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Abstract: Traditional pattern recognition involves two tasks: clustering learning and classification learning. 

Clustering result can enhance the generalization ability of classification learning, while the class 

information can improve the accuracy of clustering learning. Hence, both learning methods can 

complement each other. To fuse the advantages of both learning methods together, many existing 

algorithms have been developed in a sequential fusing way by first optimizing the clustering criterion and 

then the classification criterion associated with the obtained clustering results. However, such kind of 

algorithms naturally fails to achieve the simultaneous optimality for two criteria, and thus have to sacrifice 

either the clustering performance or the classification performance. To overcome that problem, in this 

paper, we present a multi-objective simultaneous learning framework (named MSCC) for both clustering 

and classification learning. MSCC utilizes multiple objective functions to formulate the clustering and 

classification problems, respectively, and more importantly it employs the Bayesian theory to make these 

functions all only dependent on a set of the same parameters, i.e., clustering centers which play a role of 

the bridge connecting the clustering and classification learning. By simultaneously optimizing the 

clustering centers embedded in these functions, not only the effective clustering performance but also the 

promising classification performance can be simultaneously attained. Furthermore, from the multiple 

Pareto-optimality solutions obtained in MSCC, we can get an interesting observation that there is 

complementarity to great extent between clustering and classification learning processes. Empirical results 

on both synthetic and real data sets demonstrate the effectiveness and potential of MSCC. 
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1. Introduction 

Traditional pattern recognition involves two tasks [1]: clustering learning and classification learning. In 

the case of clustering learning, the problem is to group the given samples into meaningful clusters based on 

similarity [2]. The formed clusters are appropriate for the exploration of the underlying structure in data 

and the better understanding for the nature of the data. In the case of classification learning, the problem is 

to construct the discriminant function for distinguishing the samples with different class labels [3]. The 

discriminant function can provide class labels for the newly encountered samples.  

It has been proven that the clustering results or structures in data can help enhance the generalization 

ability of classification learning [4], and thus exploiting as much prior knowledge (including structure in 

data) as possible about given problem to boost the generalization performance of a classifier is consistent 

with the famous No Free Lunch (NFL) theorem [3]. Our experimental results (refer to Section 4 for more 

details) also give a positive validation on the above assertion. On the other hand, the class information can 

also help improve performance of clustering learning. E.g., by utilizing the class information to guide the 

clustering process, some supervised clustering [5-7] or semi-supervised clustering algorithms [8-10] have 

been developed. The corresponding empirical results all demonstrated that the class information can 

significantly improve the effectiveness of the clustering results. Hence, we have reason to believe that the 

clustering and classification learning can complement to each other. 

Generally, clustering and classification learnings are usually formulated by different models or criteria, 

hence it is relatively difficult to cast both into a single framework. To fuse the advantages of both learners 

together, many existing algorithms [11-20] handle the clustering learning and classification learning in a 

sequential or independent manner. As illustrated in Fig. 1, these algorithms firstly utilize the clustering 

criterion to optimize the clustering process so that the structures in data can be explicitly revealed. Then, 

based on the obtained clustering result, these algorithms optimize the classification criterion associated 

with the obtained structural information to give the class label for new samples. Such kind of algorithms 

sequentially optimizes the clustering criterion and the classification criterion, and thus fails to achieve the 

simultaneous optimality for such two criteria. Recently, we have gone a small step ahead in this research 

and proposed a simultaneous learning algorithm for clustering and classification (named SCC) [21]. In 

SCC, the classification criterion and clustering criterion are combined to a single objective function by a 

trade-off parameter, whose goal is to compromise the classification and the clustering performances, but its 

value in optimizing the objective is generally hard to be optimally chosen except for an exhaustive search 
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in some range, which is a heavier learning burden. In fact, the all above mentioned algorithms usually have 

to sacrifice the clustering performance for the classification performance, or vice versa. As a result, it is not 

easy for them to achieve an effective clustering and classification performance at one time.  

 

 

Fig. 1 Sequential optimization for the clustering and classification criteria  

 

To overcome this defect, in this paper, we present a multi-objective simultaneous learning framework 

(named MSCC) for both clustering and classification learning. As shown in Fig. 2, we utilize the multiple 

functions to formulate the clustering and classification problems to realize the joint learning in MSCC. 

More importantly, we employ the Bayesian theory to bridge a connection between them and make all these 

functions only dependent on the same set of the parameters, i.e., the clustering centers. In all of our 

experiments, we just utilize the following two objective functions, i.e., the misclassification rate and the 

intra-cluster compactness in the feature space to evaluate the classification and clustering performances, 

respectively. Since the clustering and classification learnings seek different goals, thus generally speaking, 

the objective function established just for classification focuses on more classifier’ generalization and less 

discovering inherent structures in data; conversely, the objective function established just for the clustering 

learning concerns more discovering structures in data and less classification performance. Consequently, 

the result obtained by optimizing the classification objective function alone is usually more likely 

inconsistent with that obtained by optimizing the clustering objective function alone. However, this does 

not imply that the two objectives can neither form a compromise nor be more prone to consistent for their 

performance improvement. This is our starting point of using multi-objective optimization technique to 

achieve simultaneous optimality for both. To this end, concretely, we adopt the multi-objective particle 

swarm optimization (MOPSO) [22] to simultaneously optimize the clustering centers embedded in these 

two functions, as a result, by such optimization, we can intuitively obtain a consistent result between the 

clustering and classification. In the corresponding experiment, an interesting observation is that those 

clustering centers which yield relatively low values of the objectives jointly for both clustering 
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compactness and classification error rate on the training dataset can empirically result in the best clustering 

or classification result on the corresponding test data. This phenomenon again demonstrates the 

consistency or complementarity between the clustering and classification learnings, that is, the 

optimization of clustering criterion is beneficial to classification, or vice versa. The subsequent more 

experimental results on both synthetic and real-life datasets all demonstrate also the effectiveness and 

potential of MSCC.  

 

 

Fig. 2 Simultaneous optimization for the clustering and classification criteria  

 

  The outline of the rest of the paper is as follows. In section 2, we discuss the related work. In section 3, 

we present the main ideas of the MSCC algorithm. The experimental results are provided in section 4. We 

conclude in Section 5. 

