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The generalization ability of classification is often closely related to both the intra-class compactness
and the inter-class separability. Owing to the fact that many current dimensionality reduction meth-
ods, regarded as a pre-processor, often lead to the poor classification performance on real-life data, in
this paper, a new data pre-processing technique called manifold contraction (MC) is proposed for the
classification-oriented learning task. The main motivation behind MC lies in seeking a proper mapping
of contracting the given multiple-manifold data such that the ratio of the intra-class to the inter-class
scatters is minimized. Moreover, in order to properly control the contraction level in MC, an adaptive MC
(AMC) criterion is developed in the semi-supervised setting. Due to its generality, MC can be not only
applied in original space and reproducing kernel Hilbert space (RKHS), but also easily incorporated with
dimensionality reduction method for further improvement of classification performance. The final ex-
perimental results show that MC, as a data preprocessor, is effective and promising in the subsequent
classification learning, especially in small-size labeled sample case.

Manifold learning, dimensionality reduction, lower-dimensional embedding, semi-supervised learning, classification, manifold con-

traction, adaptive manifold contraction

1 Introduction

It is well-known that classification is a fundamen-
tal task in pattern recognition and machine learn-
ing communities, in which the control for classifica-
tion complexity plays an important role especially
in the small-size labeled sample case. According
to the viewpoints in refs. [9][10], the classification
complexity can be generally explored from two dif-
ferent aspects: classifier complexity and data com-
plexity. Usually, the classifier complexity can be
controlled by model regularization, parameter se-
lection, etc., while the data complexity may be re-
duced through data pre-processing techniques such
as dimensionality reduction, feature selection, data
smoothing, etc.. Bishop demonstrated that the
data pre-processing is one of the most significant

factors in determining the performance of final sys-
tem [6], and Duin also pointed out that the classifi-
cation complexity mainly inherits data complexity
[10]. These assertions largely indicate that both
complexities of model and data are not indepen-
dent of each other, and the final performance orig-
inates not only from the design of a good classifier,
but also from the generation of a good pattern rep-
resentation by reduction of data complexity.

Since manifold data is ubiquitous in the real
world, how to yield good pattern representation
for manifold data is a significant issue. Currently,
a popular scheme of reducing manifold data is
to embed them into a lower-dimensional space by
dimension reduction technique (DR), also named
lower-dimensional embedding under graph frame-
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work [30]. As we have known, the represen-
tative DR methods include principal component
analysis (PCA) [14], linear discriminant analysis
(LDA) [11], semi-supervised discriminant analysis
(SDA) [8], semi-supervised dimensionality reduc-
tion (SSDR) [31], kernel PCA (KPCA) [20], local
linear embedding (LLE) [19], isometric mapping
(ISOMAP) [22], diffusion map (DiffuMap) [16],
Laplacian eigen-mapping (LE) [1], etc.. However,
many DR methods, as a pattern generator, cannot
necessarily lead to an improvement in classification
performance. For instance, after analyzing many
experiments on benchmarks, it has been found that
many DRs like ISOMAP, LE and LLE often led to
poor classification accuracy on real-world datasets
[3]. Other poor classification accuracies of DRs
have also been reported in ref. [25]. These re-
ports partially demonstrate that many DRs do not
always suit as a good pre-processor for classifica-
tion learning.

By contrast, we find that the classification ac-
curacies on some embedding data are even lower
than those on original data [3][25]. This discovery
inspires us to seek a new pattern representation
in original space directly. Hence, in this paper,
we propose a new data pre-processing technique
named manifold contraction (MC), which tries to
capture a good pattern representation directly in
the original space. An intuition behind MC is
that, after contracting manifold data in its dis-
tribution direction, the intra-class points become
more compact and the inter-class points become
further away. Thus, the so-generated pattern rep-
resentation will be favorable for the subsequent
classification learning.

The proposed MC aims to act as a classification-
oriented pattern pre-processor. As is also well-
known, the semi-supervised classification learn-
ing has become a popular topic recently [36]. It
has empirically shown that many existing super-
vised classifiers cannot work well if their learn-
ing only depends on labeled samples. There-
fore, many semi-supervised classification learning
schemes are consecutively developed [36]. In par-
ticular, based on manifold hypothesis, some typi-
cal semi-supervised classification methods such as

Laplacian SVM (LapSVM) [2], Markov random
walk [21], manifold ranking [13][32][33] and label
propagation (LP) [37][5] have been proposed. Usu-
ally, the scarcity of labeled training samples leads
to a large solution space, implying an over-fitting
risk or poor generalization ability. Meanwhile, con-
trolling classifier’s complexity is one important way
to avoid the over-fitting and improve the general-
ization ability, e.g., in LapSVM [2], utilizing the
manifold distribution of both labeled and unla-
beled samples to control the classifier’s complex-
ity and developing a manifold regularization tech-
nique. Alternatively, following the Bishop’s and
Duin’s viewpoints, another possible pathway of im-
proving classification performance is to reduce the
data complexity. That is, we can likewise improve
the performance by managing to obtain a suffi-
ciently good pattern representation closely asso-
ciated to the given semi-supervised classification
task. In this way, it is still possible to make an
existing supervised-classifier work well as a semi-
supervised classifier. Based on such a considera-
tion, our motivation is that a semi-supervised clas-
sification learning can also be effectively fulfilled
by a supervised-classifier as long as both of the la-
beled and the unlabeled points of the same class
are contracted into a tighter space by MC.

Besides, our MC technique can be not only eas-
ily applied in original space and RKHS, but also
conveniently incorporated with the technique of di-
mension reduction. To the best of our knowledge,
there have not been any reports on MC technique
as a classification-oriented pre-processor. The rest
of paper is organized as follows: In Section 2, we
introduce MC in original space and RKHS above
all, then combine it with dimension reduction, and
an adaptive MC (AMC) criterion is developed to
control the level of MC in semi-supervised setting.
In Section 3, the classification generalization abil-
ity of MC is discussed. In Section 4, many ex-
perimental results both on artificial and real-world
datasets are provided to evaluate MC. Discussions
are presented in Section 5 and conclusions and fu-
ture works are offered in the last Section.

2 Manifold contraction
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In many real-world problems, data often include
multi-class manifold data. Focusing on the subse-
quent classification learning on such manifold data,
in this paper, we propose MC as a pre-processor to
achieve a better pattern representation in original
space directly. The main idea of MC is to contract
manifold data in its distribution direction so that
both the intra-class compactness and the inter-
class separability are enhanced. In order to help
understand our MC, the following Figs. 1∼2 show
a comparative overview between MC and some DR
methods.
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Fig. 1 The shapes of 2moons contracted by MC
with different levels.

