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a b s t r a c t 

Over the last two decades, face alignment or localizing fiducial facial points on 2D images has received 

increasing attention owing to its comprehensive applications in automatic face analysis. However, such a 

task has proven extremely challenging in unconstrained environments due to many confounding factors, 

such as pose, occlusions, expression and illumination. While numerous techniques have been developed 

to address these challenges, this problem is still far away from being solved. In this survey, we present 

an up-to-date critical review of the existing literatures on face alignment, focusing on those methods 

addressing overall difficulties and challenges of this topic under uncontrolled conditions. Specifically, we 

categorize existing face alignment techniques, present detailed descriptions of the prominent algorithms 

within each category, and discuss their advantages and disadvantages. Furthermore, we organize special 

discussions on the practical aspects of face alignment in-the-wild , towards the development of a robust 

face alignment system. In addition, we show performance statistics of the state of the art, and conclude 

this paper with several promising directions for future research. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Fiducial facial points refer to the predefined landmarks on

 face graph, which are mainly located around or centered at

he facial components such as eyes, mouth, nose and chin (see

ig. 1 ). Localizing these facial points, which is also known as face

lignment, has recently received significant attention in computer

ision, especially during the last decade. At least two reasons ac-

ount for this. Firstly, many important tasks, such as face recog-

ition, face tracking, facial expression recognition, head pose esti-

ation, can benefit from precise facial point localization. Secondly,

lthough some level of success has been achieved in recent years,

ace alignment in unconstrained environments is so challenging

hat it remains an open problem in computer vision, and continues

o attract researchers to attack it. 

While face detection is generally regarded as the starting point

or all face analysis tasks ( Ding and Martinez, 2010; Zafeiriou et al.,

015 ), face alignment can be regarded as an important and essen-

ial intermediary step for many subsequent face analyses that range

rom biometric recognition to mental state understanding. Con-

rete tasks may differ in the number and type of the needed facial
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oints, as well as the way these points are used. Below we give

ome details on three typical tasks where face alignment plays a

rominent role: 

• Face recognition: Face alignment is widely used by face recogni-

tion algorithms to improve their robustness against pose vari-

ations. For example, in the stage of face registration, the first

step is usually to locate some major facial points and use them

as anchor points for affine warping, while other face recog-

nition algorithms, such as feature-based (structural) matching

( Campadelli et al., 2003; Zhao et al., 2003 ), rely on accurate

face alignment to build the correspondence among local fea-

tures (e.g, eyes, nose, mouth, etc.) to be matched. 
• Attribute computing: Face alignment is also beneficial to facial

attribute computing, since many facial attributes such as eye-

glasses and nose shape are closely related to specific spatial

positions of a face. In Kumar et al. (2009) , six facial points are

localized to compute qualitative attributes and similes that are

then used for robust face verification in unconstrained condi-

tions. 
• Expression recognition: The configurations of facial points (typ-

ically between 20–60) are reliable indicative of the deforma-

tions caused by expressions, and the subsequent analysis will

reveal the particular type of expression that may lead to such

deformation. Many works ( Bailenson et al., 2008; Li et al., 2015;

Rudovic et al., 2010; Senechal et al., 2011; Valstar and Pantic,

http://dx.doi.org/10.1016/j.cviu.2017.08.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2017.08.008&domain=pdf
mailto:x.jin@nuaa.edu.cn
mailto:x.tan@nuaa.edu.cn
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Fig. 1. Illustration of some example face images with 68 manually annotated points 

from the IBUG database ( Sagonas et al., 2013a ). 
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2012 ) follow this idea and use various features extracted from

these points for expression recognition. 

The above-mentioned applications, as well as numerous ones

yet to be conceived, urge the need for developing robust and accu-

rate face alignment techniques in real-life scenarios. 

Under constrained environments or on less challenging

databases, the problem of face alignment has been well ad-

dressed, and some algorithms even achieve performance that is

close to that of human beings ( Belhumeur et al., 2011; Dantone

et al., 2012 ). Under unconstrained conditions, however, this task

is extremely challenging and far from being solved, due to the

high degree of facial appearance variability caused either by

intrinsic dynamic features of the facial components such as eyes

and mouth, or by ambient environment changes. In particular, the

following factors have significant influence on facial appearance

and the states of local facial features: 

• Pose: The appearance of local facial features differ greatly be-

tween different camera-object poses (e.g., frontal, profile, up-

side down), and some facial components such as the one side

of the face contour, can even be completely occluded in a pro-

file face. 
• Occlusion: For face images captured in unconstrained condi-

tions, occlusion frequently happens and brings great challenges

to face alignment. For example, the eyes may be occluded by

hair, sunglasses, or myopia glasses with black frames. 
• Expression: Some local facial features such as eyes and mouth

are sensitive to the change of various expressions. For example,

laughing may cause the eyes to close completely, and largely

deform the shape of the mouth. 
• Illumination: Lighting (varying in spectra, source distribution,

and intensity), may significantly change the appearance of the

whole face, and make the detailed textures of some facial com-

ponents missing. 

These challenges are illustrated in Fig. 2 by the IBUG database

( Sagonas et al., 2013a ). An ideal face alignment system should be

robust to these facial variations on one hand; while on the other

hand, as efficient as possible to satisfy the need of practical appli-

cations (e.g., real-time face tracking). 

Over the last two decades, numerous techniques have been

developed for face alignment with varying degrees of suc-

cess. Çeliktutan et al. (2013) surveyed many traditional meth-

ods, but some recent state-of-the-art methods are not covered.

Wang et al. (2014) gave a more comprehensive survey of face

alignment methods over the last two decades, but the overall dif-

ficulties and challenges in unconstrained environments have not

been highlighted. More recently, Yang et al. (2015) provided an

empirical study of recent face alignment methods, aiming to draw

some empirical yet useful conclusions and make insightful sugges-

tions for practical applications. 

The significant contribution of this paper is to give a compre-

hensive and critical survey of the ad hoc face alignment meth-

ods on 2D images, addressing the difficulties and challenges in
nconstrained environments. We believe that it would be a use-

ul complement to Çeliktutan et al. (2013) , Wang et al. (2014) and

ang et al. (2015) . But to be self-contained, some traditional meth-

ds covered in Çeliktutan et al. (2013) and Wang et al. (2014) are

lso included. However, contrary to the previous works, we add

ome state-of-the-art algorithms emerged recently (e.g., 3D face

lignment methods), and pay special attention to study and sum-

arize the motivation and successful experiences behind the state-

f-the-art. Furthermore, we organize special discussions on the

ractical aspects of constructing a face alignment system, which

n our opinion is a very important topic in practice, but is mostly

gnored in previous studies. In addition, we show comparative per-

ormance statistics of the state of the art, and propose several

romising directions for future research. 

In Section 2 , we briefly describe the main idea of face align-

ent and categorize existing methods into two main categories.

hen, the prominent methods within each category are reviewed

nd analyzed in Sections 3 and 4 . In Section 5 , we investigate some

ractical aspects of developing of a robust face alignment system.

n Section 6 , we discuss a few issues concerning performance eval-

ation. Finally, we conclude this paper with a discussion of several

romising directions for further research in Section 7 . 

. Overview 

The problem of face alignment on 2D images has a long history

n computer vision. A large number of approaches have been pro-

osed to tackle it with varying degrees of success. From an over-

ll perspective, face alignment can be formulated as a problem of

earching over a face image for the pre-defined facial points (also

alled facial landmarks, or face shape). It typically starts from a

oarse initial shape, and proceeds by refining the shape estimate

tep by step until convergence. During the search process, two dif-

erent sources of information are typically used: facial appearance

nd shape information. The latter aims to explicitly model the spa-

ial relations between the locations of facial points to ensure that

he estimated facial points can form a valid face shape. Although

ome methods make no explicit use of the shape information, it is

ommon to combine these two sources of information. 

Before describing specific and prominent algorithms, a clear and

igh-level categorization will help to provide a holistic understand-

ng of the commonality and differences of existing methods in us-

ng the appearance and shape information. For this, we follow the

asic modeling principles in pattern recognition, and roughly di-

ide existing methods into two categories: generative and discrimi-

ative . 

• Generative methods: These methods build generative models for

both the face shape and appearance. They typically formulate

face alignment as an optimization problem to find the shape

and appearance parameters that generate an appearance model

instance giving best fit to the test face. Note that the facial ap-

pearance can be represented either by the whole (warped) face,

or by the local image patches centered at the facial points. 
• Discriminative methods: These methods directly infer the target

location from the facial appearance. This is typically done by

learning independent local detector or regressor for each facial

point and employing a global shape model to regularize their

predictions, or by directly learning a vectorial regression func-

tion to infer the whole face shape, during which the shape con-

straint is implicitly encoded. 

Table 1 summarizes algorithms and representative works for

ace alignment, where we further divide the generative meth-

ds and discriminative methods into several subcategories. A few

ethods overlap category boundaries, and are discussed at the end

f the section where they are introduced. Below, we discuss the
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Fig. 2. An illustration of the great challenges of face alignment in the wild (IBUG ( Sagonas et al., 2013a )), from left to right (every two columns): variations in pose, occlusion, 

expression and illumination. 

Table 1 

Categorization of the popular approaches for face alignment. 

Approach Representative works 

Generative methods 

Active appearance models 

(AAMs) 

Regression-based fitting Original AAM ( Cootes et al., 2001 ); Boosted Appearance Model ( Liu, 2007 ); Nonlinear discriminative approach ( Saragih and 

Goecke, 2007 ); Accurate regression procedures for AMMs ( Sauer et al., 2011 ) 

Gradient descent-based 

fitting 

Project-out inverse compositional (POIC) algorithm ( Matthews and Baker, 2004 ); Simultaneous inverse compositional (SIC) 

algorithm ( Gross et al., 2005 ); Fast AAM ( Tzimiropoulos and Pantic, 2013 ); 2.5D AAM ( Martins et al., 2013 ); Active Orientation 

Models ( Tzimiropoulos et al., 2014 ) 

Part-based generative 

models 

Original Active Shape Model (ASM) ( Cootes et al., 1995 ); Gauss-Newton deformable part model ( Tzimiropoulos and 

Pantic, 2014 ); Project-out cascaded regression ( Tzimiropoulos, 2015 ); Active pictorial structures ( Antonakos et al., 2015b ) 

Discriminative methods 

Constrained local models 

(CLMs) a 

PCA shape model Regularized landmark mean-shift ( Saragih et al., 2011 ); Regression voting-based shape model matching ( Cootes et al., 2012 ); 

Robust response map fitting ( Asthana et al., 2013 ); Constrained local neural field ( Baltrusaitis et al., 2013 ) 

Exemplar shape model Consensus of exemplar ( Belhumeur et al., 2011 ); Exemplar-based graph matching ( Zhou et al., 2013b ); Robust Discriminative 

Hough Voting ( Jin and Tan, 2016 ) 

Other shape models Gaussian Process Latent Variable Model ( Huang et al., 2007b ); Component-based discriminative search ( Liang et al., 2008 ); 

Deep face shape model ( Wu and Ji, 2015 ) 

Constrained local regression Boosted regression and graph model ( Valstar et al., 2010 ); Local evidence aggregation for regression ( Martinez et al., 2013 ); 

Guided unsupervised learning for model specific models ( Jaiswal et al., 2013 ) 

Deformable part models 

(DPMs) 

Tree structured part model ( Zhu and Ramanan, 2012 ); Structured output SVM ( U ̌ri ̌cář et al., 2012 ); Optimized part model 

( Yu et al., 2013 ); Regressive Tree Structured Model ( Hsu et al., 2015 ) 

Ensemble regression-voting Conditional regression forests ( Dantone et al., 2012 ); Privileged information-based conditional regression forest ( Yang and 

Patras, 2013a ); Sieving regression forest votes( Yang and Patras, 2013b ); Nonparametric context modeling ( Smith et al., 2014 ) 

Cascaded regression 

Two-level boosted 

regression 

Explicit shape regression ( Cao et al., 2012 ); Robust cascaded pose regression ( Burgos-Artizzu et al., 2013 ); Ensemble of 

regression trees ( Kazemi and Josephine, 2014 ); Gaussian process regression trees ( Lee et al., 2015 ); 

Cascaded linear regression Supervised descent method ( Xiong and De la Torre, 2013 ); Multiple hypotheses-based regression ( Yan et al., 2013 ); Local 

binary feature ( Ren et al., 2014 ); Incremental face alignment ( Asthana et al., 2014 ); Coarse-to-fine shape search ( Zhu et al., 

2015 ) 

Deep neural networks b 

Deep CNNs Deep convolutional network cascade ( Sun et al., 2013 ); Tasks-constrained deep convolutional network ( Zhang et al., 2014c ); 

Deep Cascaded Regression( Lai et al., 2015 ) 

Other deep networks Coarse-to-fine Auto-encoder Networks (CFAN) ( Zhang et al., 2014a ); Deep face shape model ( Wu and Ji, 2015 ); RMnemonic 

Descent Method ( Trigeorgis et al., 2016 ) 

3D alignment methods c 

3D shape regression 3D face shape regression ( Tulyakov and Sebe, 2015 ); Pose-invariant 3D face alignment ( Jourabloo and Liu, 2015 ); Two-Stage 

convolutional part heatmap regression ( Bulat and Tzimiropoulos, 2016 ) 

Dense 3D model fitting Displaced dynamic expression regression ( Cao et al., 2014a ); Dense 3D face alignment from 2D videos ( Jeni et al., 2015 ); 

CNN-based dense 3D model fitting ( Jourabloo and Liu, 2016 ); 3D dense face alignment ( Zhu et al., 2016 ) 

a Classic Constrained Local Models (CLMs) typically refer to the combination of local detector for each facial point and the parametric Point Distribution Model ( Cristinacce 

and Cootes, 2006; Saragih et al., 2011; Wang et al., 2008 ). Here we extend the range of CLMs by including some methods based on other shape models (i.e., exemplar-based 

model ( Belhumeur et al., 2011 )). In particular, we will show that the exemplar-based method ( Belhumeur et al., 2011 ) can also be interpreted under the conventional CLM 

framework. 
b We note that some deep learning-based systems can also be placed in other categories. For instance, some systems are constructed in a cascade manner ( Lai et al., 

2015; Trigeorgis et al., 2016; Zhang et al., 2014a ), and hence can be naturally categorized as cascaded regression. However, to highlight the increasing important role of deep 

learning techniques for face alignment, we organize them together for more systematic introduction and summarization. 
c 3D face alignment refer to 3D alignment from 2D images in this paper, rather than the alignment of 3D faces. Since current 3D alignment methods basically employ 

discriminative regression techniques (e.g., cascaded regression), we categorized them as discriminative methods. 
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Fig. 3. First row: mean shape and first two shape eigenvectors. Second row: a face 

warped onto the canonical frame, and first two appearance eigenvectors. 
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1 The standard Lucas–Kanade image alignment algorithm ( Lucas et al., 1981 ) aims 

to find the locally best alignment between a constant template image and the 

input image with respect to the warp (shape) parameters, while Matthews and 

Baker (2004) replace the constant template image with a parameterized appearance 

model for AAM fitting. 
motivation and general approach of each category first, and then,

give the review of prominent algorithms within each category, dis-

cussing their advantages and disadvantages. 