 

2. Related work 

There have been several recent related works to inherit the merits of both clustering and classification 

learning. We will review the main works as follows.  

Radial Basis Function neural network (RBFNN) [12, 13], as shown in Fig. 3, is a feed-forward 

multi-layer network. It usually consists of three layers: input layer, hidden layer and output layer. Each 

basis function Фk corresponds to a hidden unit and wkl represents the weight from the kth basis function or 

hidden unit to the lth output units. In the training phase, RBFNN first executes unsupervised clustering 

process to determine the parameters of the basis function Фk under the guidance of fuzzy c-means (FCM) 

clustering criterion [13]. Next, it uses the mean squared error (MSE) classification criterion between the 

target and actual outputs to optimize the connection weights wkl between the hidden and output layers. In 

Clustering  
centers

Features and 
class labels of 

samples 
Clustering results 

Classification results 

Clustering criterion 

dependent on clustering centers

Classification criterion 

dependent on clustering centers



 5

RBFNN, the clustering method can ensure the good classification generalization. However, such clustering 

method is just an aid in determining the parameters of the neural network, rather than a method to reveal 

the inherent structure in data. In fact, RBFNN can not really inherit the advantages of both clustering 

learning and classification learning in a single algorithm. In addition, another defect of RBFNN is that the 

connecting weights wkl conceal the learned knowledge, which leads to the poor transparency and 

interpretability for knowledge (representation).  

 

 

Fig. 3 Architecture of RBFNN 

 

Setnes et al. proposed Fuzzy Relational Classifier (FRC) [14] to provide a transparent alternative to 

the black-box techniques such as neural networks. Its training process also involves two main steps which 

are illustrated in Fig. 4. In the first step, it adopts the FCM clustering criterion to discover the natural 

structure in data. In the second step, by using the obtained fuzzy partition and the given hard class labels 

(i.e., the samples from the same class share a common class label), it computes a relation matrix R under 

the implicit classification criterion to reflect the relationship between clusters and classes.  

Lately, in our previous work, we have presented Robust FRC (RFRC) [20] with the aim of enhancing 

the robustness of FRC. According to the two-step training way of FRC, its robustness is improved from the 

following two sources: first, use the robust Kernelized FCM (KFCM) [23] to replace FCM; second, 

employ the soft class label motivated by the fuzzy k-nearest-neighbor [24] to replace the hard class label. 

This way, with incorporation of both KFCM and the soft class labels, RFRC makes the constructed relation 

matrix R more really reflect the relationship between the classes and clusters for the subsequent 

classification, and thus significantly boosts the robustness and accuracy of FRC. 
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FRC and RFRC fuse the merits of clustering and classification learning to some extent, but such 

sequential optimization can not be guaranteed to obtain satisfactory clustering and classification results 

simultaneously. In addition, the entries in the relation matrix R lack the statistical meaning, thus it is 

difficult to judge whether the obtained relationship is really reliable. 

 

 

Fig. 4 Training process of FRC and RFRC 

 

Likewise, Kim and Oommen [18] proposed an algorithm called VQ+LVQ3. It first utilizes Learning 

Vector Quantization (LVQ) to optimize both the positions and class labels of the cluster centers, and then 

applies 1NN classifier to perform classification on the top of the obtained centers. Actually, LVQ3 is a 

supervised clustering in which the class information is used to guide clustering. Similar to VQ+LVQ3, a 

supervised clustering and classification algorithm named CCAS [11, 25] and its extended version ECCAS 

[26] also fall into such a two-step framework. Since both VQ+LVQ3 and CCAS (or ECCAS) adopt the 

1NN and the weighted kNN classifiers in their classifier design phase, respectively, they actually do not 

need to experience any training, in other words, both VQ+LVQ3 and CCAS (or ECCAS) have no a true 

design phase. Their common idea is to seek a set of good prototypes as class representatives for subsequent 

classification using the 1NN classifier. 

To sum up, all above methods first optimize the clustering criterion, and then the classification criterion 

associated with the clustering result, i.e. they adopt a two-step learning paradigm which fails to realize the 

simultaneous optimization for both criteria. This may limit the strength of both clustering and 

classification.  
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3. The proposed method 

To obtain the satisfactory clustering and classification result and inspired by our previous work [21], we 

present a multi-objective simultaneous learning framework (named MSCC) for both clustering and 

classification learning. In its implement, we first employ the Bayesian theory to bridge the connection 

between both and make all their objectives only dependent on the same set of the cluster centers as the 

parameters to be optimized. Next, we utilize the multi-objective framework to formulate the clustering and 

classification problems. Finally, we adopt MOPSO to simultaneously optimize the clustering centers 

embedded in these functions. 

3.1 Clustering mechanism and classification mechanism 

To realize the simultaneous clustering and classification in MSCC, one key is to make the clustering and 

classification results all only dependent on the same parameters. 

  In the clustering learning, by using the fuzzy c-means clustering as reference, the clustering membership 

uik of the training sample xi to the kth cluster can be computed 
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where dist represents the distance between the samples and the centers. When the clustering centers are 

determined, the clustering mechanism can be established. 

Next, we will employ the Bayesian theory to design a classification mechanism only relying on {vk}. In 

the classification learning, when the posterior probabilities p(ωl|xi) can be modeled, the output class label 

f(xi) can be determined 
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To introduce the cluster information into p(ωl|xi), we resort to the formed clusters {ck} to reformulate 

p(ωl|xi) through the total probability theorem as 
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where ωl denotes the lth class, ck represents the kth cluster, p(ck|xi) represents the posterior probabilities of 
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the presence of corresponding samples and p(ωl|ck) denotes the cluster posterior probabilities of class 

membership. Notice that p(ωl|ck, xi) has no relationship with xi, and thus can be simplified as p(ωl|ck). 

According to the intuitive meaning of p(ck|xi), it can also be computed by Eq. (1). Now p(ωl|ck) can be 

computed through Bayesian theorem: 

 ( ) ( )
( )

,
| l k

l k
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where p(ck) is the prior probability and can be calculated by the proportion of the samples in the kth 

clusters, i.e., Num(x∈ck)/N; p(ωl, ck) is the joint distribution and similarly, can be computed in terms of the 

proportion of the samples in the kth cluster and meanwhile in the lth class, i.e., Num(x∈ωl and x∈ck)/N. 

