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Abstract

Recent work has shown the advantages of using attribute-based representation over
low-level feature descriptors in face verification, due to its capability to explicitly encode
high-level semantic meaning with economical coding bits. However, most work assumes
that the attributes of a given face is independent to each other. In this paper we present
a novel method to show how to model the relationship between attributes and exploit
such information in the task of face verification, while taking uncertainty in attribute
responses into account. Specifically, inspired by the vector representation of words in the
literature of text categorization, we first represent the meaning of each attribute as a high-
dimensional vector in the subject space, then construct an attribute-relationship graph
based on the distribution of attributes in that space. Using this, we are able to explicitly
constrain the searching space of parameter values of a discriminative classifier to avoid
over-fitting. The effectiveness of the proposed method is verified on the challenging
Labeled Face in the Wild (LFW) database with promising results.

1 Introduction

Recently there has been growing interest in using middle-to-high level feature descriptors
for face representation. One typical example is the attribute descriptor [2, 5, 6, 12, 13, 14,
19, 21]. N.Kumar et al. [12, 13] have recently shown that using the outputs of a series of
component classifiers with each tailored to some particular aspect of human face images,
called visual attribute, they are able to achieve close to state-of-the-art performance of face
verification on the challenging Labeled Faces in the Wild (LFW, [9]). This result is interest-
ing in several aspects. Firstly, the number of features used in their work is very small (i.e.,
only 73 attributes), which means that it provides a very economical but powerful way to
describe faces. This is in sharp contrast with the commonly used low-level features in image
description, such as pixel values, gradient directions, SIFT, etc., where usually thousands of
features are needed. Secondly, the attribute descriptor is user-friendly in that its meaning
is understandable to human beings (everyone knows what "white male" means), while the
meaning of most previously mentioned low-level features is less intuitive to us. Last but
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not least, such a descriptor is generalizable, which makes it particularly suitable for such
problems as zero-shot learning [18] or between-class transfer learning [14].

In this work, we focus on the first and the second property of attribute descriptors men-
tioned above, which allow us to explicitly investigate the similarity relationship between
attributes and to see how such relationship could be exploited to improve the performance
of face verification. Actually, research in the field of cognitive discovery has shown the
usefulness of the relationship between feature sets. For example, Bhatt and Rovee-Collier
[3] experimentally show that infants as young as 3 months of age gain the capability to
encode the relations among object features, and use such feature configuration for general
object recognition. However, traditionally one of the major challenges in modeling the fea-
ture configurations lies in the huge number of low-level features (e.g., the dimension of a
100× 100 face image is as high as 10,000 using the gray-value features). In addition, it is
very difficult for a human being to understand what exactly such a big feature configura-
tion means. Fortunately, both aforementioned problems can be addressed by the attribute
descriptor due to its high level and compactness in object description. Indeed, despite of
the partial success of using attribute descriptors by treating them statistically independent
to each other [5, 12, 13, 20] or conditionally independent given the class label [14], recent
work has shown that it is beneficial to exploit the relationship between attributes under vari-
ous contexts [21][4][17][8]. Some of them will be discussed in the next section.

In this paper, we proposed a novel method to model the relationship between attributes
and exploit such information to improve the performance of face verification. In particular,
inspired by the vector representation of words in the literature of text categorization, we first
represent the meaning of each attribute as a high-dimensional vector in the subject space,
which enable us to conveniently construct the corresponding attribute-relationship graph
based on the distribution of attributes in that space (c.f., Fig.1). The resulting attribute-
relationship can be thought of as a way to encode the pairwise closeness relationship be-
tween any two attributes, for example, a "male" attribute is highly related to such attributes
as "wearing necktie", "bushy eyebrows", "beard", and so on (c.f.,Fig.4). To exploit such
information, we propose to integrate the attribute-relationship graph into a linear classifier
to constrain the searching space of its parameters, based on the idea that similar attributes
should have similar weights. This is helpful to avoid over-fitting and improve the general-
ization capability of the learnt classifier. We also extend the model to handle uncertainty in
attribute responses. Encouraging experimental results of the proposed method is shown on
the challenging LFW database.