3. Generative methods 

Typically, faces are modelled as deformable objects which can

vary in terms of shape and appearance. Generative face alignment

methods construct parametric models for both face shape and ap-

pearance, and seek to find the best model parameters that can re-

construct the test face well during testing. This is similar to the

EigenFace algorithm that employs Principle Component Analysis

(PCA) to learn a set of liner appearance bases from training images,

and uses these learned bases to reconstruct the new images during

testing ( Turk and Pentland, 1991 ). However, generative face align-

ment methods take into account the deformation of face shape,

and build appearance model in a canonical reference frame where

the shape variations have been removed. 

According to the type of facial representation, generative meth-

ods can be further divided into two categories: Active Appearance

Models that use holistic representation, and part-based generative

models that use part-based representation. 

3.1. Active appearance models 

Active appearance models (AAMs), proposed by

Cootes et al. (2001) , are linear statistical models of both the shape

and the appearance of the deformable object. AAMs been widely

used in many computer vision tasks, such as face recognition

( Lanitis et al., 1997 ), object tracking ( Stegmann and Olsen, 2001 ),

3D modeling ( Hamsici and Martinez, 2009; Xiao et al., 2004 ) and

medical image analysis ( Stegmann et al., 2003 ). In the field of

face alignment, AAMs are arguably the most well-known family of

generative methods that have been extensively studied during the

last 20 years ( Cootes et al., 2001; Gross et al., 2005; Matthews and

Baker, 2004; Tzimiropoulos and Pantic, 2013 ). 

In the following, we briefly introduce the basic AAM algorithm

first, and then describe some recent advances on AAM research,

and present some discussions about the advantages and disadvan-

tages of AAMs. 

3.1.1. Basic AAM algorithm: modeling and fitting 

AAM modeling. An AAM is defined by three components,

i.e., shape model, appearance model , and motion model . The

shape model, which is coined Point Distribution Model (PDM)

( Cootes and Taylor, 1992 ), is built from a collection of manually

annotated facial points s = (x T 
1 
, . . . , x T 

N 
) T describing the face shape,

where x i = (x i , y i ) is the 2-D location of the i th point. To learn the

shape model, the training face shapes are normalized with respect

to a global similarity transform (typically using Procrustes Analysis

( Gower, 1975 )) and PCA is applied to obtained a set of linear shape

bases. The shape model can be mathematically expressed as: 

s (p ) = s 0 + Sp , (1)

where s 0 ∈ R 

{ 2 N, 1 } is the mean shape, S ∈ R 

{ 2 N,n } and p ∈ R 

n is the

shape eigenvectors and parameters. Furthermore, this shape model

need to be composed with a 2D global similarity transform, in or-

der to position a particular shape model instance arbitrarily on the

image frame. For this, using the re-orthonormalization procedure

described in Matthews and Baker (2004) , the final expression for

the shape model can be compactly written using ( 1 ) by appending

S with 4 similarity eigenvectors. The first row in Fig. 3 illustrates

the mean shape and first two shape eigenvectors. 

The appearance model is obtained by warping the training faces

onto a common reference frame (typically defined by the mean
hape), and applying PCA onto the warped appearances. Mathe-

atically, the texture model is defined as follows: 

 (c ) = a 0 + Ac , (2)

here a 0 ∈ R 

{ F, 1 } is the mean appearance, A ∈ R 

{ F,m } and c ∈ R 

{ m, 1 }
s the appearance eigenvectors and parameters respectively. The

econd row in Fig. 3 illustrates the mean warped appearance and

rst two appearance eigenvectors. 

To produce the shape-free textures, the motion model plays a

ole as a bridge between the image frame and the canonical ref-

rence frame. Typically, it is a warp function W that defines how,

iven a shape, the image should be warped into a canonical refer-

nce frame. Popular motion models include piece-wise affine warp

 Matthews and Baker, 2004; Tzimiropoulos and Pantic, 2013 ) and

hin-Plate Splines warp ( Baker and Matthews, 2001 ). 

AAM fitting. Given an test image I , AAM fitting aims to find the

ptimal parameters p and c so that the synthesized appearance

odel instance gives best fit to the test image in the reference

rame. Formally, let I [ p ] = I (W(p )) denote the vectorized version

f the warped test image, then AAM fitting can be formulated as

he following optimization problem, 

rg min 

p , c 
|| I [ p ] − a 0 − Ac || 2 . (3)

olving ( 3 ) is an iterative process that at each iteration an update

f the current model parameters is estimated. In general, there are

wo main approaches for AAM fitting. 

The first approach is to assume a fixed relationship between

he residual image and parameter increments, and learn this re-

ationship via regression . For example, in the original AAM pa-

er ( Cootes et al., 1998 ), this relationship is assumed linear and

earned by linear regression, while in Saragih and Goecke (2007) a

onlinear repressor is learned via boosting. However, because

f the incorrect assumption of fixed relationship ( Matthews and

aker, 2004 ), the regression-based fitting strategies are efficient

ut approximate. 

The second approach is to linearize with respect to p and

hen solve ( 3 ) iteratively in a Gauss–Newton fashion, as done by

he Lukas–Kanade (LK) image alignment algorithm ( Matthews and

aker, 2004 ) 1 . However, standard LK algorithm is inefficient when

pplied to AAMs, because the partial derivatives, Hessian and
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radient direction all need to be recomputed at each iteration.

his problem is addressed by Matthews and Baker (2004) with

n efficient inverse compositional image alignment algorithm

 Gross et al., 2003 ), where the Jacobian and Hessian matrix can

e pre-computed during fitting 2 . However, although extremely fast,

he inverse compositional algorithm is also known to generalize

oorly to unseen images ( Gross et al., 2005 ). Several attempts to

mprove the generalization ability under the inverse compositional

ramework have been proposed in literature ( Gross et al., 2003; Pa-

andreou and Maragos, 2008 ), but are at a cost of increasing com-

utational burden. 

.1.2. Recent advances on AAMs 

Recently, some extensions and improvements of AAMs have

een proposed to make this classic algorithm better adapted to

he task of face alignment in-the-wild . In general, recent advances

n AAMs mainly focus on three aspects: (1) unconstrained training

ata ( Tzimiropoulos and Pantic, 2013 ), (2) feature-based represen-

ations ( Antonakos et al., 2014; Tzimiropoulos et al., 2012 ) and (3)

dvanced fitting strategies ( Tzimiropoulos et al., 2012; Tzimiropou-

os and Pantic, 2013 ). 

Unconstrained training data. Although some AAM fitting algo-

ithms are known to perform well on constrained face databases

 Gross et al., 2003 ), their performance has not been assessed

n in-the-wild databases until recently. Tzimiropoulos and Pan-

ic (2013) showed that, when trained in-the-wild, AAMs can gen-

ralize well to unseen images only using raw un-normalized pixel

ntensities as features. 

Feature-based representations. Pixel-based image representa- 

ion is typically considered to be sensitive to global lighting

 Cootes et al., 1998; Matthews and Baker, 2004; Tzimiropoulos and

antic, 2013 ). Therefore, a natural way to improve the robustness

f AAMs is to use the feature-based representation such as HOG

 Dalal and Triggs, 20 05 ), SIFT ( Lowe, 20 04 ) and SURF ( Bay et al.,

008 ), and this has been confirmed by some recent works on

AMs ( Antonakos et al., 2015a; Tzimiropoulos et al., 2012; 2014 ). 

Advanced fitting strategies. Finding a good trade-off be-

ween efficiency and accuracy is important for AAM fitting.

owever, most of traditional algorithms only pursue either ef-

ciency ( Matthews and Baker, 2004 ) or accuracy ( Gross et al.,

003 ), but not both of them. Recently, some advanced fitting

lgorithms have been proposed to fill this gap ( Papandreou

nd Maragos, 2008; Tzimiropoulos and Pantic, 2013 ). For ex-

mple, by using a standard result from optimization theory,

zimiropoulos and Pantic (2013) dramatically reduced the domi-

ant cost in Gross et al. (2003) and the standard Lukas–Kanade al-

orithm in Matthews and Baker (2004) , while achieving promising

tting accuracy. 

.1.3. Discussion 

We have described the basic AAM algorithm and recent ad-

ances on AAMs. Despite the popularity, AMMs have been tradi-

ionally criticized for the limited representational power of their

olistic representation, especially when used in wild conditions.

owever, recent works on AAMs ( Antonakos et al., 2014; Lucey

t al., 2013; Tzimiropoulos et al., 2012 ) suggest that this limi-

ation might have been over-stressed in the literature and that

AMs can produce highly accurate results if appropriate train-

ng data ( Tzimiropoulos and Pantic, 2013 ), image representations

 Antonakos et al., 2014; Tzimiropoulos et al., 2012 ) and fitting
2 The inverse compositional algorithm that “projects out” the appearance varia- 

ion during fitting is considered as a seminal work in AAMs fitting ( Matthews and 

aker, 2004 ). However, because AAM fitting is not the key concern of this survey, 

e do not give detailed description about this algorithm and refer the readers to 

atthews and Baker (2004) for more details. 

P  

2  

g  

l  

t  

s  
trategies ( Tzimiropoulos et al., 2012; Tzimiropoulos and Pantic,

013 ) are employed. 

Despite this, the partial occlusion cannot be easily handled by

he holistic appearance model. One possible way to overcome this

s to use part-based representations, based on the observation that

ocal features are generally not as sensitive as global features to

ighting and occlusion. 

.2. Part-based generative models 

Part-based generative methods build generative appearance

odels for facial parts, typically with a shape model to govern

he deformations of the face shapes. In general, there are two ap-

roaches to construct generative part models. 

The first is to construct individual appearance model for each

acial part, and a notable example is the well-known active shape

odels ( Cootes and Taylor, 1992; Cootes et al., 1995 ) that combine

he generative appearance model for each facial part and the Point

istribution Model for global shapes. However, a more natural and

opular way is to model individual facial part is the discriminatively

rained local detector ( Asthana et al., 2013; Cootes et al., 2012;

ristinacce and Cootes, 2007; Saragih et al., 2011 ), as adopted by a

ery successful family of methods coined constrained local models

CLMs) ( Asthana et al., 2013; Saragih et al., 2011 ). Actually, ASMs

an be regarded as the predecessors of CLMs, and we refer the

eader to Section 4.1 for more details about ASMs under the CLM

ramework. 

The second approach is to construct generative models for all

acial parts simultaneously. For example, the Gauss–Newton De-

ormable Part Model (GN-DPM) ( Tzimiropoulos and Pantic, 2014 )

uild linear statistical model for both the concatenated facial

arts and the shape using PCA. With the part-based represen-

ation, the motion model of GN-DPM degenerates to similarity

ransformation, rather than the affine warp of AAMs. In the fit-

ing phase, GN-DPM formulates and solves the non-linear least

quares optimization problem similar to AAMs ( Matthews and

aker, 2004; Tzimiropoulos and Pantic, 2013 ), jointly optimizing

he appearance model and shape model in a Gauss-Newton fashion

 Tzimiropoulos and Pantic, 2013 ). Apart from the PCA-based ap-

earance model, Antonakos et al. (2015b ) propose to model the ap-

earance of facial parts using multiple pairwise distributions based

n the edges of a graph (GMRF), and show that this outperforms

he commonly used PCA model under an inverse Gauss–Newton

ptimization framework. 

Compared to AAMs, the part-based generative models mainly

ave the advantages from part-based representation, i.e., more ro-

ust to global lighting and occlusion in wild conditions. Extensive

xperiments on wild face databases ( Belhumeur et al., 2013; Le

t al., 2012; Zhu and Ramanan, 2012 ) demonstrate that the part-

ased GN-DPM ( Tzimiropoulos and Pantic, 2014 ) can outperform

AMs by a large margin. 