Concretely, Fig. 1 (a) consists of an original
manifold data named 2moons and Figs. 1 (b, c,
d, e, f) show the corresponding contracted shapes
of 2moons by MC with different-levels (parame-
terized by α, interpreted later). Figs. 2 (a, b,
c, d) consist of the one dimension (1D) embed-
dings of the original data 2moons respectively per-
formed by PCA, SDA, DiffuMap and ISOMAP.
Clearly, we observe that the 1D-embeddings (ex-
cept ISOMAP) partially overlap each other despite
all of them make the intra-manifold points more
compact. Comparatively, our MC makes not only
either moon more compact, but also the margin
between the two moons larger. These intuitively
demonstrate that MC is likely superior to some DR
methods as a classification-oriented pre-processor

for the multi-class manifold data here.
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Fig. 2 The different 1D embeddings of the
original data 2moons performed by PCA, SDA,

DiffuMap and ISOMAP respectively.

Next, we will detail MC in original space firstly.

2.1 Manifold contraction in original space

Let I = {1, 2, · · · , n} be the indices of all given
samples and Ni be the index set of xi’s neighbors,
defined as follows:

Ni = {j | xj is a neighbor of xi, j ∈ I and j 6= i}
Let pij ∈ [0, 1] be the weight reflecting how close

xj is to xi. Then mi =
∑

j∈Ni
pijxj is a weighted

mean in Ni with
∑

j∈Ni
pij = 1.

In order to contract a given manifold, we force
each xi to move towards mi(t) in the direction
of mi(t) − xi, where mi(t) =

∑
j∈Ni

pijxj(t) is
mi’s state at time t. Now set the moving step at
α(0 6 α 6 1). For each xi, such a moving leads its
state at time t+1 to be in the form

xi(t + 1) = xi + α (mi(t)− xi) .

The above iteration equation implies that each
new point xi(t + 1) originating from xi will move
in the direction of mi(t)−xi in each iteration from
t to t +1. Further, we have

xi(t + 1) = (1− α)xi + α
∑

j∈Ni

pijxj(t) (1)

Let X = (x1, x2, · · · , xn)T and X(t) =
(x1(t), x2(t), · · · , xn(t))T , i.e., the i-th row consist-
ing of the i-th sample for each i ∈ I. Then we can
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reformulate eq. (1) as follows:
{

X(t + 1) = (1− α)X + αPX(t)

X(0) = X, t = 0, 1, · · · .
(2)

If we view P as a probability transition matrix,
then eq. (2) is similar to the random walk in ref.
[21] or the manifold ranking in ref. [33]. A key dif-
ference lies in the fact that both the random walk
and the manifold ranking propagate class labels by
P , but eq. (2) is to propagate samples by such a
P . With some simple calculations to eq. (2), we
have




X(t + 1) = [(αP )t+1 + (1− α)
t∑

i=0

(αP )i]X

X(0) = X, t = 0, 1, · · · .

(3)

The following Theorem 1 gives a convergence
proof of the iterative eq. (3).

Theorem 1: If 0 6 α < 1, then the iterative eq.
(3) is convergent.

Proof : Since pij is subject to 0 6 pij 6 1 and∑
j∈Ni

pij = 1, according to Gerschgorin disk The-
orem, ρ(P ) 6 1 (where ρ(P ) is the spectral ra-
dius of P ). Further from 0 6 α < 1, we have
ρ(αP ) = α(P ) < 1. This means that eq. (3) is
convergent and the proof is completed.

From the convergence of Theorem 1, we have

lim
t→∞

(αP )t+1 = 0, lim
t→∞

t∑
i=0

(αP )i = (I −αP )−1; thus

lim
t→∞

X(t + 1) = (1− α)(I − αP )−1X (4)

Letting S = (1 − α)(I − αP )−1 and X∗ =
lim
t→∞

X(t + 1), we can rewrite eq. (4) as

X∗ = SX (5)

As a consequence, eq. (5) induces a contraction
mapping T : X → X∗, which is parameterized by
α (hidden in S). We denote such a mapping by
X∗ = T (X, α) or X∗ = T (X) when α is just a con-
stant. Furthermore, we name T MC and dub X∗

contracted set or root shape of X. We also name S

shrinkage matrix and α shrinkage parameter. Now,
please review Figs. 1(b, c, d, e, f), which actually
include the corresponding root shapes generated by
different αs in parenthesis.

From eq. (1), we have lim
t→∞

xi(t + 1) = (1 −
α)xi+α lim

t→∞
∑

j∈Ni
pijxj(t). Let lim

t→∞
xi(t+1) = x∗i .

Then x∗i = xi for α = 0 and x∗i = lim
t→∞

mi(t) =∑
j∈Ni

pijx
∗
j for α = 1. For an individual xi, we

can describe T as T : xi → x∗i or x∗i = T (xi, α),
where x∗i is the contractive image of xi.

Let cov(X) be the convex closure of X, i.e.,
cov(X) = {x | x =

∑n

i=1 aixi, xi ∈ X} with
0 6 ai 6 1 and

∑n

i=1 ai = 1. Then we have the
following Theorem 2.

Theorem 2: cov(X∗) ⊆ cov(X)
Proof : According to 0 6 pij 6 1,

∑
j∈Ni

pij = 1
and mi(t) =

∑
j∈Ni

pijxj(t), we known mi(0) ∈
cov(X). If mi(t) ⊆ cov(X), from xi(t + 1) = (1 −
α)xi + αmi(t) and 0 6 α 6 1, we have xi(t + 1) ⊆
cov(X) and thus mi(t + 1) ⊆ cov(X). By mathe-
matical induction, we have lim

t→∞
mi(t+1) ⊆ cov(X).

This implies x∗i ⊆ cov(X) for ∀i ∈ I by eq. (1).
Hence, X∗ ⊆ cov(X) and so cov(X∗) ⊆ cov(X).
The proof is completed.

Theorem 2 confirms the contractive property of
the mapping T induced by eq. (5). To sum up,
our MC can map the original manifold data into
its root shape by a shrinkage matrix S, and this
process is directly performed in original space. The
main steps of implementing MC is outlined below:

Algorithm of MC in original space
Input:

X — original manifold data;
Ni — the indices of k-nearest neighbors for xi;
α — shrinkage parameter;
σ — band-width parameter.

Output:
X∗ — root shape of X.

1. Form a weighted adjacent matrix W = (wij)

where wij = exp{−‖xi − xj‖2
/

2δ2} for j ∈ Ni

and otherwise wij = 0;
2. Get P = D−1W as a normalization of W , where

D = diag(dii) with dii =
∑

j wij ;
3. Return X∗ = T (X, α) = SX after constructing

the shrinkage matrix S = (1− α)(I − αP )−1.