2 Related work
As mentioned in the previous section, the low level features is commonly treated as a whole,
while the attribute descriptor is processed individually. In other words, each attribute value is
just a real number (e.g., using a binary bit to denote having the attribute or not), which means
that it is not trivial to model the attribute relationship and then to exploit such information.
In what follows we discuss the related work concerning these two aspects.

In [8] the concept of binary attributes is introduced to describe the spatial relationship
between a pair of attributes corresponding to two image segments respectively. Such rela-
tionship is shown to be very effective in describing simple geometric patterns like strips. In
[21], Wang et al. give a method which tries to exploit more general relationship between
attributes to improve the performance of object recognition. For this they treat the corre-
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lations among attributes as augmented feature sets in a latent SVM framework. However,
one unwelcome consequence of this is that the number of possible combinations between
attributes will grow quadratically with the number of attributes. To address this they have to
sparsify the undirected graph which encodes the attribute correlations to a tree by keeping
only highly related attributes while pruning others. Recently Parikh et al. [17] proposed the
relative attribute descriptors to model the relative strength of disagreement among instances
for each attribute, which resulted in a user-friendly way for object description. Using this,
for example, you don’t have to explicitly describe whether a man is smiling or not when
it is difficult to make such judgement, but only need to say that his expression is roughly
between smiling and not smiling. In [4], even higher-order relationship between attributes
are explored. They build for each attribute a regressor from all the other attribute responses,
and use the output of each regressor as the corresponding attribute value. In this way, the
attribute response is effectively "denoised".

Our method is different from the aforementioned ones in several ways. Firstly, all the
above methods have shown its effectiveness in their particular context, e.g., object category
recognition [8, 21] or scenarios analysis [17], but few work addressed the question of whether
this is true in face verification as well, which is exactly what we do in this work. Secondly,
our way to model the attribute relationship is different from all the above methods, although
it is most closed to [21]. In particular, instead of learning a pairwise relationship between
attributes independently as in [8, 17], we try to model a attribute-relationship graph based on
the understanding of the meaning of attributes in a more general context of subjects to whom
each attribute belongs (see section 3.1 for more details). Finally, in contrast with previous
work [17, 21] where relationships among attributes are used as feature sets to augment the
input of classifiers, we exploit attribute relationship to improve the generalization capability
of the classifier in a more straightforward way, i.e., by using it as kind of prior constraints on
the searching space of model parameters.

In the field of machine learning, the graph-based prior is commonly adopted to control
model complexity of a learner. Typical example is the Laplacian SVM method proposed by
Belkin et al. [1]. In this method, an instance-graph is organized to constrain the label value
of neighboring instance, based on the manifold assumption that similar instance should have
similar labels. Our method is similar to this but instead of constructing an instance-graph, we
build an attribute-relationship graph. One advantage of attribute-graph is that its complexity
is controllable since its size will not grow with the number of instances as in [1] but only
with the number of attributes, which is usually not too large in practice as mentioned in
the previous section. Furthermore, our graph is not meant to constrain the output space of
instances but the searching space of model parameters, based on the simple idea that similar
attributes should play similar roles in the learnt classifier.

In this sense, our method can also be thought of as a mechanism to automatically reg-
ularize the coefficients of linear classifier using graph-based prior knowledge, and hence is
related to many norm-based (e.g., L2 or L1 norm) regularization methods in machine learn-
ing. Among them, our method is most related to those group-lasso-like methods commonly
seen in the multi-task learning literatures [10, 11, 23], where some groups of coefficients
survived while other groups are forced to be quiet during optimization. However, there is no
any within-group regularization except sparsity is imposed in those methods, while in our
method, we do not intend to cancel the contribution of any single coefficient but emphasize
that the consistency between coefficients is of importance.
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3 The Approach
In this section we give a detailed description of the proposed approach. The overall pipeline
of our algorithm is presented in Fig.1.

Male ▲

White ◆

High Cheekbones●

Moustache ■

Arched‐eyebrow ★

Bald ○ … …… Classifier

○

●

★

▲

◆

■

Attribute Subject Space Vector Representation Attribute Graph Face Verifier

Figure 1: The overall pipeline of the proposed algorithm. Each attribute descriptor is first
projected into a common subject space to obtain a high-dimensional vector representation,
which are then used to construct an attribute graph. The graph is finally exploited to regular-
ize the objective of a linear SVM-based face verifier.