.3. Summary and discussion 

We have reviewed generative methods for face alignment in

wo categories, i.e., Active Appearance Models that use the holis-

ic representation and the part-based generative models that use

he part-based representation. Recent results show that genera-

ive methods can produce high fitting accuracy for face align-

ent in-the-wild , if unconstrained training data ( Tzimiropoulos and

antic, 2013 ), robust image representations ( Antonakos et al.,

014; Tzimiropoulos et al., 2012 ) and appropriate fitting strate-

ies ( Tzimiropoulos, 2015; Tzimiropoulos et al., 2012; Tzimiropou-

os and Pantic, 2013; 2014 ) are employed. These results suggest

hat the limitations of generative methods might have been over-

tressed in the literature. In addition, generative methods typically
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have the advantage of requiring fewer training examples than the

discriminative methods to perform well ( Antonakos et al., 2015b ). 

However, with recent development of unconstrained facial

databases with an abundance of annotated facial data captured, the

discriminative methods, which are capable of effectively leveraging

large bodies of training data, are now playing a more and more

prominent role in face alignment. 

4. Discriminative methods 

Discriminative face alignment methods seek to learn a (or a set

of) discriminative function that directly maps the facial appearance

to the target facial points. In general, there are two main lines of

research for discriminative methods. The first line is to follow the

“divide and conquer” strategy by learning discriminative local ap-

pearance model for each facial point, and a shape model to im-

pose global constraints on these local models. This line can be fur-

ther subdivided into three classes: (1) Constrained Local Models that

learn independent local detector for each facial point, with a shape

model to regularize the detection responses of these local detec-

tors. (2) constrained local regression methods that learn indepen-

dent local regressor for each point and use a graph model to guide

the search of these local regressors, and (3) deformable part mod-

els that learn the local appearance model and the tree structured

shape model jointly in a discriminative framework. 

The second line is to directly learn a vectorial regression func-

tion to infer the whole face shape, during which the shape con-

straint is implicitly encoded. This line can also be further subdi-

vided into four classes: (1) ensemble regression-voting methods that

cast votes for all facial points from local regions via regression, and

ensemble the votes from different regions to form a robust pre-

diction, (2) cascaded regression methods that learn a vectorial re-

gression function in a cascade manner to estimate the face shape

stage-by-stage, (3) deep neural networks that employ deep convo-

lutional networks ( Sun et al., 2013; Zhang et al., 2014c ) or auto-

encoder networks ( Zhang et al., 2014a ) to model the nonlinear re-

lationship between the facial appearance and the shape update,

and (4) 3D alignment methods that treat the face as a 3D object,

and aim to recover the 3D locations of facial points from 2D im-

ages, typically through discriminative regression techniques (e.g.,

cascaded regression). 

Table 2 gives a overview of the seven classes of discrimina-

tive methods in our taxonomy, where the appearance model, shape

model and highlights of them are listed respectively to show the

differences and relations between them. 

4.1. Constrained local models 

Constrained local models (CLMs), which can date back to the

seminal work of Active Shape Model (ASM) ( Cootes et al., 1995 ),

are a relatively mature approach for face alignment ( Asthana et al.,

2013; Baltrusaitis et al., 2013; Cootes et al., 2012; Cristinacce and

Cootes, 2006; Saragih et al., 2011 ). In the training phase, CLMs

learn independent local detector for each facial point, and a prior

shape model to characterize the deformation of face shapes. In

testing, face alignment is typically formulated as an optimization

problem to find the best fit of the shape model to the test image.

We classify CLMs as the discriminative methods because of the dis-

criminative nature of usual local detectors. 

While the seminal work of Saragih et al. (2011) unifies vari-

ous CLM approaches in a probabilistic framework, it only focuses

on the CLMs using the PDM-based shape model. However, we

note that some methods using other shape model (i.e., the ex-

emplar shape model ( Belhumeur et al., 2011 )) are also close to

Saragih et al. (2011) in methodology. Hence, in this paper we refer
o those methods combining independent local detector and any

ind of shape model collectively as constrained local models . 

In the following, we will first briefly introduce the basic PDM-

ased CLM algorithm, then describe recent advances on CLMs in

andling unconstrained challenges. In particular, we will show that

xemplar-based method ( Belhumeur et al., 2011 ) can also be in-

erpreted under the conventional CLM framework ( Saragih et al.,

011 ). Finally, we discuss the advantages and disadvantages of

LMs. 

.1.1. Basic CLM algorithm: modeling and fitting 

CLM modeling. A CLM consists of two important components:

ocal detector for each facial point, and the shape model that cap-

ures the deformations of valid face shapes. The task of local detec-

or is to compute a pseudo probability (likelihood) that the target

oint occurs at a particular position. Existing local detectors can be

roadly categorized into three groups. 

• Generative approach: Generative approaches can be use to

model local image patches centered at the annotated facial

points. For example, Cootes and Taylor (1992) ; 1993 ) assume

that the local appearance is multivariate Gaussian distributed,

and use the Mahalanobis distance as the fitting response for a

new image patch. 
• Discriminative classifier: Discriminative classifier-based approach

learns a binary classifier for each point with annotated im-

age patches to discriminate whether the target point is aligned

or not when testing. To cast various CLM fitting strategies in

a unified probabilistic framework, the output of these classi-

fiers are typically transformed into pseudo probabilities. Differ-

ent types of classifiers have been exploited in literature, e.g.,

logistic regression ( Saragih et al., 2011 ), SVM ( Asthana et al.,

2013; Belhumeur et al., 2011 ), and local neural field (LNF)

( Baltrusaitis et al., 2013 ). 
• Regression-voting approach: The regression-voting approach

casts votes for the target point from a nearby region, then

compute the pseudo probabilities by accumulating votes from

different regions ( Cootes et al., 2012; Cristinacce and Cootes,

2007 ). The regression-voting approach has the potential to be

more efficient since a locally exhaustive search is avoided. 

Due to the local patch support and large variations in training,

he local detectors are typically imperfect, and the correct location

ill not always be at the location with the highest detection re-

ponse. Therefore, a global shape model is typically employed to

egularize the detection of these local detectors. For this, conven-

ional CLMs use the PDM that simply models the normalized face

hapes as multivariate Gaussian and approximates them using PCA

see Eq. (1) ). 

CLM fitting. Overall, give an image I , the goal of PDM-based

LMs is to find the optimal shape parameter p that maximizes the

robability of its points corresponding to consistent locations of

he facial features. By assuming that the local search of each facial

oint is conditionally independent, the fitting objective of PDM-

ased CLMs can be written as: 

 

∗ = arg max 
p 

p(p |{ l i = 1 } N i =1 , I ) 

= arg max 
p 

p(p ) 
N ∏ 

i =1 

p(l i = 1 | x i (p ) , I ) , (4)

here x i ( p ) is the location of the i th point generated by the shape

odel, l i ∈ { 1 , −1 } is a discrete random variable denoting whether

he i th facial point is aligned or not, and p ( p ) is the prior distribu-

ion of p that can be estimated from the training data. 

CLM fitting based on ( 4 ) is an iterative process that entails (1)

onvolving the local detectors with the image to generate response



X. Jin, X. Tan / Computer Vision and Image Understanding 162 (2017) 1–22 7 

Table 2 

Overview of the six classes of discriminative methods in our taxonomy. 

Appearance model Shape model Highlights of the method 

Constrained local 

models 

Independently trained local detector 

that computes a pseudo probability of 

the target point occurring at a 

particular position. 

Point distribution model; Exemplar 

model, etc a . 

The local detectors are first correlated with the 

image to yield a filter response for each facial 

point, and then shape optimization is 

performed over these filter responses. 

Constrained local 

regression 

Independently trained local regressor 

that predicts a distance vector relating 

to a patch location. 

Markov random fields to model the 

relations between relative positions of 

pairs of points. 

Graph model is used to constrain the search 

space of local regressors by exploiting the 

constellations that facial points can form. 

Deformable part 

models 

Part-based appearance model that 

computes the appearance evidence for 

placing a template for a facial part. 

Tree-structured models that are easier 

to optimize than dense graph 

structures. 

All parameters of the appearance model and 

shape model are discriminatively learned in a 

max-margin structured prediction framework; 

efficient dynamic programming algorithms can 

be used to find globally optimal solutions. 

Ensemble 

regression-voting 

Image patches to cast votes for all 

facial points relating to the patch 

centers; Local appearance features 

centered at facial points. 

Implicit shape constraint that is 

naturally encoded into the 

multi-output function (e.g., regression 

tree). 

Votes from different regions are ensembled to 

form a robust prediction for the face shape. 

Cascaded regression Shape-indexed feature that is related to 

current shape estimate (e.g., 

concatenated image patches centered 

at the facial points). 

Implicit shape constraint that is 

naturally encoded into the regressor in 

a cascaded learning framework. 

Cascaded regression typically starts from an 

initial shape (e.g., mean shape), and refines the 

holistic shape through sequentially trained 

regressors. 

Deep neural 

networks 

Whole face region that is typically 

used to estimate the whole face shape 

jointly; Shape-indexed feature b . 

Implicit shape constraint that is 

encoded into the networks since all 

facial points are predicted 

simultaneously. 

Deep network is a good choice to model the 

nonlinear relationship between the facial 

appearance and the shape update. Among 

others, deep CNNs have the capacity to learn 

highly discriminative features for face 

alignment. 

3D alignment 

methods 

Shape-indexed feature c ; Specially 

designed features that are more 

appropriate for 3D regression. 

3D point distribution model (PDM) that 

extends the traditional 2D PDM to the 

3D space; Implicit shape constraint 

that is encoded into the multi-ouput 

regressors. 

3D methods have strong advantages over 2D 

with respect to the robustness to pose, as they 

can accommodate a widely range of views. 

Currently, most of the 3D face alignment 

methods employ regression techniques, e.g., 

cascaded regression, CNN-based regression. 

a Constrained local models (CLMs) typically employ a parametric (PCA-based) shape model ( Saragih et al., 2011 ), but we will show that the exemplar-based method 

( Belhumeur et al., 2011 ) can also be derived from the CLM framework. Furthermore, we extend the range of CLMs by including some methods that combine independently 

local detector and other face shape model ( Huang et al., 2007b; Liang et al., 2008; Wu and Ji, 2015 ). 
b Some deep network-based systems follow the cascaded regression framework, and use the shape-indexed feature ( Zhang et al., 2014a ). 
c Some 3D alignment methods ( Jourabloo and Liu, 2015; Tulyakov and Sebe, 2015 ) also follow the cascaded regression framework using shaped indexed features. 

Table 3 

Different approximation strategies of response map. 

Approximation of response map 

Isotropic Gaussian estimator ( Cootes et al., 1995 ) N (x i (p ) ;μi , σ
2 
i 

E ) 

Anisotropic Gaussian estimator ( Wang et al., 2008 ) N (x i (p ) ;μi , �i ) 

Gaussian mixture model ( Gu and Kanade, 2008 ) 
∑ K i 

k =1 
πik N (x i (p ) ;μik , �ik ) 

Gaussian kernel estimation ( Saragih et al., 2011 ) 
∑ 

y j ∈ �x i 
πy j N (x i (p ) ; y j , ρ

2 E ) 

m  

o  

m  

g  

f  

s

 

a  

T  

o  

μ  

r  

s  

t  

c  

m  

n  

G  

k  

 

l  

l  

r  

i  

p  

a  

s  

t  

H  

p  

t  

a  

r  

t  

u

4

 

b  

g  

(  

s

 

r  
aps, and (2) performing a global shape optimization procedure

ver these response maps. To make optimization efficient and nu-

erically stable, a common choice of existing optimization strate-

ies is to replace the true response maps with some approximate

orms and then perform Gauss–Newton optimization over them in-

tead of the original response maps. 

The seminal framework of Saragih et al. (2011) unifies various

pproximation strategies for the true response maps. As listed in

able 3 , they are (1) the isotropic Gaussian estimators used by

riginal ASMs ( Cootes and Taylor, 1992; Cootes et al., 1995 ), where

i is the location of the maximum filter response within the i th

esponse map, and σ−2 
i 

is the detection confidence over peak re-

ponse coordinate, (2) a full covariance anisotropic Gaussian es-

imators used in Wang et al. (2008) , where �i is the anisotropic

ovariance matrix of Gaussian distribution, (3) Gaussian mixture

odel (GMM) used in Gu and Kanade (2008) , where K i denotes the

umber of modes and { πik } K i k =1 
are the mixing coefficients for the

MM of the i th point, and (4) a homoscedastic isotropic Gaussian

ernel estimation (KDE) used by Saragih et al. (2011) , where πy j =
p(l i = 1 | y j , I ) denotes the likelihood that the i th point is aligned at

ocation y j , and ρ2 denotes the variance of the noise on facial point

ocations, E is the identity matrix. Among them, the nonparamet-
ic Gaussian kernel estimation (KDE) method ( Saragih et al., 2011 )

s considered to achieve a good tradeoff between representation

ower and the computational complexity. This method is known

s Regularized Landmark Mean-Shift (RLMS) fitting, as the re-

ulting update equations based on this nonparametric approxima-

ion are reminiscent of the well known mean-shift ( Fukunaga and

ostetler, 1975 ) over the facial point but with regularization im-

osed by the PDM. Baltrušaitis et al. (2012) explored the informa-

ion of depth images, and extend the RLMS ( Saragih et al., 2011 )

lgorithm to a 3D vision. Unlike aforementioned approximations to

esponse maps, Asthana et al. (2013) proposes a novel discrimina-

ive regression based approach to directly estimate the parameter

pdate, and results in significant performance improvement. 

.1.2. Recent advances on CLMs 

Recently, some improvements of the conventional CLMs have

een proposed to better handle various challenges in-the-wild. In

eneral, recent advances on CLMs mainly focus on three aspects:

1) better local detectors, (2) discriminative fitting, and (3) other

hape models. 