According to eqs. (4) and (5), we have T (X, 0) =
X and T (X, 1) = 0 (zero matrix), meaning that X

is un-contracted for α = 0 and will collapse to 0
for α = 1. Therefore, a naturally raised problem is
how to adaptively determine α, by which the root
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shape can be controlled properly. In order to re-
solve this problem, in subsection 2.4., we define an
adaptive MC (AMC) criterion for semi-supervised
classification setting, aiming to seek a locally opti-
mal α.

In the next subsection 2.2, we will extend MC to
RKHS.

2.2 Manifold contraction in RKHS

Recently, kernel trick has become a powerful tech-
nique for studying nonlinear data, and it implies
that a mapping φ(·) can be induced from a kernel
function, i.e., φ : x → φ(x).

Let φ(X) = [φ(x1), φ(x2), · · · , φ(xn)]T . Then
we can describe φ(X)’s root shape as φ∗(X) =
Sφ(X) by eq. (5). Thus, two gram matrices for
φ(X) and φ∗(X) can be respectively formulated
into K(X, X) = φ(X)φ(X)T and K∗(X, X) =
φ∗(X)φ∗(X)T . Moreover, we have

K∗(X, X) = Sφ(X)φ(X)T ST = SK(X, X)ST

Here, we call K∗(X, X) a shrinkage kernel of
K(X, X). Especially, the shrinkage kernel of the
linear kernel XXT is SXXT ST .

In the next subsection 2.3, we will combine MC
with the dimension reduction method.

2.3 Dimension reduction+manifold contraction

Our MC can be naturally and conveniently incor-
porated into another preprocessing techniques such
as dimensionality reduction (DR). In other words,
when a DR process is needed too, we can com-
bine MC with DR. Let each vi be a projective vec-
tor. Then V = (v1, v2, · · · , vd) becomes a projec-
tive matrix severed as DR. Based on both V and S

(shrinkage matrix), we can obtain a preprocessed
representation X∗ as follows:

X∗ = SXV

It is interesting that SXV can be regarded as
two-side preprocessing for X, i.e., left MC and
right DR. Further, ”DR+MC” can be interpreted
as either first MC then DR or first DR then MC.
In the experimental part, we will examine such
”DR+MC” scheme including ISOMAP+MC and
SDA+MC.

2.4 Adaptive MC in semi-supervised setting

We will define an optimizing criterion to adaptively
get a proper α. In order to show how MC depends
on α, in Fig. 3, we give an illustration of 2moons’
root shapes under some αs. In Fig. 3(a), the close
points are firstly connected in a 5-nearest neighbor
graph. To avoid ”isolated” component as in ref.
[13], we link all points in a global connected graph
after adding the partial shortest edges generated
by the minimum spanning tree algorithm.
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Fig. 3 The corresponding root shapes of 2moons
contracted with different αs.

In Fig. 3, we observe that a proper α is de-
sired. The reason is that a too small α means a very
weak contraction, which will lead to a larger ratio
of intra-class to inter-class scatters. At the same
time, a too big α is more likely to make the inter-
class points overlap each other as shown in Fig.
3(f). This is because the bad ”bridge points” con-
nect different classes, which will weaken the inter-
class separability [28].

When c classes’ manifold data X1, X2, · · · , Xc

are given, we can connect all Xi(i = 1, 2, · · · , c) in a
global connected graph. Thus after constructing a
S, we can obtain X∗ = SX = T (X, α), where X =
(X1, X2, · · · , Xc)T and X∗ = (X∗

1 , X∗
2 , · · · , X∗

c )T .
In order to obtain a desired α, we can define a cri-
terion to minimize the ratio of intra-class to inter-
class scatters in semi-supervised setting.

Concretely, let x∗i = T (xi, α) and ‖·‖H be the
inner-product norm of the RKHS with respect to
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K∗. Then we have∥∥x∗i − x∗j
∥∥2

H
= K∗(xi, xi)+K∗(xj, xj)−2K∗(xi, xj)

Let ei = (0
1
, · · · , 0

i−1
, 1

i
, 0

i+1
, · · · , 0

n
) a row selection

vector and eij = ei − ej, we have

K∗(xi, xj) = eiK
∗(X, X)eT

j = eiSK(X, X)ST eT
j∥∥x∗i − x∗j

∥∥2

H
= eijSK(X, X)ST eT

ij

Thus, we can define an intra-class scatter Sw and
an inter-class scatter Sb as

Sw = 1
l2

∑l

i,j=1 LijeijSK(X, X)ST eT
ij

Sb = 1
l2

∑l

i,j=1 (1− Lij)eijSK(X, X)ST eT
ij

where I = {1, · · · , l, l + 1, · · · , l + u}, l + u = n.
l and u are respectively equal to the numbers of
labeled and unlabeled samples. Meanwhile, Lij is
defined below:

Lij =

{
1 if label(xi) = label(xj) and 1 6 i, j 6 l

0 otherwise

It is worthy noting that, as an alteration simi-
lar to marginal Fisher analysis in ref. [30], for each
class, we can only choose k1 longest labeled-pairs of
in-class samples to define Sw, and choose k2 nearest
labeled-pairs of in-class and out-class samples to
define Sb. Next, with both labeled and unlabeled
samples, we can define a locally data-dependent
regularizer Sr as follows:

Sr = 1
k(l+u)

∑l+u

i=1

∑
j∈Ni

eijSK(X, X)ST eT
ij

Here, k is a parameter of the nearest neighbor
number and Ni is the indices of k-nearest neigh-
bors of xi presented in subsection 2.1. Based on
Sw, Sb and Sr, we define AMC as

α∗ = arg min
α∈[0,1)

Sw + λSr

Sb

(6)

In eq. (6), Sw and Sb respectively measure the
intra-class and the inter-class scatters averaged on
only labeled samples, while Sr reflects a local-
neighborhood scatter averaged on both labeled and
unlabeled samples. Meanwhile, λ(> 0) balances
the trade-off between Sw and Sr.

It is relatively easy to optimize eq. (6) in that
α is just a scalar. We can get a locally-optimal α

by one dimension search method and the search in-
terval can be empirically restricted to (a, b) (where
0 6 a 6 b < 1).

3 Analysis of generalization ability for
MC

If a proper α is obtained by optimizing AMC in
eq. (6), we can obtain a good root shape X∗ as
a new representation of X. Nevertheless, thanks
to our focus on classification performance more,
a naturally arising problem is: whether we can
achieve better generalization ability in X∗ than in
X? What it follows, we attempt to answer this
problem in theory.

