

ALGORITHM MVDR

Input: {xi, yi}N
i=1; the M candidate kernels {kerl(xi, xj)}M

l=1

OutPut: the solution in the binary problem: wl, bl (the multi-class problem: Wl, bl), l = 1...M

1. Explicitly map {xi}N
i=1 into {Φe

1(xi), ..., Φ
e
l (xi), ..., Φ

e
M (xi)}N

i=1

by M kernels as shown in (5);

2. Set u = [uT
1 , ..., uT

M ]T , ul = [wT
l , bl]

T (the multi-class problem: U = [UT
1 , ..., UT

M ]T , Ul = [WT
l , bl]

T ),

then u (U) can be got through (17) (the multi-class problem: (24)).

where

A = XXT ,

Se
w =

c∑

k=1

1

Nk

Nk∑
i=1

(z
(k)
i − z(k))(z

(k)
i − z(k))T ,

Se
b =

c∑

k=1

∑

p6=k

(z(k) − z(p))(z(k) − z(p))T .

Thus, we can obtain an analytic solution to the weight matrix for classifier of the proposed

MVDR in the multi-class problem.

Table I lists the procedure of the proposed MVDR in both binary and multi-class problems.

From this table, it can be found that the proposed MVDR has two advantages: 1) an analytic so-

lution to the optimization problem; 2) a direct optimization formulation for multi-class problems

without one-against-all or one-against-one strategies.

V. EXPERIMENTS

The used single-view patterns in our experiments are the synthetic data and UCI data sets

[29], respectively. The used candidate kernels for all the implemented algorithms are: linear

kernel ker(xi, xj) = xT
i xj; RBF kernel ker(xi, xj) = exp(−‖xi−xj‖22

2σ2 ) where σ = νσ, ν is

selected from {0.01, 0.1, 1, 10, 100], σ is set to the average value of all the l2-norm distances

‖xi − xj‖2, i, j = 1...N as used in [41]; and polynomial kernel ker(xi, xj) = (xT
i xj + 1)d

where d is selected from {2, 3, 4, 5}, respectively. Without any prior knowledge, the parameter

αl, l = 1...M of the proposed MVDR is set to 1
M

, i.e., each view owns the same importance. The

range of the parameter η for DR is {0.001, 0.01, 0.1, 0.5, 0.7, 0.99}. The parameter λ for MVDR
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Fig. 1. The discriminant boundaries in the two-banana data set: (a) DR with linear kernel; (b) DR with polynomial kernel; (c)

DR with RBF kernel; (d) MVDR with the same linear, polynomial, and RBF kernels as (a), (b), and (c).

is from 10−3 to 102 with each step by multiplying 10. The classification performances of all the

algorithms here are reported by Monte Carlo cross validation (MCCV) [46] that randomly splits

the pattern set into two parts (the training and testing sets), and then repeats the procedure T

times. Here, T is set to 10.

A. Synthetic Data

Figure 1 demonstrates the complementarity of the proposed MVDR on the synthetic data sets,

where the data in two classes (’◦’ vs.’+’) appear as two banana shaped distributions. The data

are uniformly distributed along the bananas and are superimposed with a normal distribution

with standard deviation in all directions. Figure 1.(a), (b) and (c) give the boundaries of DR

with linear, polynomial, and RBF kernels in the synthetic data, respectively. In contrast, Figure
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1.(d) gives the boundary of the proposed MVDR with the same linear, polynomial, and RBF

kernels as those used in Figure 1.(a), (b) and (c). Furthermore, the training and testing accuracies

are labeled in the right-bottom corners in their corresponding sub-figures.

From this figure, it can be found that: 1) the proposed MVDR has a more accurate decision

boundary that well sketches the real contour of the ’+’ patterns; 2) DR with the linear kernel

clearly gives an under-fitting decision boundary that only gives a general trend of the data

distribution; 3) DR with the polynomial or RBF kernels has a better classification performance

than DR with the linear kernel respectively, but still fails in classifying some certain patterns

that lie in the boundary area; 4) the proposed MVDR employs multiple kernels and exhibits the

best classification accuracy.

Further, Figure 1.(a), (b) and (c) showed the decision boundaries for linear, polynomial and

rbf kernels while Figure 1(d) showed the decision boundary combining the above three. Some

’+’ samples are to the left of the decision boundary for all linear, polynomial and rbf kernels in

Figure 1.(a), (b) and (c). That is to say, none of the three kernels can learn these ’+’ samples

well. However, these samples were to the right of the boundary in Figure 1.(d) where the three

kernels were combined. To analyze the reason, it should be stated that the classifier functions of

DR with linear, polynomial and rbf kernels in Figure 1.(a), (b) and (c) are different from those

of MVDR with the combination of linear, polynomial and rbf kernels in Figure 1.(d) due to

the difference between the solutions of DR and MVDR. As stated in Section IV, the proposed

MVDR is not simply combined by the separate DR. The WT
l , bl, l = 1...M in the MVDR are

optimized in one learning processing and play an influence for each other. Therefore, although

none of the three kernels in DR can learn these ’+’ samples well, these ’+’ samples can also

be learned right by MVDR in Figure 1. That is to say that the three sub-classifiers in MVDR

are different from that the three classifiers of DR. It is thus not contradictory to the assumption

that these kernels in MVDR are complementary. To further validate the proposed MVDR, we

will compare it with DRMV that separately carries out the M DR algorithms in the M feature

spaces respectively, and then combines their outputs by the majority voting technique in the next

section.