Therefore, p(ωl|ck) can be rewritten as 
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For each cluster ck, the constraint ( )1
| 1L

l kl
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=
=∑  should be satisfied where L is the class number. 

Eq. (5) indicates that when p(ωl|ck) is large (small), the proportion of samples in cluster ck from the class l 

is large (small). Now all the p(ωl|ck) can constitute a K×L matrix denoted by P: 
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It is obvious that such a relation matrix P can reveal the statistical relationship between the formed clusters 

and the given classes.  

For a given training dataset with class labels, the clustering result described by uik or p(ck|xi) is only 

relevant to the clustering centers. On the other hand, the classification result yielded by p(ωl|xi)s also relies 

on the clustering centers. The underlying reason is that the matrix P is dependent on the clustering partition 

and its value is determined by assigning each sample to the nearest clustering centers. In summary, by 

using the Bayesian theory, the proposed clustering and classification mechanism are all only determined by 

the cluster centers. 

 

3.2 Multi-objective functions for clustering and classification 
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Based on the above description of clustering and classification mechanism, the multi-objective 

clustering and classification learning can be formulated by 

 1min ({ }) [ ({ }), ..., ({ }), ..., ({ })]k k m k M kJ J J J=v v v v  (7) 

where M is the number of objective functions and Jm({vk}) is the mth objective function depending only on 

the clustering centers. Note that among the multiple objective functions, there is at least one objective 

function evaluating the clustering (classification) performance.  

First, based on the intra-class compactness and inter-class separability, different clustering objective 

function can be designed. Here we just introduce three clustering criteria： 

（1）Xie-Bi index [27] which is presented by : 
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(2) vsv index [28] which is proposed by Kim： 
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where ck is the set of the samples falling into the cluster k, | ck | is the number of samples in ck. 

(3) In order to introduce the kernel trick to the clustering objective function, we design the intra-cluster 

compactness in the feature space： 
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where Φ is an implicit nonlinear map from the input space to a higher dimensional feature space. By using 

the kernel to substitute the inner product in (10), the Eq. (10) can be rewritten: 
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When RBF kernel is adopted, Jm({vk}) can be simplified as： 
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where uik(vk) is the membership of xi to the cluster k. Note that uik(vk) is the function of the cluster center vk 

and determined by the distance between the samples and centers in the feature space. The final objective 

function can be written as： 
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Second, based on the classification mechanism designed in the subsection 3.1, the different classification 

objective functions can be designed. Here we just list the two classification criteria: 

(1) Minimization of the misclassification rate: 

 ( )( )
1
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m k i i
i

J f y Nδ
=

=∑v x  (14) 

where yi is the class label of xi and yi∈{1, 2, …, L}. 

(2) Minimization of squared error between the target outputs and actual outputs： 

 ( )( )2
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where p(ωl|xi) is the class posterior probabilities of xi and yil is the membership of xi to the lth class. Here 

yi is represented by one-of-c coding. For example, if there are 4 classes in the given dataset and the sample 

xi belongs to the third class, then its class label yi is encoded by [0, 0, 1, 0]. 

In this paper, without loss of generality, we just adopt the two functions to formulate the clustering and 

classification problems: 

 1 2min ({ }) [ ({ }), ({ })]k k kJ J J=v v v  (16) 

where J1({vk})is the misclassification rate and J2({vk}) measures the compactness in the feature space. Eq. 

(16) aims to simultaneously minimize the classification criterion J1({vk}) and the clustering criteria 

J2({vk}). No matter what clustering or classification criterion is selected from the above criteria, the values 

of J({vk}) all only depend on a set of the cluster centers. By just optimizing the centers embedded in 

J({vk}), the clustering and classification criteria can be optimized at the same time. 
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3.3 Optimization of Multi-objective functions 

  To describe the concept of optimality in the multi-objective functions, we will introduce a few 

definitions [22] involving in multi-objective optimization. 

Definition 1: (Dominance) For a given multi-objective problem min J(x)=[ J1(x), J2(x), …, JM(x)], the 

solution x1 dominates x2 or the solution x2 is inferior to x1 (denoted as x1≺ x2) if the following two 

conditions are held: (1) ∀ i∈[1,2, …, M], Ji (x1)≤Ji (x2); (2) ∃  i∈[1,2, …, M], Ji (x 
1)<Ji (x2). 

Definition 2: (Pareto Optimality) The solution x0 is Pareto optimal if there exists no solution x1 such 

that x1≺ x0. 

Definition 3: (Pareto Optimal Set) The Pareto optimal set is defined as 0 1 0{ | }Ps = ∃x x x≺ . 

Definition 4: (Pareto Front) For a given Pareto optimal set Ps , the Pareto front is defined as 

1 2{ ( ) ( ( ), ( ), ..., ( )) | }F M sP J J J J P= = ∈x x x x x . 

To explain the above concepts clearly, we give Fig. 5 under the condition of two objective functions. 

The white ‘o’ denotes a dominated solution and the dark ‘o’ represents a Pareto-optimal solution which is 

also termed non-dominated solution. According to definition 1, the solution x0 dominates x1 and x2; the 

solution denoted by the dark ‘o’ is Pareto-optimal in terms of definition 2; all the dark ‘o’s constitute the 

Pareto optimal set in terms of definition 3; according to definition 4, Pareto Front is composed of the 

objective values of all the dark ‘o’s.  

 

Fig. 5 The Pareto front of a set of solutions in a two objective space. 

 

Next, we employ the above concepts to briefly discuss the existing optimization methods for 
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multi-objective problems. Classical methods suggest converting the multi-objective optimization problem 

to a single-objective optimization problem by objective weighting. By introducing a weight parameter β, 

the optimization for the multiple objective functions in Eq. (16) can be transformed to: 

 1 2min ({ }) ({ }) ({ })]k k kJ J Jβ= +v v v  (17) 

By optimizing Eq. (17) instead of Eq. (16), a single Pareto-optimal solution (i.e., clustering centers) that 

makes a balance between the clustering performance and classification performance can be obtained. 