Better local detectors. Conventional CLMs typically use logistic

egression ( Saragih et al., 2011 ) or SVM ( Asthana et al., 2013; Bel-
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(  
humeur et al., 2011 ) to train local detector, while recently some

advanced local detectors have been proposed, such as the Mini-

mum Output Sum of Squared Errors (MOSSE) filters ( Martins et al.,

2014 ) and the local neural field (LNF) patch expert. These detectors

are able to capture more complex information and exploit spatial

relationships between pixels, and hence can achieve better detec-

tion results. 

Discriminative fitting. It is widely acknowledged that the for-

mulation based on CLMs is non-convex, and in general prone

to local minima. As an alternative, Asthana et al. (2013) pro-

posed a novel Discriminative Response Map Fitting (DRMF) method

for the CLM fitting that outperforms the RLMS fitting method

( Saragih et al., 2011 ) in wild databases. Unlike the RLMS method

that performs Gaussian–Newton optimization, the DRMF method

directly estimates the parameters of the DPM via discriminative re-

gression using a response map based texture model. 

Other shape models. One problem with the PDM is that its the

model flexibility is heuristically determined by PCA dimension. To

overcome this, some other shape models are investigated under

the CLM framework ( Belhumeur et al., 2011; Huang et al., 2007b;

Wu and Ji, 2015 ). In particular, we will show that the exemplar-

based method ( Belhumeur et al., 2011 ) can be derived and well

interpreted under the conventional CLM framework ( Saragih et al.,

2011 ). 

The exemplar-based method ( Belhumeur et al., 2011 ) assumes

that the face shape s = (x 1 , . . . , x N ) 
T in the test image is generated

by one of the transformed exemplar shapes (global models). Let

s k, t ( k = 1 , . . . , D ) denote locations of all facial points in the k th of

the D exemplars that transformed by some similarity transforma-

tion t , and let x i, k, t denote location of the i th facial point of the

transformed exemplar s k, t . By assuming that conditioned on the

global model s k, t , the location of each facial point x i is condition-

ally independent of one another, the exemplar-based shape model

p ( s ) can be written as follows: 

p(s ) = 

D ∑ 

k =1 

∫ 
t∈ T 

p(s , s k,t ) dt 

= 

D ∑ 

k =1 

∫ 
t∈ T 

N ∏ 

i =1 

p(x i | x i,k,t ) p(s k,t ) dt, (5)

where p ( x i | x i, k, t ) is modeled as a Gaussian distribution cen-

tered at x i, k, t , and the prior of the global model p ( s k, t ) is as-

sumed as an uniform distribution. Then, by replacing the shape

model p ( p ) in conventional CLM framework ( 4 ) with above

exemplar-based model p ( s ), we derive the objective function of

Belhumeur et al. (2011) (difference in notations) as follows: 

s ∗ = arg max 
s 

D ∑ 

k =1 

∫ 
t∈ T 

N ∏ 

i =1 

p(x i | x i,k,t ) p(l i =1 | x i , I ) dt. (6)

This function is optimized by employing RANSAC to sample global

models. Due to the use of RANSAC, the exemplar-based method

( Belhumeur et al., 2011 ) has two advantages over conventional

CLMs: (1) independent of shape initialization, and (2) robust to

partial occlusion, and achieves state-of-the-art performance on the

wild LFPW database ( Belhumeur et al., 2011 ) at that time. 

The global models in Belhumeur et al. (2011) are scored and

selected by the global likelihood, i.e., multiplying the detection

response of each local detector. However, as pointed by Jin and

Tan (2016) , this global likelihood score function ignores the differ-

ence between local detectors, while in fact, an eye detector is typ-

ically more reliable than a chin detector. In Jin and Tan (2016) , a

discriminatively trained score function is proposed to evaluate the

goodness of a global model, which weighs the importance of dif-

ferent local detectors. Furthermore, an efficient pipeline was pro-
osed in Jin and Tan (2016) to alleviate the effect of inaccurate

nchor points for generating global models. 

.1.3. Discussion 

We have reviewed the basic CLM algorithm and recent ad-

ances. In general, CLMs are considered to be more robust to par-

ial occlusion and global lighting than the holistic approaches (e.g.,

AMs) ( Saragih et al., 2011 ), due to their part-based modeling.

owever, the local detectors of CLMs are imperfect and have been

hown to result in detection ambiguities in testing. Since the global

hape optimization is performed on the response maps, the detec-

ion ambiguities may lead to performance bottleneck, when facing

arious challenges in unconstrained conditions. 

CLMs perform expensive locally exhaustive search for each fa-

ial point. To reduce the computational cost, one way is to use a

isplacement expert (local regressor, i.e., estimate the relative po-

ition of the target point with respect to the given patch. 

.2. Constrained local regression 

Besides CLMs, another discriminative local approach is to train

ndependent local regressor for each point, and employ a global

hape model to restrict the search of these local regressors to an-

hropomorphically consistent regions ( Martinez et al., 2013; Valstar

t al., 2010 ). Since this idea is similar to CLMs, we refer to this ap-

roach as constrained local regression . 

A representative work of this group is the Boosted Regression

oupled with Markov Networks ( Valstar et al., 2010 ) (BoRMaN)

ethod, which iteratively uses support vector regression (SVR) to

rovide an initial prediction for all points, and then applies the

arkov Network to ensure that the new locations sampled to ap-

ly the local regressors are from correct point constellations. BoR-

aN let each node in the graph associated to a spatial relation

etween two points and define pairwise relations between nodes,

hich allows a representation that is invariant to in-plane rota-

ions, scale changes and translations. Essentially, BoRMaN performs

n iterative sequential refinement of the estimate, where the pre-

ious target estimate becomes the test location at the next itera-

ion. Martinez et al. (2013) argue that this sequential estimation

pproach has a series of drawbacks, for example, sensitive to the

tarting point and any errors in the estimation process. To improve

he robustness of BoRMaN, Martinez et al. (2013) proposes to de-

ect the target location by aggregating the estimates obtained from

tochastically selected local appearance information into a single

obust prediction. 

The main advantage of constrained local regression approach is

hat combining local regressors with MRF may drastically reduce

he time needed to search for point location, while its disadvan-

ages are: (1) similar to CLMs, its performance is limited by the

etection ambiguities of the independently trained local regres-

ors, and (2) globally optimizing MRF is intractable. An alterna-

ive choice to the graph-based MRF are the tree-structured models,

hich are also effective to capture global elastic deformation, but

asier to optimize than MRF. 

.3. Deformable part models 

The tree-structured models are a natural and effective choice to

odel deformable objects ( Yang and Ramanan, 2013; Zhu and Ra-

anan, 2012 ), and can find globally optimal solutions using an effi-

ient dynamic programming algorithms ( Felzenszwalb and Hutten-

ocher, 2005 ). Discriminatively trained tree-structured models have

een successfully explored in many computer vision tasks, such

s object detection ( Felzenszwalb et al., 2010 ), human pose esti-

ation ( Yang and Ramanan, 2013 ), and recently in face alignment

 Hsu et al., 2015; U ̌ri ̌cář et al., 2012; Zhu and Ramanan, 2012 ). We
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m  
ollow the nomenclature of Felzenszwalb et al. (2010) and refer to

hem collectively as deformable part models (DPMs). 

The main challenges of applying tree-structured model for face

lignment may lie in the fact that a single tree-structured picto-

ial structure, perhaps, is insufficient to capture various shape de-

ormations due to viewpoint. This problem is addressed by the

eminal work of Zhu and Ramanan (2012) , with a unified frame-

ork for face detection, pose estimation and face alignment. They

odeled every facial point as a part and used mixtures of trees

o capture the global topological changes due to viewpoint; a

art will only be visible in certain mixtures/views. Formally, let

 m 

= (V m 

, E m 

) be a linearly-parameterized, tree-structured pictorial

tructure for the m th mixture. Then, given image I and a face shape

 = (x 1 , . . . , x N ) 
T , the tree structured part model of view m scores

 as: 

S(I , s , m ) = App m 

(I , s ) + Shape m 

(s ) + αm 

App m 

(I , s ) = 

∑ 

i ∈V m 
w 

m 

i ·φ(I , x i ) 

hape m 

(s ) = 

∑ 

i j∈E m 
a m 

i j d x 
2 + b m 

i j d x + c m 

i j d y 
2 + d m 

i j d y, (7) 

here App m 

( I, s ) sums the appearance evidence at each part in

 , Shape m 

( s ) scores the mixture-specific spatial arrangement of s ,

nd αm is a scalar bias associated with view point mixture m .

ince parts may look consistent across some changes in viewpoint,

 Zhu and Ramanan, 2012 ) allows different mixtures to share part

emplates to reduce the computational complexity. 

To learn above mixtures of tree structured part models, the

how–Liu algorithm ( Chow and Liu, 1968 ) is first used to find

he maximum likelihood tree structure that best explains the face

hape for a given mixture. Then, for each view, all the model pa-

ameters in Eq. (7) are discriminatively learned in a max-margin

tructured prediction framework. In the testing phase, the input

mage is scored by all tree structures T m 

= (V m 

, E m 

) respectively,

nd the globally optimal shape s is efficiently solved with dynamic

rogramming algorithm ( Felzenszwalb and Huttenlocher, 2005 ). 

Due to its simplicity and effectiveness, the tree structured part

odel ( Zhu and Ramanan, 2012 ) has been extensively investigated

nd improved for face alignment. U ̌ri ̌cář et al. (2016) argue that

he learning algorithm of Zhu and Ramanan (2012) is a variant

f a two-class Support Vector Machines, which optimizes the de-

ection rate of resulting face detector while the facial point loca-

ions serve only as latent variables not appearing in the loss func-

ion. In contrast, U ̌ri ̌cář et al. (2016) directly optimizes the aver-

ge face alignment error with a novel objective function using the

tructured Output SVMs algorithm, which leads to a significant im-

rovement in alignment accuracy. Yu et al. (2013) presented a two-

tage cascaded deformable shape model for face alignment, where

 group sparse learning method is proposed to automatically se-

ect the optimized anchor points to achieve robust initialization

ased on the part mixture model of Zhu and Ramanan (2012) .

su et al. (2015) proposed to improve the run-time speed and lo-

alization accuracy of Zhu and Ramanan (2012) with the Regressive

ree Structure Model (RTSM), where the tree structured model is

pplied on images with increasing resolution. 

In general, the tree structured part model is effective at captur-

ng global elastic deformation, while being easy to optimize unlike

ense graph structure. Furthermore, it provide an unified frame-

ork to solve three tasks, namely face detection, face alignment

nd pose estimation, which is very appealing in automatic face

nalysis. However, its sluggish runtime impedes the potential for

eal-time facial point tracking; and perhaps due to the fact that

he tree-based shape models allow for the non-face like structures

o occur frequently, the performance of the tree structured part
odel ( Zhu and Ramanan, 2012 ) is reported to be slightly inferior

o that of the CLMs ( Asthana et al., 2013; Saragih et al., 2011 ). 

A common limitation of above part-based discriminative methods

i.e., CLMs, constrained local regression, and DPMs), however, is that

heir performance is greatly constrained by the ambiguity of the local

ppearance models . To break this bottleneck, many researchers have

roposed to jointly estimate the whole face shape from the image,

s described in the following sections. 

.4. Ensemble regression-voting 

Apart from above discriminative local methods, another main

tream of discriminative methods is to jointly estimate the whole

ace shape from the image. A simple way for this is to employ

 vectorial function to cast votes for the face shape from image

atches, during which the shape constraint is implicitly encoded.

ecause voting from a single region is rather weak, a robust pre-

iction is typically obtained by ensembling votes from different re-

ions. We refer to these methods as ensemble regression-voting . 

Regression forests ( Breiman, 2001 ) are a natural choice to

erform regression-voting due to their simplicity and low com-

utational complexity. Cootes et al. (2012) use random forest

egression-voting to produce accurate response map for each fa-

ial point, which is then combined with the CLM fitting for ro-

ust prediction. Dantone et al. (2012) pointed out that conven-

ional regression forests may lead to a bias to the mean face, be-

ause a regression forest is trained with image patches on the

ntire training set and averages the spatial distributions over all

rees in the forest. Therefore, they extended the concept of re-

ression forests to conditional regression forests. A conditional re-

ression forest consists of multiple forests that are trained on

 subset of the training data specified by global face properties

e.g., head pose used in Dantone et al. (2012) ). During testing,

he head pose is first estimated by a specialized regression forest,

hen trees of the various conditional forests are selected to esti-

ate the facial points. Due to the high efficiency of random forests,

antone et al. (2012) achieves close-to-human accuracy while pro-

essing images in real-time on the labeled facesin the wild (LFW)

atabase ( Huang et al., 2007a ). After that, Yang and Patras (2013a )

xtended Dantone et al. (2012) by exploiting the information pro-

ided by global properties to improve the quality of decision trees,

nd later deployed a cascade of sieves to refine the voting map

btained from random regression forests ( Yang and Patras, 2013b ).

part from the regression forests ( Dantone et al., 2012; Yang and

atras, 2012; 2013a; 2013b ), Smith et al. (2014) used each local fea-

ure surrounding the facial point to cast a weighted vote to predict

acial point locations in a nonparametric manner, where the weight

s pre-computed to take into account the feature’s discriminative

ower. 