Giving a set of original manifold data X =
X1 ∪ X2 ∪ · · · ∪ Xc (where Xi ∩ Xj = ∅ if i 6= j),
we denote its corresponding root shape as X∗ =
T (X) = X∗

1 ∪X∗
2 ∪ · · · ∪X∗

c . Based on the defini-
tion of the convex closure in subsection 2.1, we can
define the radius of X as:

r(X) = 1
2

max
x,x′∈cov(X)

‖x− x′‖ (7)

Meanwhile, a pair-wise margin between Xi and
Xj (i 6= j) can be defined as ∆(Xi, Xj) =

min
x∈cov(Xi)
x′∈cov(Xj)

‖x− x′‖. Thus, from such a pair-wise

margin, a global margin of X can be defined as

∆(X) = min
Xi,Xj∈X(i 6=j)

∆(Xi, Xj) (8)

Now, we have the following Theorem 3.
Theorem 3: If X∗ = T (X) and X∗

i = T (Xi) for
i ∈ {1, · · · , c}, then r(X∗) 6 r(X) and ∆(X∗) >
∆(X).

Proof : Since X∗
i = T (Xi) and X∗

j = T (Xj) for
∀Xi, Xj ∈ X(i 6= j), according to Theorem 2, we
have cov(X∗

i ) ⊆ cov(Xi), cov(X∗
j ) ⊆ cov(Xj) and

X∗ ⊆ cov(X). Thus, we can easily get the follow-
ing two inequalities:

max
x,x′∈cov(X∗)

‖x− x′‖ 6 max
x,x′∈cov(X)

‖x− x′‖
min

x∈cov(X∗
i
)

x′∈cov(X∗
j
)

‖x− x′‖ > min
x∈cov(Xi)
x′∈cov(Xj)

‖x− x′‖

Further from eqs. (7) and (8), we obtain r(X∗) 6
r(X) and ∆(X∗) > ∆(X). The proof is completed.

Since the hard-margin of classification hyper-
plane is equivalent to the nearest distance of
between-class points as in eq. (8) [15], the follow-
ing Theorem bridges the classification generaliza-
tion ability to the ratio of r to ∆.
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Theorem 4 [26]: If hyper-sphere with radius r

encompasses the given data, then the VC dimen-
sionality h of classification hyper-plane set satisfies
h 6 min (d(r/∆)2e, d) + 1, where d is the dimen-
sionality of the given data.

Remark: According to Theorems 3 and 4, we
can make a comparison between the VC dimension-
alities of X and X∗ with respect to the same hyper-
plane hypothesis set. Firstly, by r∗ = r(X∗) 6
r(X) = r and ∆∗ = ∆(X∗) > ∆(X) = ∆
from Theorem 3, we obtain r∗/∆∗ 6 r/∆. Next,
we have h∗ 6 min (d(r∗/∆∗)2e, d) + 1 and h 6
min (d(r/∆)2e, d) + 1 according to Theorem 4. Al-
though ”h∗ 6 h” is not strictly proved in general,
it seems to follow ”h∗ 6 h” from ”r∗/∆∗ 6 r/∆”
intuitively. In addition, from the conclusion that
”the smaller VC dimension, the better generaliza-
tion ability” in ref. [26], the classification gener-
alization ability of X∗ is likely to be better than
that of X. Thus, we basically answer the previ-
ous problem positively. Below we will verify such
a prediction by experiments.

4 Experiments

As a pre-processing technique, our MC can be ex-
tensively applied in classification, clustering, met-
ric learning, etc.. In experiments, we mainly limit
MC in the semi-supervised classification, in which
many traditional supervised classifiers work unsat-
isfactorily due to the scarcity of labeled samples.
Our motivation mainly lies in the fact that, when
both the labeled and unlabeled points in the same
class are contracted into a tighter space by MC, a
semi-supervised classification can be effectively ful-
filled by using only a supervised classifier trained
on labeled samples. Hence, the classification proce-
dure here consists of two steps: 1) capture the root
shape as a new pattern representation by MC; 2)
implement a supervised classification algorithm on
such a new pattern representation, meaning that
its training and predicting are performed on the
labeled and unlabeled points of the obtained root
shape, respectively.

4.1 Experiment setting

In MC algorithm, we use k-nearest neighbors to
construct Ni for each i ∈ I, and k is set at 5 as
in ref. [3] throughout our experiments. The band-
width parameter σ is specified as the average Eu-
clid distance of all pair-wise samples as in ref. [23].
For AMC, we combine the golden section search
with the parabolic interpolation method to opti-
mize α and restrict α ∈ [0.9, 1) empirically. The
trade-off factor λ in (6) is fixed at 0 for simplicity.
In addition, in order to avoid ”isolated” compo-
nents, we always link all data points in a global con-
nected graph whose partial shortest edges are gen-
erated by the minimum spanning tree algorithm.

Our experiment involves 5 artificial datasets and
5 real-world datasets, whose basic characteristics
are described in Table 1, where, the datasets
marked as ”SSL” come from the benchmarks of the
book ”Semi-Supervised Learning” [3], while those
of ”COIL” and ”UCI” come from Columbia image
library and UCI machine learning repository re-
spectively. We denote by ”O” the original data and
use the notations of ”ISO” and ”SDA” to respec-
tively denote the pre-processed data by ISOMAP
and SDA algorithms. The ”O+MC”, ”ISO+MC”
and ”SDA+MC” correspond to the pre-processed
data by MC, ISOMAP+MC and SDA+MC, which
have been detailed in subsection 2.3. Additionally,
the Gaussian kernel and its shrinkage kernel are
always used to test the kernelized MC. In order
to check how different the inter-class separabilities
are between using and not using MC, and to mea-
sure a datum D, we define its ratio of intra-class
to inter-class scatters (the smaller ratio, the better
separability) as follows:

Ratio(D) =
average

label(x)=label(x′)
‖x− x′‖

average
label(x) 6=label(x′)

‖x− x′‖

Owing to its independence on a specific classifier,
MC is evaluated by the classification accuracies
of 8 classifiers: nearest neighbor (NN), nonlinear-
kernel nearest neighbor (KNN), linear-kernel SVM
(LSVM), nonlinear-kernel SVM (KSVM), Lapla-
cian SVM (LapSVM), J48 decision tree (J48),
näıve Bayes (NB) and radial base function network
(RBFNet).
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Table 1 Characteristic descriptions of the 10 datasets

dataset # of classes # of dimensions # of instances comment source

3-Lines 3 2 363 artificial

3-Spirals(2D) 3 2 603 artificial

3-Spirals(3D) 3 3 378 artificial

24-Ducks 1 1024 24 artificial COIL

24-Arrows 1 1024 24 artificial COIL

Digit-1 2 241 1500(2×750) real-world SSL

COIL2 2 241 1500(734+766) real-world SSL

USPS 3 256 900(3×100) real-world UCI

Control 3 60 300(3×100) real-world UCI

Corel 3 89 300(3×100) real-world UCI

In the next subsection, we will firstly give some il-
lustrations and tests on artificial data.