However, this single point solution is usually sensitive to the weight β [29], as a result, in order to get a 

solution as optimal as possible, multiple sets of different weights have to be used and leading to the same 

problem being solved many times. 

In recent years, a number of multi-objective evolutionary algorithms (MOEA) [22, 29, 30] have been 

suggested such as Non-dominated sorting genetic algorithm (NSGA) [29] and Pareto Archive Evolutionary 

Strategy (PAES) [30]. The primary reason for this is their ability to find multiple Pareto-optimal solutions 

rather than a single solution in one single simulation run. Some researchers suggested that multi-objective 

search and optimization might be a problem area where EA’s do better than other blind search strategies 

[29, 30]. In 2004, Coello [22] et al. proposed a multi-objective Particle Swarm Optimization named 

MOPSO and proved its good performance and the high speed of convergence. MOPSO is an evolutionary 

technique through individual improvement plus population cooperation and competition. Many works  

[31, 32] have been done and shown that PSO-type methods are prevailing population-based optimization 

algorithms and successful in a wide variety of learning tasks such as attribute selection in a bioinformatics 

data set, time series prediction and Face classification problems. MOPSO utilizes an external repository to 

keep a historical record of the non-dominated solutions found along the search process. In its implement, 

MOPSO employs this repository to guide the flight of the current particles and store the non-dominated 

solutions.  

In this paper, we adopt the simplified version of MOPSO to solve the multi-objective optimization of 

MSCC. By using the MOPSO, the multiple sets of Pareto-optimal clustering centers can be acquired in the 

two objective spaces. Since the clustering and classification learning methods can complement each other, 

the corresponding two criteria can also have the complementarity to some extent, as a result, those 

Pareto-optimal clustering centers which attain relatively low values jointly for both the clustering 

compactness and classification error rate on the training data can consistently achieve the best clustering or 



 13

classification result on the corresponding test data (later given in experiments). 

In the MOPSO, each individual of the population is called a ‘particle’, which, in fact, represents a 

solution to a problem. Here a particle xi=[xi1, xi2, …xid,…, xiD] in MSCC is a vector composed of all the 

clustering centers and its dimension is D=d×K. Each particle ‘flies’ around in the multi-dimensional 

research space with a velocity veli=[veli1, veli2, …velid, …, veliD]. This velocity is updated by the 

experience of particle itself and repository 

 ( ) ( )1
1 2 ( )t t t t t

id id id id d idvel w vel r pbset x r Repository h x+ = × + × − + × −  (18) 

where t is the current iteration number, w is inertia weight and set to 0.4, r1 and r2 are two independent 

random numbers uniformly distributed in the range of [0, 1]. pbesti=[pbesti1, pbesti2, …, pbestiD] 

represents the best position that the ith particle has had. Repository(h)=[Repositoryh1, Repositoryh2, …, 

RepositoryhD] is a value randomly taken from the repository and h is the selected index. The position of 

each particle at each generation is updated by 

 ( 1) ( ) ( 1)id id idx t x t vel t+ = + +  (19) 

The whole process of using the simplified version MOPSO can be summarized as follows: 

 

MSCC Learning Algorithm 

Step1: Set the number P of particles to 500, the maximum number I of iterations to 100 and the current 

iteration number t to 1; Initialize the particles with random positions and velocities. 

Step2: Evaluate the two objective values of all particles according to (13) and (14) and set pbesti of each 

particle equal to its current position. 

Step3: Store the positions of the particles that represent non-dominated solutions in the Repository. 

Step4: While I>t 

(a) Compute the speed of each particle by (18). 

(b) Compute the new position xi of each particle according to (19).  

(c) Evaluate the two objective values of particles in terms of (13) and (14). 

(d) Find all the currently non-dominated locations (the non-dominated solutions found at each iteration):  

For m=1: P 

  Non_dominated_flag=1; 

  For n=1: P  

     If xm is dominated by xn 
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             Non_dominated_flag=0; 

     End; 

End; 

If Non_dominated_flag ==1 

 xm is the currently non-dominated location. 

End; 

End; 

(e) Insert all the currently non-dominated locations into Repository;  

Eliminate any dominated locations from the Repository.  

(f) If the current position xi(t)of the particle dominates pbesti 

pbesti=xi(t);  

else if the pbesti dominates xi(t),  

pbesti is kept;  

    else if neither of them is dominated by the other 

pbesti is updated or kept randomly 

End; 

(g) Update t=t+1.  

3.4 Time complexity Analysis of MSCC 

The time complexity of MSCC is O(I×P×max(K×d, P×M, N×K×L)) where I is the maximum iteration 

number, P is the particle number, M is the objective function number, K is the cluster number, d is the data 

dimension, N is the sample number and L is the class number. In our experiment, I, P and M are the 

user-specified parameters and set to the constant values 500, 100 and 2, respectively. Moreover, K, d, N 

and L are the variable parameters dependent on the chosen dataset. It is worth pointing out that the larger 

the cluster number (or the data dimension, the sample number, the class number) is, the more the 

computational time.   

 

3.5 A toy illustration for MSCC benefit 

Here we give a toy illustration on the dataset COIL [33] to explain why simultaneous classification and 

clustering learnings can give more than just either classification leraning or clustering learning. COIL is 

available at http://www.cs.columbia.edu/CAVE. The full COIL dataset consists of images of 100 objects 

where the images of the objects were taken at pose intervals of 5o, i.e., 72 poses per object. In this paper, 
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we have used a part of the COIL database by involving only the first 2 objects, with 144 images in total. 

The training set consists of 36 images (one for every 10 o) for each object, and the test set consists of the 

remaining 36 images for each object [34]. For such dataset, classification algorithms only pay attention to 

the class information of objects; clustering algorithms only care similarity among objects. In contrast, our 

algorithm utilizes both the class information and structural information to not only classify the objects to 

different classes, but also discover the objects with similar poses. As shown in Table1, the objects grouped 

to the same clusters have very similar poses, which indicates that the structure hidden in data is discovered. 

Moreover, the relation matrix in Table 2 means that the objects falling into clusters c1, c2, c3 and c4 belong 

to class ω1 and similarly, the objects in clusters c5, c6, c7 and c8 belong to class ω2. Due to the correct 

clustering and so-generated relationship matrix P, MSCC achieves the classification accuracy of 100%. 