In general, the ensemble regression-voting approach is more

obust than previous local detector-based methods, and we con-

ecture that this robustness mainly stems from the combina-

ion of votes from different regions. However, current ensemble

egression-voting approach, arguably, have not achieved a good

alance between accuracy and efficiency for face alignment in-the-

ild . The random forests approach ( Dantone et al., 2012; Yang and

atras, 2012; 2013a; 2013b ) is very efficient but can hardly cast

recise votes for those unstable facial points (e.g., face contour),

hile on the other hand, the nonparametric feature voting ap-

roach based on facial part features ( Smith et al., 2014 ) is more

ccurate but suffers from very high computational burden. 

.5. Cascaded regression 

Recently, cascaded regression has established itself as one of the

ost popular and state-of-the-art methods for face alignment, due
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Fig. 4. Illustration of face alignment results in different stages of cascaded regression by Kazemi and Josephine (2014) . The shape estimate is initialized and iteratively 

updated through a cascade of regression trees: (a) initial shape estimate, (b)-(f) shape estimates at different stages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

 

 

 

 

 

t  

p

4

 

A  

L  

c  

r  

h

 

m  

s  

t  

o  

s  

m  

t  

s  

f

R  

w  

c  

s

 

t  

t  

a  

S  

o  

f

 

S  

D  

t  

p  

v  

Y  

t  

r  

f  

t  

t  

a  

p  

l  

t  

c  

s  

s  

p  
to its high accuracy and speed ( Cao et al., 2012; Ren et al., 2014;

Sun et al., 2013; Xiong and De la Torre, 2013; Zhu et al., 2015 ). The

motivation behind this approach is that, since performing regres-

sion from image features to face shape in one step is extremely

challenging, we can divide the regression process into stages, and

learn a cascade of vectorial regressors. 

Formally, given an image I and an initial shape s 0 , the face

shape s is progressively refined by estimating a shape increment

�s stage-by-stage. In a generic form, a shape increment �s at

stage t is regressed as: 

�s t = R 

t 
(
�t (I , s t−1 ) 

)
, (8)

where s t−1 is the shape estimated in the previous stage, �t is the

feature mapping function, and R 

t is the stage regressor. Note that

�t (I , s t−1 ) is referred to as shape-indexed feature ( Burgos-Artizzu

et al., 2013; Cao et al., 2012 ) that depends on the current shape es-

timate, and can be either designed by hand ( Xiong and De la Torre,

2013; Zhu et al., 2015 ) or by learning ( Cao et al., 2012; Kazemi and

Josephine, 2014; Ren et al., 2014 ). Fig. 4 illustrates the alignment

results in different stages. In the training phase, these stage regres-

sors (R 

1 , . . . , R 

T ) are sequentially learnt to reduce the alignment

errors on training set, during which geometric constraints among

points are implicitly encoded. . 

Existing cascaded regression methods mainly differ in the spe-

cific form of the stage regressor R 

t and the feature mapping func-

tion �t . Here, according to the type of the stage regressor R 

t , we

roughly divide existing cascaded regression methods into two cat-

egories, i.e., two-level boosted regression , and cascaded linear regres-

sion . 

4.5.1. Two-level boosted regression 

Cascaded regression is first introduced into face alignment by

Cao et al. (2012) in their seminal work called explicit shape re-

gression (ESR). They design a two-level boosted regression frame-

work by again investigating boosted regression as the stage regres-

sor R 

t . More specifically, they use a cascade of random ferns as

R 

t to regress the fixed shape-indexed pixel difference feature at

each stage, and adopt a correlation-based feature selection strat-

egy to learn task-specific features. This combination makes ESR a

break-through face alignment method in both accuracy and effi-

ciency, and is widely adapted ever since. 

Burgos-Artizzu et al. (2013) also use the fern primitive regres-

sor under the two-level boosted regression framework, but im-

prove ( Cao et al., 2012 ) by explicitly incorporating the occlusion

information into the regression target to better handle occlusions.

Instead of random ferns used by Cao et al. (2012) and Burgos-

rtizzu et al. (2013) , Kazemi and Josephine (2014) present a gen-

eral framework based on gradient boosting for learning an ensem-

ble of regression trees, achieving super-realtime performance with

high quality predictions and naturally handling missing or partially

labelled data. Lee et al. (2015) propose to use the Gaussian pro-

cess regression tree (GPRT) to fit the primitive regressor under the
wo-level boosted regression framework, where GPRT is a Gaussian

rocess with a kernel defined by a set of trees. 

.5.2. Cascaded linear regression 

Besides the two-level boosted regression framework ( Burgos-

rtizzu et al., 2013; Cao et al., 2012; Kazemi and Josephine, 2014;

ee et al., 2015 ), any kind of stage regressor R 

t with strong fitting

apacity will be desirable. A notable example is the cascaded linear

egression proposed by Xiong and De la Torre (2013) using strong

and-craft SIFT ( Lowe, 2004 ) feature. 

The primary innovation of the cascaded linear regression

ethod ( Xiong and De la Torre, 2013 ) is a supervised gradient de-

cent method (SDM) that gives a mathematically sound explana-

ion of the cascaded linear regression by placing it in the context

f Newton optimization for non-linear least squares problem. SDM

hows that a Newton update for the non-linear least squares align-

ent error function can be expressed as a linear combination of

he facial feature differences between the one extracted at current

hape and the ground truth template, resulting in a linear update

unction R 

t at each stage, i.e., 

 

t : �s t ← W 

t 
(
�t (I , s t−1 ) 

)
+ b 

t , (9)

here �t is the SIFT operator that extract SIFT feature at each fa-

ial point, and W 

t is the averaged descent direction on the training

et. 

Actually, SDM bears some similarities to AAMs discriminatively

rained with linear regression ( Cootes et al., 2001 ), but differs from

hem in three aspects: (1) SDM is non-parametric in both shape

nd appearance; (2) SDM uses the part-based representation; (3)

DM learns different regressors R 

t at different stages, while the

riginal AAM ( Cootes et al., 2001 ) learns a constant regressor R
or all stages. 

Due to its concise formulation and state-of-the-art performance,

DM has been extensively investigated and extended. Xiong and

e la Torre (2015) pointed out that SDM is a local algorithm

hat is likely to average conflicting gradient directions, and pro-

osed an extension of SDM called Global SDM (GSDM) that di-

ides the search space into regions of similar gradient directions.

an et al. (2013) proposed to generate multiple hypotheses, and

hen learn to rank or combine these hypotheses to get the final

esult. Asthana et al. (2014) proposed an incremental formulation

or the cascaded linear regression framework, and presented mul-

iple ways for incrementally updating a cascade of regression func-

ions in an efficient manner. Ren et al. (2014) propose to learn

 set of highly discriminative local binary features for each facial

oint independently, and then uses the learned features jointly to

earn a linear regression for the final prediction. Since regressing

he local binary feature is very cheap, this approach is highly effi-

ient and achieves very accurate performance. Zhu et al. (2015) de-

igned a cascaded regression framework that begins with a coarse

earch over a shape space that contains diverse shapes, and em-

loys the coarse solution to constrain subsequent finer search of
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Table 4 

A list of sources of wild databases for face alignment. 

Databases Year #Images #Training #Test #Point Links 

LFW ( Huang et al., 2007a ) 2007 13,233 1100 300 10 http://www.dantone.me/datasets/facial- features- lfw/ 

LFPW ( Belhumeur et al., 2011 ) 2011 1,432 a – – 35 b http://homes.cs.washington.edu/ ∼neeraj/databases/lfpw/ 

AFLW ( Köstinger et al., 2011 ) 2011 25,993 – – 21 http://lrs.icg.tugraz.at/research/aflw 

AFW ( Zhu and Ramanan, 2012 ) 2012 205 – – 6 http://www.ics.uci.edu/ ∼xzhu/face/ 

HELEN ( Le et al., 2012 ) 2012 2330 20 0 0 300 194 http://www.ifp.illinois.edu/ ∼vuongle2/helen/ 

300-W ( Sagonas et al., 2013 ) 2013 3,837 3148 689 68 http://ibug.doc.ic.ac.uk/resources/300-W/ 

COFW ( Burgos-Artizzu et al., 2013 ) 2013 1,007 – – 29 http://www.vision.caltech.edu/xpburgos/ICCV13/ 

MTFL ( Zhang et al., 2014c ) 2014 12,995 – – 5 http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html 

MAFL ( Zhang et al., 2016 ) 2016 20,0 0 0 – – 5 http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html 

a LFPW is shared by web URLs, but some URLs are no longer valid. 
b Each face image in LFPW is annotated with 35 points, but only 29 points defined in Belhumeur et al. (2011) are used for the face alignment. 

Table 5 

A list of published software of face alignment. 

Methods Year # Points Links 

Boosted regression with Markov networks (BoRMaN) ( Valstar et al., 2010 ) 2010 22 http://ibug.doc.ic.ac.uk/resources/facial- point- detector- 2010/ 

Constrained local model (CLM) ( Saragih et al., 2011 ) 2011 66 https://github.com/kylemcdonald/FaceTracker 

Tree structured part model (TSPM) ( Zhu and Ramanan, 2012 ) 2012 68 http://www.ics.uci.edu/ ∼xzhu/face/ 

Conditional random forests (CRF) ( Dantone et al., 2012 ) 2012 10 http://www.dantone.me/projects- 2/facial- feature- detection/ 

Structured output SVM ( U ̌ri ̌cář et al., 2012 ) 2012 7 http://cmp.felk.cvut.cz/ ∼uricamic/flandmark/ 

Cascaded CNN ( Sun et al., 2013 ) 2013 5 http://mmlab.ie.cuhk.edu.hk/archive/CNN _ FacePoint.htm 

Discriminative response Map Fitting (DRMF) ( Asthana et al., 2013 ) 2013 66 https://sites.google.com/site/akshayasthana/clm- wild- code? 

Supervised descent method (SDM) ( Xiong and De la Torre, 2013 ) 2013 49 www.humansensing.cs.cmu.edu/intraface 

Robust cascaded pose regression (RCPR) ( Burgos-Artizzu et al., 2013 ) 2013 29 http://www.vision.caltech.edu/xpburgos/ICCV13/ 

Optimized part mixtures (OPM) ( Yu et al., 2013 ) 2013 68 http://www.research.rutgers.edu/ ∼xiangyu/face _ align/face _ align _ iccv _ 1.1.zip 

Continuous Conditional Neural Fields (CCNF) ( Baltrušaitis et al., 2014 ) 2014 68 https://github.com/TadasBaltrusaitis/CCNF 

Coarse-to-fine Shape Searching (CFSS) ( Zhu et al., 2015 ) 2015 68 http://mmlab.ie.cuhk.edu.hk/projects/CFSS.html 

Project-Out Cascaded Regression (PO-CR) ( Tzimiropoulos, 2015 ) 2015 68 http://www.cs.nott.ac.uk/ ∼yzt/ 

Active pictorial structures (APS) ( Antonakos et al., 2015b ) 2015 68 https://github.com/menpo/menpo 

Tasks-Constrained Deep Convolutional Network (TCDCN) ( Zhang et al., 2016 ) 2016 68 http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html 
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Fig. 5. One of the first-level convolutional neural network structures used in 

Sun et al. (2013) to predict five major facial points. Sizes of input, convolution, and 

max pooling layers are illustrated by cuboids whose length, width, and height de- 

note the number of maps, and the size of each map. Local receptive fields of neu- 

rons in different layers are illustrated by small squares in the cuboids. 
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hape, which improves the robustness of cascaded linear regres-

ion in coping with large pose variations. 

.5.3. Discussion 

Arguably, cascaded regression is playing a prominent role

mong the state-of-the-art methods for face alignment in-the-wild .

his is primarily because it has some distinct characteristics. (1)

t is capable of effectively leveraging large bodies of training data,

hich are typically generated by using multiple initial shapes for

ne image. (2) The shape constraints are encoded into regressors

daptively, which is more flexible than the parametric shape model

hat heuristically determines the model flexibility (e.g.,PCA dimen-

ion). (3) The cascaded regression framework is simple and gener-

lizable, which allows different choices for the stage regressor R 

t 

nd incorporation of feature learning techniques. 

Although cascaded regression has achieved great success in face

lignment, it is still not easy to perform regression from texture

eatures to the whole shape update for some challenging faces

ith extreme expression or pose variation. This limitation can be

artially confirmed by the fact that for some more flexible part lo-

alization task such as human pose estimation, the part detector-

ased methods still play a dominant role at present ( Liu et al.,

015; Yang and Ramanan, 2013 ), rather than cascaded regression. 

.6. Deep neural networks 

Deep neural networks, especially the deep convolutional net-

ork that can extract high-level image features, have been suc-

essfully utilized in many computer vision tasks, such as face veri-

cation ( Sun et al., 2014; Taigman et al., 2014 ), image classification

 Krizhevsky et al., 2012 ; Simonyan and Zisserman, 2014; Szegedy

t al., 2015 ), and object detection ( Girshick et al., 2014 ). Naturally,

hey are also an effective choice to model the nonlinear relation-
hip between the facial appearance and the face shape (or shape

pdate). 

However, applying deep network directly to face alignment is

ontrivial due to the follwoing reasons: (1) While fine-tuning an

xisting CNN architecture (e.g., AlexNet ( Krizhevsky et al., 2012 ),

oogLeNet ( Szegedy et al., 2015 )) to adapt it to the task at hand

s very popular in computer vision ( Girshick et al., 2014; Zhang

t al., 2014b ), such a strategy can hardly be applied for face align-

ent because the off-the-shelf large networks are typically trained

or image classification while face alignment is a structural predic-

ion problem. (2) Constructing a deep network-based system from

cratch for face alignment should take into account the issue of

ver-fitting, and hence the network structures at each stage need

o be carefully designed according to the task of this stage and the

omplexity involved. 