3.1 Modeling the Attribute Relationship
Assuming that we are given a set of M attribute descriptors A = {Ai ∈ R}Mi=1 for each face
image. Although the meaning of each attribute is clear to human beings (see Fig.2), the
way to represent each attribute as a real number is too simple. Therefore, we still need
to find a method to properly represent each attribute in a richer manner so that they are
computationally convenient to support more advanced inference.

One commonly used trick in computer vision for this purpose is to think each face of as
a document which is described by words (attributes) [7, 22]. Although this analogy between
word and attribute is not so perfect, it makes it possible to borrow a great amount of ideas
from textual analysis to represent the meaning of attributes. One particular way we choose
is the so called featural representation [15], which is proven to have explanatory value by
representing the word meaning as featural primitives.

To construct such featural primitives, we use the subjects available in the training set and
call the space spanned by these subjects subject space (see Fig.1). Hence for K subjects,
we have a subject space with K-dimensions and the meaning of each attribute is represented
as a high-dimensional vector in the subject space, with each entry representing whether the
corresponding subject owns such attribute. For several images from the same subjects, the
value of the corresponding entry is accumulated and then normalized with the total number
of images of subject.

After projecting all the attributes into the subject space, we may model their relationship
based on the distribution of each attribute in an information theory framework. In particular,
we first compute the point-wise mutual information I(Ai,y j) of each attribute Ai with each
subject with label y j, which are then collected as an another vector AKi,

AKi = (I(Ai,y1), I(Ai,y2), · · · , I(Ai,yK)) (1)

where I(Ai,y j) is defined to be,

I(Ai,y j) =
p(Ai,y j)

p(Ai)p(y j)
(2)
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After this, correlated information encoded by M attributes and K subjects is organized
as the following matrix, based on which, the attribute graph can be constructed by treating
each row as a node.

y1 y2 · · · y j · · · yK
A1 I(A1,y1) I(A1,y2) · · · I(A1,y j) · · · I(A1,yK)
A2 I(A2,y1) I(A2,y2) · · · I(A2,y j) · · · I(A2,yK)
...

...
...

...
...

...
...

Ai I(Ai,y1) I(Ai,y2) · · · I(Ai,y j) · · · I(Ai,yK)
...

...
...

...
...

...
...

AM I(AM ,y1) I(AM ,y2) · · · I(AM ,y j) · · · I(AM ,yK)


(3)

Before proceeding, we briefly discuss how to calculate the mutual information E.q.2.
There are three statistics involved, i.e., p(Ai,y j), representing the probability of co-occurrence
of the attribute Ai and the person y j; p(Ai) and p(y j), representing the probability of occur-
rence of the attribute Ai and the person y j respectively. They are empirically evaluated using
the Maximum Likelihood Estimation (MLE) method through the training set, as follows,

p(Ai,y j) =
number of images of person y j with attribute Ai

number of images of person y j

p(Ai) =
number of images with attribute Ai

total image number

p(y j) =
total number of images of person y j

total image number

(4)

To improve the reliability of the MLE estimation for subjects with only a few face images,
we use the following Laplace smoothing strategy,

psmoothed(Ai,y j) = p(Ai,y j) + p(Ai)
psmoothed(Ai) = 2∗ p(Ai)

(5)

Finally, the attribute graph can be built by computing the similarity between two at-
tributes nodes through commonly used similarity measures such as Cosine similarity or Heat
Kernel,

S i j =
AKT

i AK j

||AKi|| · ||AK j||
or S i j = e

1
σ ||AKi−AK j ||

2
2 , i, j = 1,2, · · · ,M (6)

Note that the size of our attribute graph depends only on the number of attributes but is
independent with the number of subjects or the number of images.