B. UCI data sets
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Fig. 2. Classification accuracies of the algorithms: MVDR, DR, DRMV, DRFE, MKL[34].

1) Classification performance: This section implements the proposed MVDR on UCI data

sets to further validate its effectiveness. Simultaneously, this section also carries out the DR

algorithm based on the single kernel and two kinds of combinations (denoted as DRMV and

DRFE respectively). The DRMV separately carries out the M DR algorithms in the M feature

spaces respectively, and then combines their outputs by the majority voting technique. The DRFE

first concatenates the M transformed feature vectors into one single ensemble vector, and then

implements the DR algorithm with the ensemble vector. In addition, the multiple kernel learning

algorithm denoted as MKL [34] is also compared with the proposed method. All the implemented

algorithms MVDR, DRFE, DRMV and MKL [34] adopt the same empirical kernels where M

is set to 3 or 5 on the used data sets. The results of the algorithm DR are given in the optimal

kernel case through MCCV. We first give the experimental results of the DR with different

kernels (views) and SVM with rbf kernels. We list the results in Table II. From this table, we

can find that the proposed MVDR has a significant superiority to the single DR in terms of

classification. Compared with SVM with rbf kernels, the proposed MVDR succeeds in some

datasets (Sonar, Hous., Shut., Soy., Wine, Lung.) but fails in some datasets (Iono., Echo., Glas.,

Der., Lens., Cmc). Thus, our future work is to extend our method into the SVM framework.

Figure 2 shows the classification accuracies of these implemented algorithms on the data

sets that are Sonar, Echocardiogram, Ionosphere, House-votes, Shuttle-landing-control, Glass,
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TABLE II

CLASSIFICATION ACCURACY COMPARISON BETWEEN THE ALGORITHMS MVDR, DR, AND SVM

Data sets DR MVDR SVM

linear poly rbf combination rbf

Sonar 0.7231 0.6481 0.7296 0.7639 0.7333

Iono. 0.6393 0.6707 0.8033 0.9047 0.9426

Hous. 0.7511 0.7819 0.7511 0.9267 0.9239

Echo. 0.6045 0.6239 0.6134 0.6298 0.8776

Shut. 0.5714 0.6285 0.6142 0.6714 0.5714

Glas. 0.7295 0.6514 0.7733 0.8695 0.8761

Soy. 0.9956 0.9956 1 1 0.9173

Der. 0.2888 0.4361 0.2988 0.4716 0.4733

Lens. 0.2923 0.3384 0.3461 0.3769 0.5846

Cmc 0.4088 0.4517 0.4774 0.5064 0.5168

Wine 0.3103 0.6896 0.5745 0.9056 0.8443

Lung. 0.4733 0.4 0.48 0.5066 0.4133

Soybean-small, Dermatology, Lenses, Cmc, Wine, Lung-cancer (denoted for short as Sonar,

Iono., Hous., Echo., Shut., Glas., Soy., Der., Lens., Cmc, Wine, Lung., respectively). Figure

2 gives the histogram of the classification results. The higher the histogram is, the better its

corresponding algorithm is. Then, it can be found that: 1) the proposed MVDR is superior to

DR on all the used data sets; 2) the DRFE or the MKL [34] learning take the second or third

place, and both are worse performance than the proposed MVDR in most cases.

In addition to reporting the average classification accuracies, we also perform the paired t-

test [25] by comparing the proposed MVDR with the other algorithms DR, DRFE, DRMV and

MKL [34]. The null hypothesis H0 demonstrates that there is no significant difference between

the mean number of the samples correctly classified by the proposed method and the other

algorithms. Under this assumption, the p-value of each test is the probability of a significant

difference in the correctness values occurring between the two testing sets. Thus, the smaller the

p-value, the less likely that the observed difference results from identical testing set correctness

distributions. The threshold for the p-value is set to 0.05. Figure 3 gives all the p-values of the

compared algorithms on the used data sets. From this figure, it can be found that: 1) the null

hypothesis H0 is rejected between MVDR and DR on 7 data sets, i.e., MVDR is significantly
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TABLE III

RUNNING TIME (IN SECOND) COMPARISON BETWEEN THE ALGORITHMS MVDR, DR, DRMV, DRFE, MKL[34]