4.2 Illustrations and tests on artificial data

To help understand the behaviors of MC further, Fig. 4
shows three root shapes of artificial data 3-Spirals(3D),
3-Spirals(2D) and 3-Lines. Specifically, the top and bot-
tom rows consist of the original data and their root
shapes respectively, where, the corresponding shrinkage
parameters α are given in parenthesis. From Fig. 4,
we can clearly observe that the intra-manifold points
become more compact and the inter-manifold margins
become a bit larger.

−0.50
0.5

−0.5
0

0.5

0.5

1

a1(3−Spirals(3D)

−1
0

1

−1
0

1
0

0.2

0.4

b1(α=0.99999)

−5 0 5

−5

0

5

a2(3−Spirals(2D))

−2 0 2
−2

−1

0

1

2
b2(α=0.9999)

0 20 40 60
0

20

40

60

a3(3−Lines(2D)

0 20 40 60
0

20

40

60

b3(α=0.9999)

Fig. 4 Top row: 3-Spirals(3D), 3-Spirals(2D) and
3-Lines; Bottom row: the corresponding root shapes.

Another visual example is shown in Fig. 5, whose
upside and underside subfigures respectively correspond

to 24-Ducks and 24-Arrows after MC. In the respective
first row of two subfigures, the original images of both
Ducks and Arrows are sampled from the rotated man-
ifold. Next from the top down, each row respectively
shows the images of the corresponding root shapes with
α orderly taken as 0.7 → 0.8 → 0.9 → 0.95 → 0.99.
We can observe that the images of Duck and Arrow are
gradually congregated, and they collapse to two fixed-
points in the respective bottommost row. This indicates
that MC can squeeze the close patterns into a small
space, and thus to generate a more compact pattern
representation in original space.

Fig. 5 The contracted images of 24-Ducks (upside
subpart) and 24-Arrows (underside subpart) with

α = 0 → 0.7 → 0.8 → 0.9 → 0.95 → 0.99 from the top
down orderly

Now, we begin to compare the classification accura-
cies between without and with MC on 3-Spirals(3D).
In Fig. 6, we draw three plots against the number
of labeled samples for each class increasing from 2 to
20. Where, ISO(1D) and SDA(1D) are the 1-dimension
embeddings of the original 3-Spirals(3D) yielded by
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ISOMAP and SDA respectively. More specifically,
the left plot shows 6 accuracies of the NN classifier
on O, O+MC, ISO(1D), ISO(1D)+MC, SDA(1D) and
SDA(1D)+MC respectively, and each of them is aver-
aged over 10 trials; the middle plot shows 6 ratio mea-
sures for the 6 corresponding data; the right plot shows
three α values optimized by AMC criterion in O+MC,
ISO(1D)+MC and SDA(1D)+MC respectively. From

Fig. 6, we can observe that: 1) the accuracies with
MC outperform those without MC correspondingly; 2)
the ratios on MC-ed data achieve a more significant
degradation than those before MC; 3) three α values
gradually approach to 1 (but unequal to 1) as the num-
ber of labeled samples increases, implying that, for an
ideal manifold data here, the MC encourages a strong
contraction if more labeled samples are provided.

Fig. 6 Three plots against the number of labeled samples increasing from 2 to 20 for 3-Spirals(3D). (left ) six
accuracies(%) of NN classifier; (middle) six ratio-measures of intra-class vs. inter-class scatters, (right) three α

values optimized by adaptive MC criterion.

Table 2 Comparative ratios and accuracies (%) of without vs. with MC on 3-Spirals(3D)
Labeled # = 5% Labeled # = 10%

Data O O+MC∗ ISO ISO+MC∗ SDA SDA+MC∗ O O+MC∗ ISO ISO+MC∗ SDA SDA+MC∗

Ratio 97.00 71.23 15.57 1.60 91.03 62.18 97.00 71.21 15.57 1.43 89.51 57.12

NN∗ 63.42 86.69 81.76 95.85 42.69 68.43 78.29 92.95 82.92 94.25 61.39 76.76

KNN∗ 63.42 78.96 81.76 100.00 42.69 48.82 78.29 87.94 82.92 100.00 61.39 78.58

LSVM∗ 34.12 59.97 80.92 84.90 32.97 51.18 37.73 60.71 82.39 84.99 36.11 51.80

KSVM∗ 35.88 56.47 80.39 100.00 33.61 39.16 37.82 56.76 81.50 100.00 37.35 61.45

J48∗ 40.14 71.01 79.75 87.28 39.27 59.78 48.97 80.00 83.16 89.14 47.91 64.48

NB∗ 32.80 61.96 81.68 95.69 33.59 53.14 31.92 62.36 83.54 95.84 37.46 57.32

RBFNet∗ 32.41 59.97 80.78 86.86 33.03 50.53 32.09 58.44 80.32 88.05 33.89 50.24

LapSVM∗ 92.77 95.52 82.91 100.00 48.80 57.62 97.05 98.44 84.54 100.00 62.15 79.20

For comparison of the classification accuracies of
all 8 classifier on O, O+MC, ISO(1D), ISO(1D)+MC,
SDA(1D) and SDA(1D)+MC of 3-Spirals(3D), we ran-
domly label 5% and 10% samples respectively and thus
get the optimized αs by AMC. As a specific sign, we
mark a classifier ”C” as ”C∗” (e.g. NN∗) if all accu-
racies with MC consistently exceed those without MC
in C’s row, and we mark a datum ”D” as ”D+MC∗”
(e.g. ISO+MC∗) if all accuracies in D+MC’s column
consistently exceed those in D’s column.

Having been averaged over 10 trials, the classifica-
tion accuracies are tabulated in Table 2. Comparing
”with MC” with ”without MC” in Table 2, we observe
that: 1) although different classifiers get different gains,
the accuracies of all 8 classifiers are overall improved on
the MC-ed data no matter whether labeled # = 5% or
10%; 2) all the ratios significantly decrease after MC,
and an evident correspondence is ”the smaller the ratio,
the higher the accuracy”.