3.2 Exploiting the Attribute-Graph Model
Given a set of training data D = {xi,yi}

N
i=1, our goal is to estimate the posterior of the model

parameter w. With the criterion of maximum a posterior probability (MAP), we have p(w|D)∝
p(D|w)p(w), where p(D|w) is the likelihood while P(w) is the prior on the distribution of w.
This formulation has an equivalent form,

log(p(w|D)) ≈ log(p(D|w)) + log(p(w)) (7)
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And according to this, MAP criterion is equivalent to minimize the total energy of the likeli-
hood model and the prior model. In this work, we use the linear SVM as our base classifier.
With hinge loss, the objective energy function of linear SVM is,

min
w

N∑
i=1

max{0,1− yi(wT xi + b)}+
λ1

2
wT w (8)

Note that although it is a linear model, it may still face the risk of over-fitting since it works
in a high-dimensional space and the number of training samples is small. To further control
the complexity, we use the attribute-graph as one of the prior constraints,

min
w

∑
S i j(wi−w j)2 (9)

where w = (w1,w2, ·,wM) are the model parameters and S i j is defined in E.q.6. Using the
standard spectrum technique, we construct the Laplacian matrix L of the attribute-graph
as L = D− S , where D is a diagonal matrix with Dii =

∑
j S i j. With these notations, it is

well-known that E.q.9 can be reformulated as wT Lw, and we add this to the standard SVM
objective function,

min
w

N∑
i=1

max{0,1− yi(wT xi + b)}+
λ1

2
wT w +

λ2

2
wT Lw (10)

Sometimes the uncertainty in the attribute response is available to us (e.g.,[12]), and we
may take this into account. Suppose that we are given the accuracy πi of each attribute
classifier. We organized them as a diagonal matrix P with Pii = e−πi , based on the intuition
that the less accuracy the attribute classifier the more punishment it should receive. By
adding this to E.q.10, we have,

min
w

N∑
i=1

max{0,1− yi(wT xi + b)}+
λ1

2
wT Pw +

λ2

2
wT Lw (11)

To the best of our knowledge, this modification to the linear SVM is novel, with ad-
vantages of flexibility and scalability, as mentioned in Section 2. This objective is an usual
quadratic programming problem with linear inequality constraints. The corresponding dual
form is given by,

min
α

1
2

N∑
i=1

N∑
j=1

αiα jyiy jxT
i (λ1P +λ2L)−1x j−

N∑
i=1

αi

s.t. 0 6 αi 6 1, i = 1,2, · · · ,N
N∑

i=1

αiyi = 0

(12)

Such kind of optimization problem can be solved with many off-the-shelf methods either
in primal form or in dual form. In our implementation, we used the Mosek Optimization
Toolbox [16] as the solver for the primal problem. To set appropriate values for λ1 and λ2,
we have to consider 1) trade-off between regularization terms and loss term, and 2) trade-off

between the two regularization terms. For this, we set λ1 +λ2 = c and λ1/λ2 = r, and then do
the grid search on c and r through cross validation. Typical parameter values selected on the
validation data set are λ1 = 0.16 and λ1 = 0.8, where the larger value of λ2 emphasizes more
importance of attribute correlation constraints.
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4 Experiments
To verify the effectiveness of the proposed method, we conducted a series of experiments
on the LFW dataset [9], which is a de fact standard dataset to test the performance of face
verification system under the unconstrained conditions. The collected face images are full of
typical features of unconstrained conditions including great variations in pose, expression,
lighting, occlusion and image resolution. Thanks to Kumar et al.[12], the attribute descrip-
tors of faces in LFW can be obtained freely through internet. In particular, there are totally 73
facial attributes for each face (c.f., Fig.2), which can be roughly categorized into four types:
(1) appearance description of key facial parts, such as shape, size and style of nose, mouth,
eyes, eyebrow, jaw, and hair; (2) high-level semantic features like gender, age, and ethnicity;
(3) specification about imaging conditions, e.g., lighting, expression, posture, accessory, and
environment; and (4) personal specific traits like bald, goatee, and attractiveness, see Fig.2
for details.