From this example, we can see that MSCC discovers both the structures hidden in data and the relationship 

between the structures and their classes, which makes COIL dataset prone to be transparent and 

interpretable. However, SVM has difficulty to great extent to simultaneously achieve the two aspects. 

 

Table 1 Clustering results of the test samples on the COIL dataset 

Cluster i 
Cluster center 
(pose angle) 

Samples belonging to the ith cluster 

1 

 
0 

 
320  330   340  350    0    10    20   30   40    50 

2 

 
90 

 
60   70   80   90   100   110   120  130 

3 

 
180 

 
140  150  160  170  180  190   200   210   220  230 

4 

 
270 

 
240   250  260  270  280  290  300  310 

5 

 
0 300  310  320  330   340   350    0    10    20    30   40   50  60 

6 

 
90 

 
70   80    90  100  110  120 
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7 

 
180 

 
130  140  150  160   170  180   190   200   210   220 

 
210  220  230  240 

8 

 
270 

 
250  260   270   280  290 

 

Table 2 Classification results and the parameters on COIL dataset 

 MSCC 

Relation matrix P
1     1     1     1     0     0     0    0 
0     0     0     0     1     1     1    1

T
⎡ ⎤
⎢ ⎥
⎣ ⎦

Accuracy 100% 

 

4. Experimental results 

4.1 Pareto optimal solution 

To investigate the property of the Pareto-optimal solutions, we give the Pareto-optimal front on the 

datasets Glass, Bupa, Heart_disease and Balance_scale respectively in Fig. 6. It can be observed that 

MSCC acquires 4, 6, 8 and 9 Pareto optimal solutions on these four datasets, respectively. This result 

implies that a solution-inconsistency can in general occur in this multiple objective problem [22].  

   

(a) Glass                             (b) Bupa 
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(c) Heart_disease                     (d) Balance_scale 

Fig. 6 Pareto fronts obtained on the datasets Glass, Bupa, Heart_disease and Balance_scale, respectively 

 

Furthermore, Tables 3, 4, 5 and 6 list the J1 values and J2 values of the Pareto-optimal solutions on both 

the training data and test data of Glass, Bupa, Heart_disease and Balance_scale, respectively. From these 

tables, we can find that on the test datasets, S2, S2, S7 and S2 in each table obtain the best classification 

performance, and while S3, S3, S5 and S8 achieve the best clustering performance. From this result, we 

can have an interesting observation that the best performance of clustering or classification on the 

test datasets corresponds to those solutions which achieve relatively low values of the objectives of 

both clustering compactness and classification error rate on the training datasets. This conclusion 

empirically demonstrates the consistency or complementarity between the clustering and classification 

learnings. In other words, the pursuit for good clustering compactness is beneficial to classification 

learning, while the pursuit for high classification accuracy is helpful for the clustering compactness.  

 

Table 3 Misclassified rate and clustering compactness on the training and test dataset of Glass 

Pareto optimal 

solution 

Training misclassified 

rate J1 

Training clustering

compactness J2 

Test misclassified 

rate J1 

Test clustering 

compactness J2

S1 0.1308  0.9895 0.3551   4.2538 

S2 0.1495  0.9345 0.2897  4.1861 

S3 0.1589  0.7668 0.3178    4.0213 

S4 0.1682  0.7146 0.4206   4.0632 
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Table 4 Misclassified rate and clustering compactness on the training and test dataset of Bupa 

Pareto optimal 

solution  

Training misclassified 

rate J1 

Training clustering

compactness J2 

Test misclassified 

rate J1 

Test clustering 

compactness J2

S1 0.2890 38.5036 0.3488 43.6930 

S2 0.3064 38.4753 0.3372 44.1799 

S3 0.3237 38.4271 0.3605 43.6214 

S4 0.3295 38.2328 0.3779 46.1935 

S5 0.3353 37.8356 0.3779 47.3340 

S6 0.3815 37.7587 0.3605 46.9800 

 

Table 5 Misclassified rate and clustering compactness on the training and test dataset of Heart_disease 

Pareto optimal 

solution 

Training misclassified 

rate J1 

Training clustering

compactness J2 

Test misclassified 

rate J1 

Test clustering 

compactness J2

S1 0.0815 4.6729 0.2074 6.0206   

S2 0.0889 4.5855 0.1926 6.1621 

S3 0.0963 4.4441 0.2148 5.8755 

S4 0.1037 4.3977 0.2296 5.6910 

S5 0.1111 4.3925 0.2148 5.6571 

S6 0.1185 4.3762 0.2074 5.7172 

S7 0.1259 4.3589 0.1852 5.9531 

S8 0.1704 4.3402 0.2593 5.9170   

 

Table 6 Misclassified rate and clustering compactness on the training and test dataset of Balance_scale 

Pareto optimal 

solution 

Training misclassified 

rate J1 

Training clustering

compactness J2 

Test misclassified 

rate J1 

Test clustering 

compactness J2

S1 0.0799  10.1600 0.0994 10.4577 

S2 0.0830  9.9428 0.0962 10.2207 

S3 0.0832  9.9139 0.0994 10.1893 

S4 0.0863 9.8318 0.1058 10.0685 

S5 0.0895  9.7891 0.1058  10.0603 

S6 0.0927 9.7713 0.1250 10.0442 

S7 0.0958 9.7702 0.1186   10.0104 

S8 0.0990 9.7640 0.1186 10.0047 

S9 0.1118 9.7616 0.1346  10.0708 
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4.2 Synthetic dataset 

We apply RBFNN, RFRC, VQ+LVQ3, SCC and MSCC on a synthetic dataset in Table 7 to compare 

their both classification and clustering ability. Here the number K of cluster centers is set to 5 and the scale 

factor λ of the RBF kernel is 1. To evaluate their clustering effectiveness, we list the obtained clustering 

centers in Fig. 7. It can be seen from this figure that in RBFNN and RFRC, the samples localized in the 

upper part of each panel are characterized by one clustering center, but in fact these samples come from 

different classes (i.e., Class 1 and 2) and hence should be categorized into different clusters in terms of 

their class labels. In VQ+LVQ3, there exists a clustering center deviated from the distribution of the given 

samples, thus failing to precisely describe the data distribution. In SCC, when a proper value is selected for 

β, the correct clustering result is obtained as show in Fig. 7(d); however, when an improper value is 

selected, the obtained clustering result is unable to uncover the structure in data as shown in Fig. 7(e). So 

in order to get a solution as optimal as possible, multiple sets of different weights have to be used and thus 

leading to that the same problem has to be solved many times. In contrast, MSCC removes the weight 

parameter β and obtains the correct clustering centers located in the proper places, and thus reflects the 

inherent structure in this data relatively correctly.  