HU EnLiang et al. Sci China Ser F-Inf Sci | ” ” | vol. ” ” | no. ” ” | ” ” 9



Fig. 7 A comparative overview (without vs. with MC) of the average mean and variance of accuracies, both of
which are averaged over the labeled sample number increasing from 2 to 50 with increment 1.

In order to investigate the stability and consistency
of MC, we compare the classifiers’ means and variances
of accuracies between with and without MC. Both of
them are averaged over the labeled-sample number in-
creasing from 2 to 50 with increment 1. In Fig. 7, we
show the means and variances of six classifiers by 6-
group histograms. We observe that all means after MC
outperform those before MC and the MC-ed variances
are less than those before MC except KSVM’s and NB’s
groups.

As a summary, MC works well on the artificial data
here, suggesting that this datum fits our assumption:
its intra-class points nearly reside on a manifold while
its inter-class points distribute on different manifolds.
Below, we will test MC in noisy settings.

4.3 Examination of robust performance of MC

In order to carry out a robust analysis of our
adaptive MC (AMC), we add different-level Gaussian
noises with different bandwidths to artificial data 3-
Spirals(3D). We randomly label 5% samples and leave
the rest as unlabeled samples in our robust exami-
nation. The experimental results are respectively de-
picted in Figs. 8∼10. In Fig. 8, we add different-level
noises with bandwidth 0.003, 0.006 and 0.03 orderly to
3-Spirals(3D) in the top row. After AMC, the corre-
sponding root shapes are displayed in the bottom row,
in which it shows a locally and globally consistent con-
traction, a local accumulation or contraction and almost
no contraction respectively for the noise levels in 0.003,
0.006 and 0.03. Moreover, In Fig. 9, we can observe
that the shrinkage parameter α drops as noise grows.

Fig. 8 Top row: the noisy 3-Spirals(3D)s with noise
bandwidth 0.003, 0.006 and 0.03 in order. Bottom
row: the corresponding root shapes of the noisy

3-Spirals(3D)s.

As a summary, Figs. 8∼9 partially demonstrate
that AMC can adapt to different noise settings in some
degree and hence shows a robust behavior. For test-
ing classification accuracy in different noise levels, we
run NN classifier respectively on O and O+MC for 3-
Spirals(3D). After 20 trials, we display the comparative
classification accuracy in Fig. 10. It can be observed
that the accuracies with MC outperform those without
MC in the noise-free and low-level noisy cases. But as
noises are added more and more, two accuracies gradu-
ally drop and become closer (even overlapping) to each
other in the high-level noises. This result indicates that
1) our adaptive MC is relatively insensitive to noise; 2)
MC can well perform its function under the noise-free
or low-level noisy circumstances.
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Fig. 9 Different αs adaptively determined by AMC
on the noisy 3-Spirals(3D).
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Fig. 10 The comparative classification accuracies of
NN classifier respectively on O and O+MC for the

noisy 3-Spirals(3D).

As a practical application, we will further verify
MC’s effectiveness on real-world datasets in next sub-
section.

4.4 Experiments on the real-world datasets

We take 5 real-world datasets Digit-1, COIL2, USPS,
Control and Corel as our testing benchmark, whose ci-
tations can be found in refs. [3][7][18][34]. Concretely,
Digit-1 is started from handwritings of digit ’1’, but
they are perturbed through five freedoms: two for trans-
lation, one for rotation, one for line thickness, and one
for the length of a small line added at bottom. The class
labels of Digit-1 are set according to the tilt angle with
the boundary to an upright digit; COIL2 is originally
from the Columbia object image library, and it is also
perturbed including 1) down-sampling the red channel
of each image to 16×16 pixels by averaging over blocks

of 88 pixels, and randomly selecting and permuting 241
columns; 2) adding each column a random bias drawing
from N(0, 1); 3) multiplying each column by a value
from uniform [−1,−0.5] ∪ [0.5, 1]; 4) adding an inde-
pendent noise from N(0, 2I) to each row. Additionally,
the 24 objects of COIL2 are partitioned into six groups,
i.e., four objects each. As a binary classification prob-
lem, each new class contains three groups; USPS in-
cludes 10-class handwriting digits 0 ∼ 9, we just choose
digits ”2”, ”3”, ”5” classes. After randomly sampling
300 points from each class, 900 samples in total as a
dataset are used here; Control contains 6 classes and
each class consists of 100 samples, from which we se-
lect three classes (the second, third and sixth) in our
experiment; Corel is often applied in image retrieval or
image classification. Here, we choose 3 classes from it
after randomly sampling 100 instances from each class.

When testing MC on ISO and SDA, we have
to firstly estimate the intrinsic dimensionality for
ISOMAP and SDA algorithm. We select three intrinsic
dimensionality estimators maximum likelihood estima-
tor, eigenvalue-based estimator and geodesic minimum
spanning tree estimator [24][17][12] here, and the final
intrinsic dimensionality is evaluated as the rounding of
the average value of these three estimators. In this way,
the calculated intrinsic-dimensionalities are respectively
20 for Digit-1, 24 for COIL2, 11 for USPS, 10 for Con-
trol and 8 for Corel.

In order to assess the classification accuracy, we par-
tition a datum into the labeled and unlabeled samples
for training and predicting respectively. For Digit-1 and
COIL2, we follow those in ref. [3], where two their par-
titions correspond to the labeled samples number = 10
and 100 respectively and each partition contains 12 ran-
dom realizations. For USPS, Control and Corel, we also
give two partitions of the labeled sample number = 5%
and 10%, and 12 realizations are randomly generated for
each partition. Thus, each following classification accu-
racy is averaged over such 12 realizations correspond-
ingly. For these five data, we tabulate their experimen-
tal results in the following Tables 3∼7 orderly.
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Table 3 Comparative ratios and accuracies (%) of without vs. with MC on Digit-1