Male, Non-Asian, White, Non-Black, Non-Baby, Non-Child,
Non-Youth, Non-Middle Aged, Non-Senior, Non-Black Hair,
Non-Blond Hair, Non-Brown Hair, Bald, No Eyewear, Non-
Eyeglasses, Non-Sunglasses, Non-Mustache, Smiling,
Non-Frowning, No n-Chubby, Non-Blurry, Non-Harsh-
Lighting, Non-Flash, Sof t Lighting, Non-Outdoor, Curly-
Hair, Wavy Hair, Non-Straight Hair, Receding Hairline,
Non-Bangs, Non-Sideburns, Fully Visible Forehead, Non-
Partially Visible Forehead, Non-Obstructed Fo rehead,
Non-Bushy Eyebrows, Non-Arched Eyebro ws, Narrow-
Eyes, Eyes Open, Big Nose, Non-Pointy Nose, Big Lips,
Non-Mouth Closed, Mo uth Slight ly Open, Non-Mouth-
Wide-Open, Non-Teeth Not Visible, Non-No Beard, Non-
Goatee, Round Jaw, Double Chin, Non-Wearing Hat, Non-
Oval-Face, Non-Square Face, Non-Round Face, Color
Photo, Posed Photo, Non-Attractive Man, Non-Attractive
Woman, Non-Indian, Non-Gray Hair, Bags Under Eyes,
Non-Heavy Makeup, Non-Rosy Cheeks, Non-Shiny Skin,
Non-Pale-Skin, 5 o’Clock Shadow, Strong Nose-Mouth-
Lines, Non-Wearing Lipstick, Non-Flushed Face, High-
Cheekbo nes, Brown Eyes, No n-Wearing Earring s,
Wearing Necktie, Non-Wearing Necklace

Figure 2: Illustration of the 73 attribute descriptors used for face verification [13].

In Kumar et al.’s original paper [12, 13], a SVM with RBF kernel is used as classifier.
The input for this, however, involves two parts, one is the absolute difference between the
attribute features of two face images to be verified, i.e., |Ai −A j|, while the other part is the
bitwise product of these two attributes, i.e., AiA j. Although adding the second part increases
the performance by about 2%, in our experiment, we did not use this since it is not so natural
for us - commonly we don’t take the product of two feature vectors as new features since this
will double the dimension of input vector. Indeed, the focus of this paper is not to find a new
way for feature extraction but to see whether exploiting the relationship between attributes
could improve the performance of face verification or not. For the above reasons, we use the
scheme of ’|Ai−A j| + Linear SVM’ as our baseline classifier 1.

We also compared our method with the strategy of [21], where relationship between
attributes is encoded by a max-spanning-tree and is used as augmented feature sets for the
training data. For better performance, in our implementation we augmented the original
feature sets with the product of correlated attributes and named this approach ’Aug.Fea’.

Following the standard LFW evaluation protocol, Fig. 3(a) gives the overall performance
of the proposed algorithm compared to the baseline. In particular, the AUC (Area Under the
ROC Curve, the larger the better) value of our method is 0.925, compared to 0.913 of the
baseline method and 0.922 of the ’Aug.Fea’ approach, indicating that the proposed method
does improve on the baseline performance. Fig.3(b) details the comparative performance on

1We also test the ’|Ai −A j | + RBF SVM’ scheme but this only leads to very slightly improvement (about 0.3%)
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each of the ten cross-validation test sets defined in [9]. We can see that both our method and
the method of [21] consistently outperform the baseline over all of the test sets, while our
method performs best among the three. This clearly demonstrates the benefit of exploiting
the attribute-relationship constrains. In fact, the average performance using our method is
85.5%±0.6%, compared to 83.4%±0.5% for the baseline algorithm and 84.6%±0.6% for
the method of [21]. It is worth mentioning that the performance of our method is comparable
to the state of the art results of 85.2% in [13] , without using more advanced techniques of
feature combination and kernel-based classifier, although we plan to extend our method to
its kernel-version in the near future.
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Figure 3: Comparison of our method with [13][21] on the LFW dataset: a) overall ROC
curve, b) detailed performance on ten cross-validation test sets.

Table.1 gives the comparative performance with respect to whether using attribute accu-
racy prior and attribute-relationship prior respectively for model constraints. It can be seen
that incorporating information from the accuracy of attribute classifiers improves the perfor-
mance of baseline classifier from 83.4% to 84.5%, which is further improved to 85.5% by
adopting attribute relationship constraints.