Focusing on above issues, Sun et al. (2013) were pioneers

n this area with their work called Deep Convolutional Network

ascade. They handled the face alignment task with three-level

arefully designed convolutional networks, and fuse the outputs

f multiple networks at each level for robust prediction ( Fig. 5

http://www.dantone.me/datasets/facial-features-lfw/
http://homes.cs.washington.edu/~neeraj/databases/lfpw/
http://lrs.icg.tugraz.at/research/aflw
http://www.ics.uci.edu/~xzhu/face/
http://www.ifp.illinois.edu/~vuongle2/helen/
http://ibug.doc.ic.ac.uk/resources/300-W/
http://www.vision.caltech.edu/xpburgos/ICCV13/
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html
http://ibug.doc.ic.ac.uk/resources/facial-point-detector-2010/
https://github.com/kylemcdonald/FaceTracker
http://www.ics.uci.edu/~xzhu/face/
http://www.dantone.me/projects-2/facial-feature-detection/
http://cmp.felk.cvut.cz/~uricamic/flandmark/
http://mmlab.ie.cuhk.edu.hk/archive/CNN_FacePoint.htm
https://sites.google.com/site/akshayasthana/clm-wild-code?
http://www.humansensing.cs.cmu.edu/intraface
http://www.vision.caltech.edu/xpburgos/ICCV13/
http://www.research.rutgers.edu/~xiangyu/face_align/face_align_iccv_1.1.zip
https://github.com/TadasBaltrusaitis/CCNF
http://mmlab.ie.cuhk.edu.hk/projects/CFSS.html
http://www.cs.nott.ac.uk/~yzt/
https://github.com/menpo/menpo
http://mmlab.ie.cuhk.edu.hk/projects/TCDCN.html
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Fig. 6. An example of MultiPIE ( Gross et al., 2010 ) recording annotated with 3D ground truth. 3D annotation can accommodate a full range of head rotation while still 

maintaining the correspondences. 

Fig. 7. A global system architecture for face alignment. 

Fig. 8. Illustration of the example face images from eight wide face databases with 

original annotation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Two images of the LFW database annotated with 10 facial feature points. 

The white circles show the disturbance range from the ground truth (black points), 

10% of the inter-ocular distance in (a) while 5% in (b), which aims to give a intuitive 

feeling of the localization error listed in Table 6 . 
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illustrates one of the first-level CNN structures). The first level net-

work takes the whole face image as input to predict the initial

estimates of the holistic face shape, during which the shape con-

straints are implicitly encoded. Then, the following two level net-

works refine the position of each point to achieve higher accuracy.

Several network structures critical for face alignment are investi-

gated in Sun et al. (2013) , providing some important principles on

the choice of convolutional network structures. For example, con-

volutional networks at the first level should be deeper than the

following networks, since predicting facial points from large input

regions is a high-level task. 

Ever since the work of Zhang et al. (2014c ), deep CNNs have

been widely exploited for face alignment. Similar to Zhang et al.

(2014c ), Zhou et al. (2013a ) designed a four-level convolutional

network cascade to tackle the face alignment problem in a coarse-

to-fine manner, where each network level is trained to locally re-
ne a subset of facial points generated by previous network lev-

ls. Zhang et al. (2014c ) extended the work of Sun et al. (2013) by

ointly learning auxiliary attributes along with face alignment.

heir work confirms that some heterogeneous but subtly corre-

ated tasks, e.g., head pose estimation and facial attribute infer-

nce can aid the face alignment task through multi-task learning.

ai et al. (2015) proposed an end-to-end CNN architecture to learn

ighly discriminative shape-indexed features, by encoding the im-

ge into high-level feature maps in the same size of the image,

nd then extracting deep features from these high level descriptors

hrough a novel “Shape-Indexed Pooling” method. Despite of the

reat popularity and success, as mentioned before, we should take

nto account the tradeoff between the model complexity and train-

ng data size, since some deep models have been reported to be

re-trained with enormous quantity of external data sources ( Sun

t al., 2013; Zhang et al., 2014c ). 
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.7. 3D alignment methods 

Most of existing face alignment methods focus on 2D align-

ent that treats the face as a 2D object. However, 2D methods

re mainly designed for faces in small to medium poses (below

5 °) - when face orientation varies from frontal to profile, label-

ng 2D facial points becomes extremely challenging since the in-

isible points have to be guessed, and some annotated points (e.g.,

heek landmarks) may lose correspondence. In contrast, 3D anno-

ation can accommodate a full range of head rotation while still

aintaining the correspondences (see Fig. 6 ). Besides, it also pro-

ides more information for estimating the head pose ( Tulyakov and

ebe, 2015 ) and facial point visibility ( Jourabloo and Liu, 2015 ).

ue to these reasons, 3D face alignment from 2D images has re-

ently emerged as a promising direction to address the large pose

ace alignment problem ( Bulat and Tzimiropoulos, 2016; Jourabloo

nd Liu, 2015; 2016; Tulyakov and Sebe, 2015 ). In particular, the

rst 3D Face Alignment in the Wild (3DFAW) Challenge was held

n conjunction with the 14th European Conference on Computer

ision to encourage the study of 3D methods ( Jeni et al., 2016 ).

ig. 6 shows the 3D annotation used by 3DFAW. 

3D alignment from 2D images requires 3D annotation for fa-

ial points. However, most existing face alignment databases only

ontain 2D annotations, with no associated 3D information. Fortu-

ately, because the 2D face can be regarded as a projection of the

D face on the image plane ( Xiao et al., 2004 ), the 3D face shape

an be reconstructed from the annotated 2D shape using a model-

ased structure-from-motion technique ( Jeni et al., 2016; Jourabloo

nd Liu, 2015 ). Through this, the vast amount of existing 2D face

atasets can be leveraged for 3D face alignment. 

Currently, 3D alignment methods are mainly based on discrim-

native regression techniques (e.g., cascaded regression), and thus

e categorized them as discriminative methods. Furthermore, ac-

ording to whether the method estimates the dense 3D face sur-

ace, we categorize existing methods into two groups: 3D shape re-

ression and dense 3D model fitting . 

.7.1. 3D shape regression 

Motivated by the success of 2D shape regression ( Cao et al.,

012; Ren et al., 2014; Sun et al., 2013; Xiong and De la Torre,

013; Zhu et al., 2015 ), researchers further exploit 3D shape regres-

ion 

3 for 3D face alignment, building upon the state-of-the-art 2D

egression techniques, such as cascaded regression and CNN-based

egression. 3D shape regression inherits the merits of 2D shape re-

ression (e.g., high accuracy and speed), and is currently the main-

tream approach to 3D face alignment. In general, there are three

ays to regress a 3D face shape from a single image. 

The first way is to extend the 2D regression methods directly

y augmenting the output vector with a depth dimension. For ex-

mple, Tulyakov and Sebe (2015) follow the cascaded regression

pproach, and build tree-based regressors to produce a 3D shape

ncrement using the 3D-invariant features. They also show that re-

ressing a 3D shape can improve the accuracy even if we are only

nterested in 2D facial points in the image plane. 

The second way is to decompose the 3D face alignment prob-

em into two steps: X, Y (2D) regression and Z (depth) regression

 Bulat and Tzimiropoulos, 2016; Gou et al., 2016; Zhao et al., 2016 ).

n general, any state-of-the-art 2D face alignment method, such as

ascaded regression ( Gou et al., 2016 ) and deep CNN regression

 Zhao et al., 2016 ), can be employed as the first step. The resulting

D face shape is then used to guide the estimation of the depth

nformation. For example, Gou et al. (2016) propose to recover 3D
3 While 2D shape regression mainly refers to cascaded regression, we define 3D 

hape regression as the general regression techniques that can regress the 3D facial 

andmarks from a single image. 

v  

C  

f  

t  
ace shape by fitting a 3D PDM to the image, with the estimated

D landmarks as a solid constraint. Zhao et al. (2016) use a multi-

ayer neural network to model the mapping from X, Y locations to

he depth information. In Bulat and Tzimiropoulos (2016) , a deep

esidual network ( He et al., 2016 ) guided by the heatmaps pro-

uced by the 2D regression subnetwork is introduced to estimate

he depth information. 

The third way is to estimate the 2D and 3D facial landmarks

ointly, by regarding the 2D face as a projection of the 3D face. For

his purpose, Jourabloo and Liu (2015) develop a coupled-regressor

pproach to estimate both the camera projection matrix and 3D fa-

ial landmarks under the cascaded regression framework. Besides,

hey also propose to estimate the visibility of facial landmarks via

D surface normal. 

.7.2. Dense 3D model fitting 

Another line of 3D alignment research is to consider it as a

art of 3D face surface reconstruction, and tackle it by fitting a

ense 3D morphable model (3DMM) to the image ( Jourabloo and

iu, 2016; Zhu et al., 2016 ). The 3DMM represents the dense 3D

hape of a face with PCA: 

 = A + A id αid + A exp αexp , (10)

here A is a dense 3D face, A is the mean shape, A id is the iden-

ity basis, and A exp is the expression basis. In both Jourabloo and

iu (2016) and Zhu et al. (2016) , the Basel 3D face model

 Paysan et al., 2009 ) is used as the identity bases, and the face

earhouse ( Cao et al., 2014b ) is used as expression bases. 

Traditional 3DMM fitting follows the analysis-by-synthesis prin-

iple ( Blanz and Vetter, 1999; 2003 ), which however is inefficient

nd requires pre-located 2D facial landmarks. This motivates re-

earchers to investigate discriminative fitting methods that directly

earn the mapping from a 2D face image to the 3DMM and projec-

ion matrix ( Jourabloo and Liu, 2016; Zhu et al., 2016 ). In partic-

lar, since this mapping is intrinsically non-linear, cascaded con-

olutional neural networks (CNN) are commonly used for 3DMM

tting. To facilitate the CNN regressor learning, both the global

 Zhu et al., 2016 ) and local ( Jourabloo and Liu, 2016 ) pose-invariant

eatures have been exploited in literature. 

In contrast to 3D shape regression approach, dense 3D model

tting can uncover the complete 3D shape of a face, rather than

nly localize a sparse set of points such as facial landmarks. The

umber of estimated landmarks is bounded by the number of 3D

ertexes of the 3DMM, allowing us to estimate much more facial

andmarks than conventional methods. 

.7.3. 3D face alignment in the wild challenge 

To enable the comparison among different 3D methods, the first

D Face Alignment in the Wild (3DFAW) Challenge ( Jeni et al.,

016 ) is held in conjunction with the 14th European Conference on

omputer Vision. The 3DFAW creates a dataset consisting of over

3,0 0 0 multi-view images with 3D annotation, makes the training

nd validation set available to participants, and tests their algo-

ithms on an independent test-set. Eight teams participate in this

hallenge, but only four of them provide necessary technique de-

criptions ( de Bittencourt Zavan et al., 2016; Bulat and Tzimiropou-

os, 2016; Gou et al., 2016; Zhao et al., 2016 ). Next, we will briefly

escribe these four methods, and discuss what their results mean

or current and future research. 

Gou et al. (2016) propose to first estimate 2D facial land-

arks via cascaded shape regression, and then recover 3D face

hape by fitting a 3D Point Distribution Model. de Bittencourt Za-

an et al. (2016) first detect the nose of the face with a Faster R-

NN ( Ren et al., 2015 ), and then estimate the orientation of the

ace and place the average face landmark onto the face according

o the face orientation. Zhao et al. (2016) propose a two-stage deep
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Table 6 

Lists of face alignment performance evaluated on various wild face databases. 

Databases Challenges # Test # Points Methods 

Error 

(%) FPS 

LFW ( Huang et al., 

2007a ) 

Low resolution, large 

variations in 

illuminations, 

expressions and poses 

13,233 a 10 Conditional random forests (CRF) ( Dantone et al., 2012 ) 7.00 10 (c + +) 

Explicit shape regression (ESR) ( Cao et al., 2012 ) 5.90 11 (Matlab) 

Robust Cascaded Pose Regression (RCPR) ( Burgos-Artizzu et al., 2013 ) 5.30 15 (Matlab) 

55 b Consensus of Exemplar (CoE) ( Belhumeur et al., 2013 ) 5.18 - 

LFPW 

( Belhumeur et al., 

2011 ) 

Large variations in 

illuminations, 

expressions, poses and 

occlusion 

224 ∼ 300 c 21 Consensus of Exemplar (CoE) ( Belhumeur et al., 2011 ) 3.99 ≈ 1 (C++) 

Explicit shape regression (ESR) ( Cao et al., 2012 ) 3.47 220 (C + +) 

Robust cascaded pose regression (RCPR) ( Burgos-Artizzu et al., 2013 ) 3.50 12 (Matlab) 

Supervised descent method (SDM) ( Xiong and De la Torre, 2013 ) 3.49 160 (C + +) 

Exemplar-based graph matching (EGM) ( Zhou et al., 2013b ) 3.98 < 1 

Local binary feature (LBF) ( Ren et al., 2014 ) 3.35 460 (C + +) 

Fast local binary feature (LBF fast) ( Ren et al., 2014 ) 3.35 4600 (C + +) 

68 d Tree Structured Part Model (TSPM) ( Zhu and Ramanan, 2012 ) 8.29 0.04 

(Matlab) 

Discriminative Response Map Fitting (DRMF) ( Asthana et al., 2013 ) 6.57 1 (Matlab) 

Robust Cascaded Pose Regression (RCPR) ( Burgos-Artizzu et al., 2013 ) 6.56 12 (Matlab) 

Supervised descent method (SDM) ( Xiong and De la Torre, 2013 ) 5.67 70 (C + +) 