 

 

 

 

Table 7 Synthetic dataset with three classes in five Groups 

Group Class label Group center Variance 

Gaussian Distribution 1 ω1 (6, 12) (1, 0.5) 

Gaussian Distribution 2 ω1 (0, 5) (2, 1) 

Gaussian Distribution 3 ω2 (3, 12)  (2, 1) 

Gaussian Distribution 4 ω2 (8, 5) (1, 0.5) 

Gaussian Distribution 5 ω3 (4, -2) (2, 1) 
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(a)                                       (b) 

  

(c)                                       (d) 

 

(e)                                       (f) 

Fig. 7 Cluster centers obtained by RFRC, RBFNN, VQ+LVQ3, SCC and MSCC, respectively 

 

To further compare the classification effectiveness, we present the relation matrices (connecting weights) 

and classification accuracy in Table 8. From this table, we can make the following analyses that (1) the 

connecting weights in RBFNN are yielded by optimizing the MSE criterion between target and actual 
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outputs, as a result, their values do not have any intuitive meaning; the relation matrix in RFRC are 

obtained by the composite operators, thus lacks the statistical meaning; in VQ+LVQ3, its relation matrix 

are determined by the class labels of clustering centers, such hard values can not quantatively reflect the 

fuzzy belonging degree between clusters and classes; in SCC, the larger the β value is, the more attention 

the objective function pays on the classification problem; the smaller the β value is, the more attention the 

objective function pays on the clustering problem, as a result, a proper value should be selected for β so 

that a balance can be made between the classification and the clustering performances, and thus the correct 

result can be obtained as shown in Table 8 (β=1); in MSCC, the relation matrix can not only reveals the 

underlying logical relationship in data but also the quite precise statistical relationship between the formed 

clusters and given classes. (2) due to the wrong clustering centers and imprecise relation matrix 

(connecting weights), RBFNN, RFRC and VQ+LVQ3 fail to achieve the satisfying classification 

performance; SCC can achieve the high classification accuracy of 98.5%, but an exhaustive search for the 

weight parameter β has to be executed in some range, which is a heavier burden; in contrast, MSCC 

achieves the highest classification accuracy of 99.0%, indicating that its classification mechanism works 

better the other algorithms, such good performance can attribute to its correct clustering centers and real 

relation matrix.  

From this initial empirical evaluation, it can be concluded that MSCC can achieve the effective 

clustering and classification performance at one time. The underlying reason is that it optimizes the 

clustering and classification criterion simultaneously, thus does not need to sacrifice the clustering 

performance for the classification performance, or vice versa. 

Table 8 Parameter comparison among RFRC, RBFNN, VQ+LVQ3 and MSCC 

Parameters RBFNN RFRC VQ+LVQ3 SCC (β=0.01) SCC (β=1) MSCC 

Relation 

matrix 

1.33   -4.26   -0.63
 0.11    0.71    0.36
 0.87    0.35   -0.42
-1.50    4.86    0.15
-0.30   -0.31    1.33 

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 0.03  0.10    0.00
0.87  0.00    0.00
0.78  0.09    0.09
0.00  0.83    0.00
0.00  0.00    0.80

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1    0    0
1    0    0
0    1    0
0    1    0
0    0    1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 1.00  0       0
0.69  0.31  0
0       1.00  0
0       0       1.00  
0       0       1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 1.00   0        0
0.94   0.06   0
0        1.00   0
0.09   0.91   0
0        0        1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 1.00   0        0
0.94   0.06   0
0        1.00   0
0.09   0.91   0
0        0        1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Accuracy 83.5% 79.5% 86.5% 86.5% 98.5% 99.0% 

 

To make the iterative process of MSCC clearer, we give the intermediate results of the clustering centers 

in Fig.8 below, and their corresponding relation matrix and classification accuracy in Table 9. From Fig.8, 

it can be seen that as the iteration step t increases from 2 to 50, the obtained clustering centers tend to 
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gradually exhibit the real structure hidden in data. Moreover, from Table 9, it can be observed that during 

the iterative process, the resulted relation matrix P tends to gradually discover the correct relationship 

between the structures and classes, and the corresponding classification accuracy increases from 86.7% to 

99.0%.  
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Fig. 8 Iterative process of MSCC 
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Table 9 Parameters of MSCC at different iteration step 

Iteration 

step 
  t=2 t=8 t=24 t=34 t=36 t=50 

Relation 

 Matrix P 

0.70   0.30   0
0        0        0
0        0        0 
0.30   0.70   0
0        0        1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1.00   0        0
0.68   0.32   0
0        0        0
0       1.00    0 
0      0          1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1.00   0        0
0.91   0.09   0
0.30   0.70   0
0        1.00   0
0.02   0        0.98

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1.00   0        0
0.85   0.15   0
0        1.00   0
0.13   0.87   0
0.02   0        0.98

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

1.00   0        0
0.91   0.09   0
0       1.00    0
0.09   0.91   0
0        0        1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
1.00   0        0
0.94   0.06   0
0        1.00   0
0.09   0.91   0
0        0        1.00

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Accuracy 86.7% 88.4% 88.6% 96.5% 98.0% 99.0% 

 

4.3 Real-life dataset 

We evaluate the classification capability of MSCC on real-life datasets. We select 20 datasets from the 

UCI Machine Learning Repository [35] which is a repository of databases for the empirical analysis of 

machine learning algorithms. The classification performance comparison is made among RFRC, 

VQ+LVQ3, RBFNN, SVM, Clustering based SVM (named CBSVM)1, SCC and MSCC. In these 

algorithms except SVM, the cluster number K is sought in the range from the number of classes up to cmax. 