Data sets MVDR DR DRMV DRFE MKL

Sonar 6.643 0.249 0.0749 0.5907 221.528

Echo. 0.1687 0.0124 0.038 0.1265 0.0953

Iono. 3.1548 0.145 0.6517 2.3487 68941.02

Hous. 5.7984 0.1406 0.6424 5.1593 36955.45

Shut. 0.0048 0.0015 0.0046 0.0015 0.0513

Glas. 0.0844 0.0438 0.0596 0.0656 2967.32

Soy. 0.0313 0.0015 0.0048 0.0139 0.2562

Der. 1.4252 0.1282 0.3892 1.5953 1.1874

Lens. 0.0015 0.0015 0.0016 0.0047 0.0406

Cmc 82.7547 21.9451 37.3142 136.1033 8.531

Wine 0.1124 0.000413 0.0265 0.0672 0.2045

Lung. 0.7283 0.00020 0.0545 0.614 0.147

better than DR on these data sets; 2) except DRFE, H0 is also rejected between the proposed

method and DRMV, MKL [34] on most data sets used here.

2) Running time: Table III reports the training time of the proposed MVDR and those

compared algorithms (DR, DRMV, DRFE and MKL [34]) with their optimal parameters in 10

runs. All the computations are performed on Pentium IV 2.80 GHz processor running Windows

2000 Terminal and MATLAB environment. From Table III, although the proposed MVDR has a

longer running time than DR on most of the data sets due to multiple kernels used, the proposed

method has a significantly shorter running time with respect to the MKL [34] on most cases.

Further, compared with both DRMV and DRFE, it can also be noted that the proposed MVDR

has a competitive efficiency.

C. Further analysis of multiple views

The existing MVL such as co-training requires the conditional independence assumption well

satisfied where the patterns are obtained from multiple sources [5]. However, Wang and Zhou

[43] give a deep discussion on co-training style algorithms in semi-supervised problems, and

theoretically demonstrate that the base learners with enough differences can lead to a superior

performance in co-training style algorithms. They explain why co-training algorithms can succeed



19

0 0.1 0.25 0.4 0.55 0.7 0.9 1
0

0.05
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KA value

p
−

va
lu

e

DR

0 0.2 0.4 0.6 0.8 1
0

0.05
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

KA value

p
−

va
lu

e

DRMV
DRFE
MKL

Fig. 3. The p-value as a function of the kernel alignment (KA) value on the used data sets

in some cases without two views. This paper extends the work of Wang and Zhou [43] and gets

a similar conclusion on supervised problems. In the proposed algorithm MVDR, on the one hand

only the single-view patterns are available. On the other hand, the generated views are induced

from the multiple empirical kernel mappings. Thus we adopt kernel alignment [9] as a good

correlation measure between the induced M views to explore the reasons why the performance

of the proposed MVDR can be improved. The definition of kernel alignment for two views is

given as follows:

Definition: Kernel Alignment [9] The alignment between the Gram matrices Ki and Kj (one

empirical kernel can correspond to one Gram matrix) is

Aij =
tr(KT

i Kj)√
tr(KT

i Kj)tr(KT
i Kj)

. (25)

Then the alignment between M(M ≥ 2) views is given as

A =
2

M(M − 1)

M∑
i=1

M∑

j 6=i

Aij. (26)

The A value can be taken as the cosine value of the angle between the Gram matrices, it satisfies

−1 ≤ A ≤ 1. Here, since the Gram matrix K is positive semi-definite, 0 ≤ A ≤ 1. Intuitively,

the bigger the value of A, the more correlated the matrices and also the more correlated the

corresponding views. If Aij = 1, Ki = ξKj, ξ ∈ R.



20

One ’¦’ (’×’ or ’¤’) in Figure 3 denotes on one certain data set, what the p-value between

MVDR and one certain algorithm is, and what its corresponding A value of MVDR is. From

the left sub-plot of Figure 3, it can be clearly found that the A values of those points (p-value <

0.05) are most in the range from 0.25 to 0.55. In other words, the weaker correlation between

the views leads to the performance improvement in the proposed MVDR. The similar result can

also be found in the right sub-figure of Figure 3. A further work about the relationship between

the kernel alignment and MVDR will be implemented in future.

VI. CONCLUSION

The contribution of this paper is to develop a novel MVL named MVDR on single-view

patterns. The proposed MVDR maps the original single-view patterns into multiple feature

spaces with different empirical kernels and associates each generated space with our previous

work of DR, where the DR learning in each space is taken as one view of the proposed

MVDR. Simultaneously, the proposed MVDR has an analytic solution to the optimization

problem and a direct optimization formulation for multi-class problems without one-against-all

or one-against-one strategies. The experimental results show that the proposed method provides

a complementarity between different views and thus has a superior classification performance

to the original single-view algorithm DR. Further, compared with the other algorithms DRFE,

DRMV and MKL [34], the proposed method has a better or competitive performance in terms

of classification and computation. Finally, it is also found that the improved classification

performance of our method is induced by a weak correlation between the views, which is

validated by the experiments here.
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