Gauss-Newton Deformable Part Model (GN-DPM) ( Tzimiropoulos and 

Pantic, 2014 ) 

5.92 70 

Coarse-to-fine Auto-encoder Networks (CFAN) ( Zhang et al., 2014a ) 5.44 20 

Coarse-to-fine Shape Searching (CFSS) ( Zhu et al., 2015 ) 4.87 –

CFSS Practical ( Zhu et al., 2015 ) 4.90 –

Deep Cascaded Regression (DCR) ( Lai et al., 2015 ) 4.57 –

HELEN ( Le et al., 

2012 ) 

Computation burden 

due to the dense 

annotation, large 

variations in 

expressions, poses and 

occlusion 

330 194 Stacked Active Shape Model (STASM) ( Milborrow and Nicolls, 2008 ) 11.10 –

Component-based ASM (ComASM) ( Le et al., 2012 ) 9.10 - 

Explicit Shape Regression (ESR) ( Cao et al., 2012 ) 5.70 70 (C + +) 

Robust Cascaded Pose Regression (RCPR) ( Burgos-Artizzu et al., 2013 ) 6.50 6 (Matlab) 

Supervised Descent Method (SDM) ( Xiong and De la Torre, 2013 ) 5.85 21 (C + +) 

Ensemble of Regression Trees (ERT) ( Kazemi and Josephine, 2014 ) 4.9 10 0 0 

Local Binary Feature (LBF) ( Ren et al., 2014 ) 5.41 200 (C + +) 

Fast Local Binary Feature (LBF fast) ( Ren et al., 2014 ) 5.80 1500 (C + +) 

Coarse-to-Fine Shape Searching (CFSS) ( Zhu et al., 2015 ) 4.74 - 

CFSS Practical ( Zhu et al., 2015 ) 4.84 - 

cascade Gaussian Process Regression Trees (cGPRT) ( Lee et al., 2015 ) 4.63 - 

68 d Tree Structured Part Model (TSPM) ( Zhu and Ramanan, 2012 ) 8.16 0.04 

(Matlab) 

Discriminative Response Map Fitting (DRMF) ( Asthana et al., 2013 ) 6.70 1 (Matlab) 

Robust Cascaded Pose Regression (RCPR) ( Burgos-Artizzu et al., 2013 ) 5.93 12 (Matlab) 

Supervised Descent Method (SDM) ( Xiong and De la Torre, 2013 ) 5.67 70 (C + +) 

Gauss-Newton Deformable Part Model (GN-DPM) ( Tzimiropoulos and 

Pantic, 2014 ) 

5.69 70 

Coarse-to-fine Auto-encoder Networks (CFAN) ( Zhang et al., 2014a ) 5.53 20 

Coarse-to-Fine Shape Searching (CFSS) ( Zhu et al., 2015 ) 4.63 - 

CFSS Practical ( Zhu et al., 2015 ) 4.72 - 

Deep Cascaded Regression ( Lai et al., 2015 ) 4.25 - 

300-W 

( Sagonas et al., 

2013 ) 

Large variations in 

illuminations, 

expressions, poses and 

occlusion 

689 68 Tree Structured Part Model (TSPM) ( Zhu and Ramanan, 2012 ) 12.20 0.04 

(Matlab) 

Discriminative Response Map Fitting (DRMF) ( Asthana et al., 2013 ) 9.10 1 (Matlab) 

Explicit Shape Regression (ESR) ( Cao et al., 2012 ) 5.28 120 (C + +) 

Robust Cascaded Pose Regression (RCPR) ( Burgos-Artizzu et al., 2013 ) 8.35 - 

Supervised Descent Method (SDM) ( Xiong and De la Torre, 2013 ) 7.50 70 (C + +) 

Ensemble of Regression Trees (ERT) ( Kazemi and Josephine, 2014 ) 6.4 10 0 0 

Local Binary Feature (LBF) ( Ren et al., 2014 ) 6.32 320 (C + +) 

Fast Local Binary Feature (LBF fast) ( Ren et al., 2014 ) 7.37 3100 (C + +) 

Coarse-to-Fine Shape Searching (CFSS) ( Zhu et al., 2015 ) 5.76 25 

CFSS Practical ( Zhu et al., 2015 ) 5.99 25 

cascade Gaussian Process Regression Trees (cGPRT) ( Lee et al., 2015 ) 5.71 93 

fast cGPRT ( Lee et al., 2015 ) 6.32 871 

Tasks-Constrained Deep Convolutional Network (TCDCN) ( Zhang et al., 2016 ) 5.54 59 

Deep Cascaded Regression (DCR) ( Lai et al., 2015 ) 5.02 - 

Megvii-Face + + ( Huang et al., 2015 ) 4.54 - 

( continued on next page ) 
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Table 6 ( continued ) 

Databases Challenges # Test # Points Methods Error 

(%) 

FPS 

IBUG 

( Sagonas et al., 

2013 ) 

Extremely large 

variations in 

illuminations, 

expressions, poses and 

occlusion 

135 68 Tree Structured Part Model (TSPM) ( Zhu and Ramanan, 2012 ) 18.33 0.04 

(Matlab) 

Discriminative Response Map Fitting (DRMF) ( Asthana et al., 2013 ) 19.79 1 (Matlab) 

Explicit Shape Regression (ESR) ( Cao et al., 2012 ) 17.00 120 (C + +) 

Robust Cascaded Pose Regression (RCPR) ( Burgos-Artizzu et al., 2013 ) 17.26 - 

Supervised Descent Method (SDM) ( Xiong and De la Torre, 2013 ) 15.40 70 (C + +) 

Local Binary Feature (LBF) ( Ren et al., 2014 ) 11.98 320 (C + +) 

Fast Local Binary Feature (LBF fast) ( Ren et al., 2014 ) 15.50 3100 (C + +) 

Robust Discriminative Hough Voting (RDHV) ( Jin and Tan, 2016 ) 11.32 < 1 

(Matlab) 

Coarse-to-Fine Shape Searching (CFSS) ( Zhu et al., 2015 ) 9.98 25 

CFSS Practical ( Zhu et al., 2015 ) 10.92 25 

Tasks-Constrained Deep Convolutional Network (TCDCN) ( Zhang et al., 2016 ) 8.60 59 

Deep Cascaded Regression (DCR) ( Lai et al., 2015 ) 8.42 - 

Megvii-Face + + ( Huang et al., 2015 ) 7.46 - 

a For LFW, the reported performance of Burgos-Artizzu et al. (2013) ; Cao et al. (2012) ; Dantone et al. (2012) follows the evaluation procedure proposed in 

Dantone et al. (2012) , consisting of a ten-fold cross validation using each time 1500 training images and the rest for testing. In Belhumeur et al. (2013) , the model is 

trained on Columbia’s PubFig ( Kumar et al., 2009 ), and tested on all 13,233 images of LFW. 
b Although used by Belhumeur et al. (2013) , the 55 point annotation of LFW is not shared. 
c LFPW is shared by web URLs, but some URLs are no longer valid. So both the training and test images downloaded by other authors are less than the original version 

(1,100 training images and 300 test images). 
d LFPW and HELEN are originally annotated with 29 and 194 points respectively, while later Sagonas et al. (2013) ) re-annotate them with 68 points. Some authors reported 

their performance on the 68 points version of these databases. 
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earning approach that first estimates 2D facial landmarks with a

eep CNN, and then estimates the depth of the landmarks with

nother deep neural network. Bulat and Tzimiropoulos (2016) pro-

osed a two-stage alignment method using deep residual network

 He et al., 2016 ). It first calculates heat-maps of 2D landmarks us-

ng convolutional part heat-map regression, then uses these heat-

aps along with the original RGB image as an input to a very deep

esidual network to regress the depth information. 

From above four reported methods, we can observe that cas-

aded regression and CNN-based regression, which are popular in

D alignment, are also the mainstream technologies for 3D face

lignment. In particular, most researchers decompose the 3D face

lignment problem into two steps: 2D estimation and depth es-

imation, allowing us to efficiently leverage existing state-of-the-

rt 2D face alignment techniques. We note that the two deep

earning-based approaches ( Bulat and Tzimiropoulos, 2016; Zhao

t al., 2016 ) have achieved the top 2 performance in 3DFW chal-

enge, which confirms the power of feature learning in 3D face

lignment. Bulat and Tzimiropoulos (2016) is the top 1 performer

n the 3DFAW Challenge, surpassing the second best result by

ore than 22%. This may be attributed to two factors: the power-

ul residual learning, and the part heatmap regression that learns

here to “look” during depth estimation by explicitly exploiting

nformation about the 2D location of the landmarks. 

.8. Summary and discussion 

We have reviewed discriminative methods for face alignment in

even groups, i.e., CLMs, constrained local regression, DPMs, ensemble

egression-voting, cascaded regression, deep neural networks and 3D

lignment methods . Among them, CLMs, constrained local regres-

ion and DPMs follow the “divide and conquer” principle to sim-

lify the face alignment task by constructing individual local ap-

earance model for each facial point. However, due to their small

atch support and large appearance variation in training, these lo-

al appearance models are typically plagued by the problem of am-

iguity. Since the further inference (global shape optimization) is

ased on the detection responses of these local appearance mod-
ls, the problem of ambiguity may create the most serious perfor-

ance bottleneck. 

To break this bottleneck, another main stream in face alignment

s to jointly estimate the whole face shape from image, implicitly

xploiting the spatial constraints among facial points. In this line,

e have first reviewed the ensemble regression-voting and cascaded

egression methods, which learn a vectorial regression function to

nfer the whole face shape in an ensemble or cascaded manner.

n particular, cascaded regression has emerged as one of the most

opular and state-of-the-art methods, due to its speed, accuracy

nd robustness. Then, we briefly reviewed the deep learning-based

pproach for face alignment, which have the advantage of learning

ighly discriminative task-specific features, but should take into

ccount the issue of over-fitting. Finally, we reviewed the 3D align-

ent methods that treat the face as a 3D object, which has the

dvantage in solving the large pose face alignment problem. 

It is worth noting that some methods involve techniques mo-

ivated by different principles, which clearly overlap our cate-

ory boundaries. For example, we classify the regression voting-

ased shape model matching method ( Cootes et al., 2012 ) as CLM,

ince they fit a parametric shape model to a new image based

n the response map for each facial point. However, since the re-

ponse maps in Cootes et al. (2012) are generated by random for-

st regression-voting, it can also be considered as an ensemble

egression-voting method. Furthermore, some deep learning-based

ethods can also be classified as cascaded regression due to their

ascaded structure ( Lai et al., 2015; Zhang et al., 2014a ). 

. Towards the development of a robust face alignment system 

Face alignment in-the-wild is very challenging due to many

inds of undesirable appearance variations, and hence it is often

he case that no single modality is enough. In this section, we will

ocus on the practical aspects of constructing a robust face align-

ent system, which is mostly ignored in previous studies. Specif-

cally, we first present a global system architecture for face align-

ent, and then have a close look at possible strategies to improve

he robustness of face alignment under this architecture. 
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5.1. The global system architecture for face alignment 

Inspired by Song et al. (2013) and Fasel and Luettin (2003) ,

we give a global system architecture for face alignment, where a

complicated system is divided into several substages. As shown in

Fig. 7 , the architecture can be roughly divided into three parts:

face preprocessing, shape initialization, and the iterative process of

feature extraction and shape prediction. We note that this archi-

tecture is only to illustrate a general pipeline for face alignment,

while in practical not all components are mandatory. For example,

the consensus of exemplar method ( Belhumeur et al., 2011 ) do not

involve the shape initialization step. 

While the feature extraction and shape prediction process have

drawn a great deal of attention in literature, the face preprocessing

and shape initialization steps are often ignored. Meanwhile, prob-

lems such as training data augmentation, and the accuracy and ef-

ficiency tradeoff are also essential for any practical face alignment

system. In the following, we will have a closer look at these issues.

5.2. Training data augmentation 

Due to the difficulty and cost of manual annotation, the number

of training samples we actually have is often much smaller than

that we supposedly have. In such a case, artificial data augmenta-

tion, which is usually done by label-preserving transforms, is the

easiest and most common method to reduce over-fitting. 

In general, there are four distinct forms of data augmentation

to enlarge the training set: (1) generating image rotations from a

small interval (e.g., [ −15 ◦ , +15 ° ] used in Belhumeur et al. (2013) );

(2) synthesizing images by left-right flip to double the training set;

(3) disturbing the bounding boxes by randomly scaling and trans-

lating the bounding box for each image, which also increases the

robustness of face alignment algorithms to the bounding boxes; (4)

sampling multiple initialization for each training image, which is

typically used by cascaded regression methods. 

5.3. Face preprocessing 

For the task of face alignment, it is useful to remove the scal-

ing variations of the detected faces, and enlarge the face region to

ensure that all predefined facial points are enclosed. 

5.3.1. Handling scaling variations 

Typically, for a face analysis system, the training and test faces

are required to be roughly the same scale, by rescaling the bound-

ing box produced by the face detector. We note that to help pre-

serve more detailed texture information, the size of the normalized

bounding box for high-resolution face databases is typically cho-

sen to be larger than that for low-resolution face databases. For

example, Belhumeur et al. (2013) rescale the high-resolution im-

ages from the LFPW database so that the faces have an inter-ocular

distance of roughly 55 pixels, while Dantone et al. (2012) choose

to rescale the bounding box of the low-resolution faces from the

LFW database ( Huang et al., 2007a ) to {100,100}, which is slightly

smaller than the size chosen by Belhumeur et al. (2013) . 