Table 1: Comparative average performance among four methods: linear SVM (L.SVM), lin-
ear SVM with augmented features (L.SVM + augm.Fea), linear SVM with attribute accuracy
prior (L.SVM + acc.), and linear SVM with both attribute accuracy and attribute-relationship
prior (L.SVM + acc.+ graph).

L.SVM L.SVM + agum.Fea. L.SVM + acc. L.SVM + acc.+ graph
83.4±0.5 84.6±0.6 84.5±0.6 85.5±0.6

Fig.4 lists some typical highly related attributes learnt using the method in Section 3.1.
These attributes can be broadly divided into two categories: 1) with high semantic correla-
tion (shown in yellow rectangle), and 2) with high statistical co-occurrence (shown in green
rectangle). We can see that the learnt attribute relationship is reasonable. For example, the
semantic concept of "male" has high co-occurrence with male-specific attributes such as
wearing necktie, bushy eyebrows, while with negative correlations with things commonly
used by female, such as lipstick, necklace, earrings, and so on. As another example, we
see that an "attractive woman" is usually "heavily markuped" and being "youth". On the
other hand, some concepts only have weak semantic connections but otherwise show strong
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co-occurrence property among them. As shown in the last row of Fig.4, ’color photo’ is a
general property of images with ’non-baby’, ’non-sunglasses’, etc., which essentially reflects
the statistical characteristics of images of this particular dataset.

Male No Wearing LipstickReceding Hairline Wearing NecktieBushy Eyebrows

No  Wearing EarringsNo Wearing Necklace Goatee

5 o’ Clock Shadow

Attractive Woman Heavy Makeup Youth Wearing Earrings Wearing NecklaceWearing Lipstick

Sideburns 5 o’ Clock Shadow Male Receding Hairline

No Wearing Lipstick

Goatee Beard

Bushy Eyebrows No Wearing Necklace No Wearing Earrings

White Pointy Nose Non‐Asian Non‐Straight Hair

BabyGray Hair

Non‐BlackNon‐Black Hair

Senior MustacheBald Black

No n‐Frowning Teeth Visible Non‐Mouth‐ClosedSmile

Bangs Obstructed Forehead Non‐Fully Visible Forehead Partially Visible Forehead Non‐Receding Hairline

Blond Hair

Sideburns Beard

Non‐Round Jaw Mustache

Square Face

Pale SkinNon‐Brown Eyes

Sunglasses Indian Square Face Eyeglasses

Non‐Mouth Closed Wearing Necklace Shiny Skin

Color Photo Non‐Baby Non‐Sunglasses Non‐Square Face

Non‐IndianRound Jaw

Non‐Mouth Wide OpenNon‐Middle Aged

Non‐Blurry Non‐Child Non‐ Flushed face

Figure 4: Illustration of highly related attributes learnt by our method. On the left-most
column we show the typical semantic concepts in bold, and on the right we list the related
attributes correlated to those concepts.

Fig.5 gives some illustration of face pairs which are incorrectly recognized by the base-
line classifier but correctly with our model. In particular, each pair of images in the left-most
three columns are respectively from the same subject but are misjudged as from different
subjects with high confidence by the baseline classifier. However, our method does not make
such mistakes. On the other hand, in the right-most three columns, we show three pairs of
face images from three different subjects, which are unfortunately incorrectly identified as
each pair from the same subject by the baseline classifier. However, in all these three cases
our method is able to make the correct decision. This shows that by taking the information
of attribute relationship into account, our method effectively improves the generalization
capability of the prediction model.

Figure 5: Illustration of three pairs of face images from the same subject respectively
(the left-most three columns) and three pairs from different subjects (the right-most three
columns). All the six pairs are mistakenly identified by the linear SVM classifier but are
correctly recognized with our method.
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5 Conclusion
In this paper we give a novel method to model the relationship between attributes, which
effectively allows our classifier to aware the hidden correlation among attributes in a general
context of subjects. We show in this paper on the challenging LFW database that the mined
attribute graph does reflect some aspects of the semantic relationship among attributes ex-
isted in real world, and furthermore, such relationship is beneficial to improve the accuracy
and robustness of the face verification system. The proposed method is general and can be
used beyond the task of face verification, which will be the focus of our future research.
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