Here the parameter cmax is set to N in terms of Bezdek’s suggestion [36] where N is the number of the 

training samples. In RFRC, RBFNN, SVM, SCC and MSCC, the RBF kernel is adopted and its scale 

factor λ is determined by searching in {0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 15}. In SVM, the regularization 

parameter C is determined from {2-1, 20, 23, 25, 27, 29}. In SCC, the weight parameter β is selected from 

{0.01, 0.1, 1}. In MSCC, since the multiple Pareto-optimal solutions can be obtained, the final solution is 

determined by the trial-and-error approach [37] associated with the classification accuracy. Due to the 

multiple parameters existing in these algorithms, the Discrete Grid Search [38] based on exhaustive search 

in a limited range is adopted to acquire the optimal values for these parameters. In what follows, we list the 

number K of the cluster centers and the scale factor λ used in the experiments in Table 10. 

 

 

 
                                                        
1 CBSVM is our purposely-designed classifier for more extensive comparison. CBSVM adopts the same architecture as 
RBFNN, but chooses a different loss function. Specifically, like RBFNN, CBSVM first also uses an unsupervised k-means 
to obtain the cluster centers as parameters of a set of Gaussian functions to establish a mapping from the input to the space 
formed by a set of the functions, but unlike RBFNN, CBSVM adopts the SVM (loss) criterion rather than the least square 
error criterion in training in the above mapped space. CBSVM also falls into the two-step framework which optimizes a 
clustering criterion first, and then the classification criterion associated with the clustering result, but it fails to realize the 
simultaneous optimization for such two learnings. 
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Table 10 The number of the clustering centers and the scale factor of RBF kernel used in algorithms 

RFRC VQ+LVQ3 RBFNN SVM CBSVM SCC MSCC Dataset 

(#samples×#dim×#class) K λ K K λ λ K λ K λ K λ 

WBCD (683×9×2) 6 0.01 20 4 1 1 4 1 4 1 2 0.1 

Water (116×38×2) 6 1 4 4 0.001 1 2 1 2 1 2 0.01 

Thyroid (215×5×3) 10 0.1 20 26 1 0.1 16 10 14 1 10 0.001 

Lung_cancer (32×56×3) 16 0.01 12 14 0.01 0.01 6 0.1 4 0.01 6 0.01 

Pid (768×8×2) 60 0.001 80 22 0.1 1 30 1 20 1 10 0.1 

Soybean_small (47×35×4) 24 0.01 24 20 0.1 1 12 0.1 8 1 4 1 

WDBC (569×30×2) 6 0.01 60 18 0.01 1 4 1 2 0.1 2 0.001 

Waveform (5000×21×3) 100 1 100 100 1 1 100 1 100 0.01 100 0.01 

Balance_scale (625×4×3) 26 0.01 16 18 0.01 1 22 1 10 0.1 16 0.01 

Heart_disease (270×13×2) 60 1 70 16 0.001 0.01 30 0.1 12 0.01 34 0.01 

Pima_Indian_diabetes(768×8×2) 30 0.001 28 10 1 1 30 0.1 10 0.01 25 0.01 

Glass (214×9×6)   30 0.1 30 20 1 0.1 50 10 20 1 20 0.01 

Sonar (208×60×2) 20 0.01 92 20 1 1 28 0.1 18 0.01 18 0.01 

Wine (178×13×3) 14 1 14 6 0.001 1 4 0.1 6 0.001 6 0.1 

Ecoli (336×7×8) 26 0.001 50 12 1 1 30 1 14 0.001 24 0.01 

Lenses (24×4×3) 5 0.1 5 5 0.01 1 4 1 5 0.01 4 0.01 

Iris (150×4×3) 9 0.1 12 12 1 1 12 1 12 0.001 12 0.001

Bupa (345×6×2) 30 0.01 30 22 0.1 0.1 26 0.1 10 0.001 28 0.1 

Image segmentation (2310×19×7) 100 1 100 100 1 1 100 1 100 1 100 1 

Spambase (4601×57×2) 68 1 68 68 1 0.1 60 0.1 18 0.001 18 0.001

 

In all of our experiments, each dataset is randomly partitioned into two halves: one half is used for 

training and the other for testing. This process runs repeatedly and independently for 10 times, and only 

their averaged accuracies and the corresponding standard deviations are reported in Table 11.  

First, we compare the classification results yielded respectively by SCC and MSCC. It can be seen from 

the table that on all of the datasets, the accuracies of MSCC are respectively better than those of SCC. 

Especially, on the datasets Lung_cancer、Lenses、Sonar and Glass, MSCC achieves significant promotion 

of 9.8%、9.2%、4.8% and 4%, respectively. Such a promotion of MSCC can attribute to effectiveness of the 

multi-objective form and diversity of the multiple Pareto-optimal solutions. In comparison with SCC, 

MSCC has two advantages: (1) by utilizing the multi-objective functions to describe the clustering and 

classification problems, respectively, MSCC can remove the weighting parameter in SCC, and thus the 

computational burden for choosing this parameter can be exempted; (2) by extending the single solution to 
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multiple solutions, MSCC can improve the effectiveness of SCC. Moreover, it is worth pointing out that in 

SCC, its maximum iteration number I and its particle number P are respectively set to 500 and 1000; while 

in MSCC, they just are 100 and 500 and much less than those in SCC, which is naturally favorable for 

reduction of the learning. 

Second, we make the comparison among MSCC, RFRC, VQ+LVQ3 and RBFNN. Compared to RFRC 

and VQ+LVQ3, MSCC achieves better performance on all of the datasets. Compared to RBFNN, it yields 

better performance on the 17 datasets, comparable performance on the 2 datasets and worse performance 

on the 1 dataset. The excellent classification performance of MSCC comes from its effective learning 

mechanism.  

Finally, to give a baseline reference, we make comparison against state-of-the-art classifier SVM and 

our purposely-designed algorithm CBSVM. It is worth pointing out that CBSVM is superior to SVM in 

classification ability mainly due to the incorporation of the clustering information into CBSVM, which 

states that combing clustering and SVM (like the algorithms introduced in Section2) should also be 

effective to some degree and thus deserves a further exploration. More importantly, we can observe that 

compared to SVM, MSCC gains higher performances on the 12 datasets, and further compared to CBSVM, 

MSCC possesses higher accuracy on the 12 datasets, comparable accuracy on the other 4 datasets, all of 

which indicate that MSCC is highly competitive with the state-of-the-art classifiers in classification 

accuracy. In addition, MSCC still possesses the following advantages: (1) both the effective classification 

result and clustering result can be simultaneously obtained; (2) the class posterior probabilities computed 

in this framework can reflect the confidence of the classification decision, which is important for reliable 

and interpretable classification. 