Labeled # = 10 Labeled # = 100

Data O O+MC ISO ISO+MC SDA SDA+MC O O+MC ISO ISO+MC SDA SDA+MC∗

Ratio 93.29 57.96 82.23 50.43 59.48 46.47 93.29 57.96 81.80 50.39 45.54 27.35

NN∗ 76.53 91.72 81.49 93.37 73.15 80.84 93.88 97.30 94.51 97.32 85.57 94.52

KNN∗ 87.87 93.17 81.49 92.97 73.15 81.23 96.07 97.37 94.51 97.33 85.57 94.33

LSVM 77.02 60.67 82.79 60.15 73.14 69.57 92.04 50.11 95.29 50.11 85.58 94.54

KSVM 82.22 60.53 69.08 60.23 73.15 82.46 97.60 50.11 94.27 50.11 85.57 94.38

J48∗ 55.83 84.85 77.48 83.97 50.70 58.80 78.40 95.89 90.95 94.73 64.83 92.89

NB∗ 68.55 89.83 65.40 80.42 50.87 79.69 94.18 97.20 88.70 96.22 55.40 94.71

RBFNet∗ 61.26 86.01 67.51 87.49 73.14 81.83 75.13 94.95 79.02 94.29 85.57 94.74

LapSVM 94.28 59.26 90.56 95.60 76.22 84.17 97.71 58.40 97.23 96.58 85.22 94.45

Table 4 Comparative ratios and accuracies (%) of without vs. with MC on COIL2

Labeled # = 10 Labeled # = 100

Data O O+MC ISO ISO+MC SDA SDA+MC∗ O O+MC ISO ISO+MC SDA SDA+MC∗

Ratio 95.57 90.55 95.96 86.28 80.47 77.76 95.57 86.94 96.51 81.36 55.91 42.42

NN∗ 56.97 60.37 58.54 60.89 56.80 58.32 88.10 94.34 87.16 94.79 79.97 84.73

KNN 64.16 63.40 58.54 61.63 56.80 58.05 95.08 95.73 87.16 94.91 79.97 85.44

LSVM∗ 56.29 60.55 58.01 62.81 56.81 58.32 80.78 92.35 67.81 80.81 79.97 85.12

KSVM 62.44 62.53 51.39 51.18 56.81 57.67 95.97 90.66 61.23 54.18 79.97 85.16

J48∗ 52.34 60.16 56.30 58.03 50.85 55.86 70.17 87.96 76.87 86.75 62.84 84.84

NB 54.63 58.04 57.13 60.15 50.41 56.81 62.65 62.62 64.85 60.66 55.25 85.22

RBFNet∗ 50.55 51.09 50.03 50.41 56.79 57.32 54.28 55.90 50.99 53.93 79.99 85.08

LapSVM 63.20 64.34 59.78 61.40 57.13 58.35 95.97 95.04 81.84 79.83 79.24 84.99

Table 5 Comparative ratios and accuracies (%) of without vs. with MC on USPS

Labeled # = 5% Labeled # = 10%

Data O O+MC ISO ISO+MC SDA SDA+MC∗ O O+MC ISO ISO+MC SDA SDA+MC∗

Ratio 87.71 50.71 64.39 43.84 46.23 26.41 87.71 50.71 64.39 43.84 43.09 23.86

NN∗ 83.93 92.64 85.81 92.20 87.37 93.13 88.21 93.32 89.48 93.14 88.47 93.31

KNN∗ 83.93 92.58 85.81 92.33 87.37 93.11 88.21 93.38 89.48 93.06 88.47 93.73

LSVM∗ 86.91 92.77 84.90 93.60 87.37 93.30 89.79 93.67 87.59 94.32 88.47 93.40

KSVM 84.96 83.65 88.01 83.56 87.39 93.15 89.32 82.86 90.65 83.83 88.47 94.10

J48∗ 74.26 89.81 75.12 83.04 50.08 86.51 76.58 91.78 83.04 88.60 52.05 90.89

NB∗ 74.77 91.38 79.93 87.75 38.22 92.60 77.74 92.36 85.26 91.44 43.40 93.46

RBFNet∗ 63.96 84.67 57.15 83.74 87.43 92.95 68.70 85.74 56.96 84.83 88.41 93.77

LapSVM 75.92 86.02 89.82 84.61 86.42 93.06 80.19 86.85 92.95 85.38 87.70 94.33
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Table 6 Comparative ratios and accuracies (%) of without vs. with MC on Control

Labeled # = 5% Labeled # = 10%

Data O O+MC∗ ISO ISO+MC SDA SDA+MC∗ O O+MC∗ ISO ISO+MC SDA SDA+MC∗

Ratio 35.87 2.42 13.77 1.92 20.96 5.89 35.87 2.42 13.77 1.92 23.07 5.84

NN 96.81 100.00 100.00 100.00 96.35 99.12 98.44 100.00 100.00 100.00 97.78 99.63

KNN 96.81 100.00 100.00 100.00 96.35 99.72 98.44 100.00 100.00 100.00 97.78 99.63

LSVM 98.84 100.00 100.00 100.00 96.35 99.12 99.74 100.00 100.00 100.00 97.78 99.63

KSVM 99.47 100.00 98.32 95.26 96.35 99.09 99.96 100.00 99.96 95.07 97.78 99.59

J48 71.82 92.32 91.72 84.98 58.77 80.60 83.78 94.74 94.59 92.89 62.22 88.41

NB∗ 94.63 99.54 95.09 99.37 38.25 100.00 99.41 99.93 97.93 99.89 41.85 100.00

RBFNet∗ 97.09 100.00 93.44 98.53 96.32 98.32 99.74 100.00 93.96 98.22 97.81 99.59

LapSVM∗ 99.51 100.00 99.93 100.00 98.60 100.00 99.56 100.00 99.93 100.00 98.37 99.63

Table 7 Comparative ratios and accuracies (%) of without vs. with MC on Corel

Labeled # = 5% Labeled # = 10%

Data O O+MC∗ ISO ISO+MC∗ SDA SDA+MC∗ O O+MC ISO ISO+MC SDA SDA+MC

Ratio 71.82 18.01 57.34 16.86 29.28 18.16 71.82 18.01 57.34 16.86 31.10 18.95

NN 86.00 88.56 86.53 88.35 90.25 90.60 89.56 88.44 88.44 88.00 92.37 92.37

KNN 86.00 88.70 86.53 88.77 90.25 90.70 89.56 88.74 88.44 88.44 92.37 92.67

LSVM∗ 88.46 91.37 85.93 90.70 90.21 93.26 92.07 92.59 88.07 90.44 92.37 94.52

KSVM∗ 89.47 92.21 90.04 91.23 90.21 93.44 91.74 92.70 91.11 92.30 92.37 94.85

J48 69.75 78.67 79.68 81.09 57.51 80.28 79.33 86.33 85.63 84.00 60.70 88.89

NB∗ 75.72 87.51 76.98 85.96 39.33 88.88 85.30 91.33 85.19 90.30 45.48 93.63

RBFNet∗ 83.93 89.44 83.93 90.70 90.14 93.54 88.19 93.26 89.70 93.00 92.30 94.81

LapSVM∗ 79.54 91.23 88.25 91.44 88.53 93.12 79.81 91.96 90.15 92.00 92.15 94.30

From the results in Tables 3∼7, we can make several
observations and conclusions as follows:

1) In most cases, the accuracies of ”with MC” out-
perform those of ”without MC” in terms of two views.
One is that most classifiers get higher accuracies after
MC. E.g., those classifiers marked by ”*” are consis-
tently improved on the MC-ed data whichever settings
for the labeled sample number; the other is that the
accuracies of O, ISO and SDA are mostly improved af-
ter MC no matter whichever classifier is used. E.g., the
MC-ed data marked by ”*” result in higher accuracies
than those without MC.