 

Table 11 Classification accuracy comparison on real-life datasets 

Dataset 

(#samples×#dim×#class) 

RFRC VQ+LVQ3 RBFNN SVM CBSVM SCC MSCC 

WBCD (683×9×2) 97.0± 0.6 96.8± 0.6 96.8± 0.5 96.9± 0.5 96.9± 0.6 97.0± 0.4 97.6± 0.6 

Water (116×38×2) 97.9± 1.3 98.4± 1.2 98.3± 1.0 98.5± 0.8 98.3± 1.1 98.4± 1.2 99.7± 0.7 

Thyroid (215×5×3) 91.8± 2.0 92.7± 2.2 95.3± 1.0 95.2± 1.5 95.3± 1.2 96.4± 1.5 96.4± 1.6 

Lung_cancer (32×56×3) 40.6± 11.3 42.5± 10.8 43.8± 15.8 41.9± 8.4 41.9± 6.9 48.3± 14.2 58.1± 4.9 

Pid (768×8×2) 69.6± 2.8 72.1± 2.0 74.6± 2.5 76.4± 1.7 76.5± 1.4 76.6± 0.3 77.0± 2.5 

Soybean_small (47×35×4) 99.1± 1.7 96.1± 10.4 98.1± 1.7 98.3± 3.5 98.3± 2.9 99.6± 1.3 100± 0.0 

WDBC (569×30×2) 92.0± 1.6 96.4± 0.9 95.0± 1.2 97.2± 0.7 97.4± 0.8 96.8± 0.7 97.3± 0.7 
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Waveform (5000×21×3) 83.0± 0.5 85.1± 0.6 86.5± 0.9 86.2± 0.4 86.0± 0.3 86.2± 0.6 86.5± 0.3 

Balance_scale (625×4×3) 84.7± 1.5 86.0± 1.8 90.5± 1.0 90.5± 1.0 93.3± 1.2 90.6± 1.3 90.8± 1.2 

Heart_disease (270×13×2) 80.9± 2.2 81.4± 1.8 82.5± 2.3 83.3± 2.2 83.1± 2.1 83.0± 2.1 84.2± 1.8 

Pima_Indian_diabetes(768×8×2) 70.7± 3.2 72.6± 2.0 74.2± 2.3 76.3± 2.0 77.0± 1.4 76.0± 1.4 76.5± 1.1 

Glass (214×9×6)   63.8± 3.8 63.2± 3.6 65.0± 3.8  68.5± 3.5 67.2± 3.0 64.9± 2.5 68.9± 2.5 

Sonar (208×60×2) 77.5± 3.9 73.9± 2.8 80.2± 3.0 85.4± 3.3 85.4± 4.1 80.8± 5.1 85.6± 4.1 

Wine (178×13×3) 96.0± 1.7 96.5± 1.5 97.3± 1.1 98.4± 1.1 98.1± 1.0 97.1± 1.8 98.3± 1.3 

Ecoli (336×7×8) 81.8± 3.3 78.8± 3.0 85.2± 2.7  85.0± 1.7 85.1± 1.8 83.7± 1.8 85.0± 2.4 

Lenses (24×4×3) 71.7± 7.6 74.2± 11.5 75.8± 14.6 75.1± 10.4 76.2± 10.4 77.5± 3.7 86.7± 11.9

Iris (150×4×3) 95.3± 1.1 94.7± 1.9 96.4± 1.6 95.9± 15 95.6± 1.7 95.2± 1.4 97.1± 1.7 

Bupa (345×6×2) 61.0± 2.4 62.1± 3.7 70.8± 3.6 66.7± 7.5 69.9± 3.0 67.5± 5.8 68.2± 5.7 

Image segmentation (2310×19×7) 91.1± 1.6 90.5± 1.1 95.1± 0.5 91.0± 0.4 90.8± 0.6 91.5± 1.0 92.2± 0.6 

Spambase (4601×57×2) 85.1± 1.1 88.5± 0.7 80.7± 1.0 89.2± 0.6 90.4± 0.5 88.1± 1.3 89.9± 0.8 

 

5. Conclusion 

To fuse the strengths of classification learning and clustering learning, many existing algorithms such as 

RBFNN, RFRC, VQ+LVQ3, CCAS and ECCAS sequentially and separately optimize the clustering 

criterion and the classification criterion. Such a two-step optimization process limit the effectiveness of 

both clustering and classification learning to great extent. Different from these algorithms, in this paper, a 

multi-objective simultaneous learning framework named MSCC is presented for simultaneous clustering 

and classification learning. MSCC adopts the simultaneous optimization process for the clustering and 

classification learning, and thus does not need to sacrifice the clustering (classification) performance for 

the classification (clustering) performance. From the experimental results, it can be observed that (1) 

MSCC can acquire both the promising clustering results and classification results at one time; (2) the 

Pareto-optimal solutions obtained in MSCC again demonstrate the complementarity between clustering 

and classification learnings. 

In our MSCC, its clustering mechanism is designed by adopting the fuzzy c-means clustering as a 

reference. However, many other clustering algorithms can also be adopted. For example, when Gaussian 

finite mixture (GMM) [39] is adopted, the multi-objective functions dependent on both the clustering 

centers and covariance can be designed. By optimizing both the clustering centers and covariance in these 

multi-objective functions, the clustering and classification results can also be yielded. Furthermore, since 

the multiple-optimal solutions yielded by MSCC have diversity, our another work is to employ the 
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diversity to develop an ensemble method [40] to further improve the performance of MSCC. 

It is worth mentioning that MSCC is a supervised learning algorithm but extending it to the 

semi-supervised case is not so straightforward because when the training dataset has unlabeled data, the 

relation matrix P can not be directly established directly by the formula (5). Undoubtedly, one of future 

works is to develop a semi-supervised MSCC via different path. 
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