2) The ratios of O, ISO and SDA get a signifi-
cant drop after optimizing the AMC, i.e., ratio(O+MC)
< ratio(O), ratio(ISO+MC) < ratio(ISO) and ra-
tio(SDA+MC) < ratio(SDA). It indeed accords with
the saying that ”the lower ratio, the higher accuracy”
for most classifiers used here.

3) Many accuracies of ISO and SDA are smaller
than those of O. By contrast, most accuracies of O+MC
are consistently higher than those of ISO and SDA for
most classifiers, manifesting that MC is often superior
to ISOMAP and SDA. Furthermore, after being com-
bined with MC, ISOMAP and SDA are actually im-
proved further.

4) After MC, the most accuracies of the supervised
classifiers are upgraded clearly and become compara-
ble to the accuracies of the semi-supervised classifier
LapSVM. This partially confirms our conclusion that
”as long as all the labeled and unlabeled points in the
same class are contracted to a tighter space by MC,
then a semi-supervised classification task can be effec-
tively fulfilled by a supervised-classifier”.

However, some of the classifiers here also occasion-
ally undergo degradation after MC, as shown in Tables
3∼7, specifically in: 1) LSVM, KSVM and LapSVM on
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Digit-1 for both labeled # = 10 and 100; 2) KNN and
KSVM on COIL2 for labeled # = 10, and KSVM, NB
and LapSVM on COIL2 for labeled # = 100; 3) KSVM
on USPS for labeled # = 5% and 10%, LapSVM on
USPS for labeled # = 5%; 4) KSVM and J48 on Control
for both labeled # = 5% and 10%; 5) NN, KNN and J48
on Corel for labeled # = 10%. Such degradations may
be mainly due to four aspects: first, compared with arti-
ficial data, the real-world datasets often suffer from the
under-sampling [4][27] such that the contracting path
will be misguided since MC contracts a manifold data
in its distribution direction; secondly, if outliers are also
contracted into a smaller space together with the clean
samples, then it will be more difficult to separate them
again than before MC; thirdly, SVM seems more sensi-
tive to outlier than RBFNet and NB, etc. in that it is
more likely to tend to fail if outliers act on its support
vectors; finally, a good root shape also involves a proper
nearest neighbor parameter—k, and an improper k will
naturally lead to a bad root shape unfavorable for the
sequent classification.

We also have to point out that almost all graph-
based learning methods are often confronted with some
common problems besides how to determine the neigh-
bor number k, e.g., how to repair under-sampling den-
sity and how to eliminate outliers, etc.. MC inherits
such problems due to its dependence on an adjacent
graph. It can be foreseen that MC and many other
graph-based algorithms such as label propagation can
hardly work effectively if the between-class points are
seriously overlapping each other. If these common prob-
lems can be solved with the invention of some new tech-
niques in future, then our MC can also benefit from such
advances.

5 Discussions

In recent years, semi-supervised learning including
semi-supervised classification, semi-supervised cluster-
ing, semi-supervised dimensionality reduction, etc. has
received a great amount of attention. For a dataset
bearing a manifold structure, some specific semi-
supervised classification methods have been developed,
typically including manifold-regularization [2], Markov

random walk [21], manifold ranking [33][7], label prop-
agation [37], etc.. Usually, Markov random walk is used
to model the process of spreading the label information
through a stochastic matrix [21]. The key point of mani-
fold ranking is suggesting ”vector-ranking” in Euclidean
space in analogy to ”page-ranking” [33] and the final
ranking-list of all labeled and unlabeled samples can be
evolved from an initial incomplete ranking. Label prop-
agation [37] originates from the boundary-value theory
of harmonic function, i.e., a harmonic function can be
uniquely determined by its boundary values. Based on
the assumption that all class labels are generated by a
harmonic function, the labels of unlabeled samples can
be derived from a few known labels (as boundary value).

The proposed MC is partly inspired by Markov ran-
dom walk, manifold ranking and label propagation, but
it differs from these three methods in the following sev-
eral aspects: 1) MC aims to spread the samples by a
transition matrix, but these three methods all focus on
spreading class label by such a matrix; 2) MC can be
conveniently kernelized as demonstrated in section 2.2,
but these three methods do not associate with kernel
trick naturally enough; 3) MC as a pre-processor mainly
concerns how to better the data’s distribution to ben-
efit the subsequent learning, so it can incorporate with
many off-the-shelf classifiers more generally like those in
our experiments, but any of these three methods only
corresponds to a specific classifier; 4) MC can be im-
plemented even in an unsupervised way (only need a
fixed α), but these three methods will surely fail when
no initial class labels (or rank values) are given. The
above analyses indicate that MC is quite different from
Markov random walk, label propagation and manifold
ranking.

Another enlightened point of MC originates from
the ”general function” defined in ref. [34], and the in-
tention in general function is to improve the generaliza-
tion ability of semi-supervised learning. The operation
of general function is to replace each original sample-
point with the mean point within its k-nearest neigh-
bors. Thereby, such a general function can be specifi-
cally viewed as the first iteration of eq. (1) in subsection
2.1.
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6 Conclusions and future woks

In this paper, we propose a new data pre-processor
named MC. When just a few labeled samples available,
we define an adaptive criterion to optimize the shrinkage
parameter for controlling the level of MC. Our staring
point lies in the fact that a supervised classifier can ef-
fectively fulfill a semi-supervised classification task after
reducing the data complexity by MC. The superiorities
of MC can be roughly summarized as follows:

First, MC can directly work in the original space,
so we can avoid the crux of intrinsic-dimensionality es-
timation as in DR methods; Second, after MC, the ra-
tio of intra-manifold to inter-manifold scatters can be
reduced, thus benefiting the subsequent classification
learning. Third, MC can contract the labeled and unla-
beled points in the same class to a tighter space, which
makes some existing supervised classifiers still work well
in semi-supervised classification setting. Finally, MC
can also be conveniently combined with DR methods
such as ISOMAP and SDA, and the classification per-
formance on the preprocessed data by DR+MC can be
further improved.

Likewise, MC can also be applied in clustering and
metric learning, etc., which will be the topic of our next
research. In addition, we will also further develop a
more powerful MC technique with out-of-sample pre-
dicting ability and good scalability to large-scale data.
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