5.3.2. Enlarging face areas 

The output of a face detector is a rough face region that might

miss some facial points (e.g., the chin). This has little impact on

cascaded regression, for which the bounding box only serves to

rescale the face and compute the initial shape. However, for those

methods based on exhaustive search or feature voting, it is nec-

essary to enlarge the face bounding box to enclose all the facial

points, or define the sampling region of image patches to cast

votes. For this, Dantone et al. (2012) suggest to enlarge the face

bounding box by 30%, and we believe that this strategy may sat-

isfy the requirements of all face alignment algorithms. 
.4. Shape initialization 

Most face alignment methods start from a rough initialization,

nd then refine the shape iteratively until convergence. The initial-

zation step typically has great influence on the final result, and

n initial shape far from the ground truth might lead to very bad

lignment results. 

The most common choice is to use the mean shape for initializa-

ion ( Kazemi and Josephine, 2014; Ren et al., 2014; Xiong and De la

orre, 2013 ). However, sometimes, the mean shape is likely to be

ar from the target shape, and leads to bad result. As an alterna-

ive, Cao et al. (2012) propose to run the algorithm several times

sing different initialisations randomly sampled from the training

hapes, and take the median result as the final estimation to im-

rove robustness. Burgos-Artizzu et al. (2013) proposed a smart

estart method to further improve the multiple initialization strat-

gy in Cao et al. (2012) by checking the variance between the pre-

ictions using different initializations. 

Recently, some authors proposed to estimate an initial shape

hat is tailored to the input face. Zhang et al. (2014c ) showed

hat the five major facial points localized by their deep model

an serve as anchor points to apply similarity transform to ran-

omly sampled training shapes. Through this, very accurate ini-

ial shapes can be generated for other algorithms (e.g., Burgos-

rtizzu et al. (2013) ) and lead to promising performance improve-

ent. Zhang et al. (2014a ) and Sun et al. (2013) proposed to di-

ectly estimate a rough initial shape from the global image, which

n general produces good initial shape that aids following align-

ent. 

.5. Accuracy and efficiency tradeoffs 

Face alignment in real time is crucial to many practical appli-

ations. The efficiency mainly depends on the feature extraction

nd shape prediction steps. In general, strong hand-designed fea-

ure (e.g., SIFT Lowe (2004) ) captures detailed texture informa-

ion that may aid detection, but have higher computational cost

ompared to simpler features (e.g., BRIEF Calonder et al. (2010) ).

hu et al. (2015) identified this phenomenon under the cascaded

egression framework, and proposed to exploit different types of

eatures at different stages to achieve a good trade-off between ac-

uracy and efficiency, i.e., employ less accurate but computation-

lly efficient BRIEF feature at the early stages, and use more ac-

urate but relatively slow SIFT feature at later stages. Besides this

ybrid strategy, a better choice is to learn highly efficient and dis-

riminative features ( Cao et al., 2012; Kazemi and Josephine, 2014;

en et al., 2014 ). In particular, Ren et al. (2014) propose to learn

 set of highly discriminative local binary features for each facial

oint independently. Because extracting and regressing local binary

eatures is computationally very cheap, Ren et al. (2014) achieves

ver 30 0 0 FPS while obtaining accurate alignment result. 

In term of shape prediction, the regression-based methods

n general are very efficient, while the exhaustive search based

ethods typically suffer from high computational cost ( Belhumeur

t al., 2011; Zhou et al., 2013b ). Dibeklio ̆glu et al. (2012) pro-

ose to mitigate this issue through a coarse-to-fine search strat-

gy. In Dibeklio ̆glu et al. (2012) , a three-level image pyramid from

he cropped high-resolution face images is designed to reduce the

earch region, where the coarse-level images have lower resolution

ut much smaller size. 

. System evaluation 

In this section, we first review the major wild face databases

nd evaluation metric in the literature, then summarize and dis-

uss some of reported performance of current state-of-the-art, on
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Fig. 10. Example results on IBUG database ( Sagonas et al., 2013a ) by eight state-of-the-art methods. These images are extremely difficult due to the mixing of large head 

poses, extreme lighting, and partial occlusions. From top to bottom, results are produced by the Project-Out Cascaded Regression (PO-CR) method ( Tzimiropoulos, 2015 ), 

Consensus of Exemplar (CoE) method ( Belhumeur et al., 2013 ), Robust Discriminative Hough Voting (RDHV) method ( Jin and Tan, 2016 ), Local Binary Feature (LBF) method 

( Ren et al., 2014 ), Supervised Descent Method (SDM) ( Xiong and De la Torre, 2013 ), Explicit Shape Regression (ESR) method ( Cao et al., 2012 ), Coarse-to-Fine Shape Searching 

(CFSS) method ( Zhu et al., 2015 ), Tasks-Constrained Deep Convolutional Network (TCDCN) method ( Zhang et al., 2016 ). Among these methods, we implement the Consensus 

of Exemplar (CoE) ( Belhumeur et al., 2013 ) and Robust Discriminative Hough Voting (RDHV) ( Jin and Tan, 2016 ) methods and test them on these images, while other results 

are obtained from the published papers. 

t  

m  

o  

d  

l  

A

6

6

 

m  

e  
he several popular wild face databases using the same evaluation

etric for reference. Note that we do not include the evaluation

f 3D face alignment methods emerged recently, as the common

ataset 3DFAW ( Jeni et al., 2016 ) has not been available to the pub-

ic. For this, we refer the readers to the paper of the first 3D Face

lignment in the Wild (3DFAW) Challenge ( Jeni et al., 2016 ). 
c  
.1. Databases and metric 

.1.1. Databases 

There have been many face databases developed for face align-

ent, with the ground truth facial points labelled manually by

mploying workers or through the tools such as Amazon me-

hanical turk (MTurk). Among them, some databases are col-
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t  

w  
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n  

i  
lected under controlled laboratory conditions with normal light-

ing, neutral expression and high image quality, including the Ex-

tended M2VTS database (XM2VTS) ( Messer et al., 1999 ), BioID face

database ( Jesorsky et al., 2001 ), PUT ( Kasinski et al., 2008 ), Multi-

Pie ( Gross et al., 2010 ), etc. 

However, the goal of this paper is to investigate the problem of

face alignment in-the-wild , so we are more concerned with the un-

controlled databases that exhibit large facial variations due to pose,

expressions, lighting, occlusion and image quality. These uncon-

trolled databases are typically collected from social network such

as google.com, flickr.com, facebook.com, which are more realistic

and challenging for face alignment. In Table 4 , we list the basic in-

formation of 9 wild face databases, including LFW ( Huang et al.,

2007a ), LFPW ( Belhumeur et al., 2011 ), AFLW ( Köstinger et al.,

2011 ), AFW ( Zhu and Ramanan, 2012 ), HELEN ( Le et al., 2012 ), 300-

 ( Sagonas et al., 2013 ), COFW ( Burgos-Artizzu et al., 2013 ), MTFL

( Zhang et al., 2014c ), and MAFL ( Zhang et al., 2016 ), and also pro-

vide links to download them. The example face images from these

databases with original annotation are illustrated in Fig. 8 . It is

worth noting that the LFPW, AFW and HELEN databases are re-

annotated by Sagonas et al. (2013) ) with 68 points. 

6.1.2. Evaluation metric 

There have been several evaluation metrics for the alignment

accuracy in the literature. For example, many authors reported the

inter-pupil distance normalized facial point error averaged over all

facial points and images for each database ( Burgos-Artizzu et al.,

2013; Kazemi and Josephine, 2014; Lee et al., 2015; Ren et al.,

2014; Zhu et al., 2015 ). Specifically, the inter-ocular distance nor-

malized error for facial point i is defined as: 

e i = 

|| x i − x 

∗
i 
|| 2 

d IOD 

, (11)

where x i is the automatically localized facial point location, x ∗
i 

is

the manually annotated location, and d IOD is the inter-ocular dis-

tance. The normalization term d IOD in this formulation can elimi-

nate unreasonable measurement variations caused by variations of

face scales. 

The cumulative errors distribution (CED) curve is also often

chosen to illustrate the comparative performance, showing the pro-

portion of the test images or facial points with the increase of

the normalized error ( Belhumeur et al., 2011; Saragih et al., 2011;

Tzimiropoulos, 2015; Tzimiropoulos and Pantic, 2014; Zhu et al.,

2015 ). Some other evaluation metric can also been found in lit-

erature, such as the facial point error normalized by face size

( Yu et al., 2013 ), the percentage of the test images or facial points

less than given relative error level ( Dibeklio ̆glu et al., 2012; Yu

et al., 2013 ), and the percentage of accuracy improvement over

other algorithm ( Cao et al., 2012 ). 

Besides the accuracy, the efficiency is another important per-

formance indicator of face alignment algorithms, which is typically

measured by frames per second (FPS). 

6.2. Evaluation and discussion 

We choose four common wild databases, i.e., LFW, LFPW, HE-

LEN, 300 W and IBUG (challenging subset of 300 W) databases,

to show comparative performance statistics of the state of the art.

Table 5 lists some softwares published online, and Table 6 summa-

rizes the reported performance on above databases. Fig. 10 shows

some challenging images from IBUG aligned by eight state-of-the-

art methods respectively. 

For performance evaluation, we are mainly concerned with two

key performance indicators, i.e., accuracy and efficiency. The for-

mer is measured by the normalized facial point error (cf. Eq. (11) )

averaged over all facial points and images for each database, while

the later is measured by frames per second (FPS). 
.2.1. Accuracy 

As shown in Table 6 , the localization error on all these

atabases has been reduced to less than 10% of the inter-ocular

istance by current state-of-the-art. Except for the extremely chal-

enging IBUG database, the best performance on other databases is

bout 5% of the inter-ocular distance. To have an intuitive feeling

f the extent of localization error, we exemplify the error range of

0% and 5% of the inter-ocular distance respectively in Fig. 9 (a)

nd (b). This implies that most of the localized facial points by the

tate-of-the-art may lie in the error range depicted by the white

ircles in Fig. 9 (a), while on LFPW annotated with 29 points, the

ean error range goes to the white circles in Fig. 9 (b). Besides the

tatistics listed in Table 6 , some authors also compared their meth-

ds with human beings and reported close to human performance

n LFPW ( Belhumeur et al., 2011; Burgos-Artizzu et al., 2013 ) and

FW ( Dantone et al., 2012 ). 

From Table 6 , we can observe that although generative meth-

ds (e.g., the GN-DPM ( Tzimiropoulos and Pantic, 2014 )) can pro-

uce good performance for face alignment in-the-wild , discrim-

native methods, especially those based on cascaded regression

 Burgos-Artizzu et al., 2013; Cao et al., 2012; Huang et al., 2015;

azemi and Josephine, 2014; Lai et al., 2015; Ren et al., 2014;

iong and De la Torre, 2013; Zhu et al., 2015 ), have been playing

 dominate role for this task, partially due to recent development

f large unconstrained databases. Furthermore, the deep learning-

ased approach ( Huang et al., 2015; Sun et al., 2013; Zhang et al.,

014c; 2016 ) have recently emerged as a popular and state-of-the-

rt method due to their strong feature learning capability, achiev-

ng very accurate (even the best) performance on the challenging

00-W and IBUG databases ( Sagonas et al., 2013 ). 

Fig. 10 shows some extremely challenging cases on IBUG aligned

y eight state-of-the-art methods, from which we can observe that

arge head poses, extreme lighting, and partial occlusions may pose

ajor challenges for many advanced face alignment algorithms,

ut good results can still be achieved by some state-of-the-art,

or example, by the Tasks-Constrained Deep Convolutional Network

TCDCN) method ( Zhang et al., 2016 ). Furthermore, we find the

ig. 10 that: (1) Compared to other facial points, the points around

he outline of the face are much more difficult to localize, due to

he lack of distinctive local texture. (2) As the points around the

outh are heavily dependent on facial expressions, they are more

ifficult to localize than those points insensitive to facial expres-

ions, such as the points along the eyebrows, outer corners of the

yes, and the nose tips. 

Finally, we have to highlight that the accuracy statistics listed

n Table 6 may not fully characterize the behavior of these algo-

ithms, since several factors can complicate the assessment. First,

ven for the same algorithm, different experimental details and

rogramming skills may results in different performance. Secondly,

hile the number and variety of training examples have a direct

ffect on the final performance, the training data of some released

oftware is not clear. Thirdly, as pointed by Yang et al. (2015) , the

erformance of many algorithms is sensitive to the face detection

ariation, but different systems may employ different face detec-

ors. For example, SDM ( Xiong and De la Torre, 2013 ) employs

he Viola Jones detector ( Viola and Jones, 2004 ), while GN-DPM

 Tzimiropoulos and Pantic, 2014 ) uses the in-house face detector

f the IBUG group. 

.2.2. Efficiency 

Besides accuracy, efficiency is another key performance indica-

or of face alignment algorithms. In the last column of Table 6 ,

e report the efficiency of some algorithms, and highlight the im-

lementation types of them (Matlab or C++). In general, the run-

ing time listed here is consistent with the algorithm’s complex-

ty. For example, algorithms that involves an exhaustive search of
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ocal detectors typically have a high time cost ( Belhumeur et al.,

011; Zhou et al., 2013b; Zhu and Ramanan, 2012 ), while the cas-

aded regression methods are extremely fast since both the shape-

ndex feature and the stage regression are very efficient to com-

ute ( Burgos-Artizzu et al., 2013; Cao et al., 2012; Xiong and De la

orre, 2013 ). It is worth noting that impressive speed (more than

0 0 0 FPS for 194 points on HELEN) has been achieved by the local

inary feature (LBF) ( Ren et al., 2014 ) and ensemble of regression

rees (ERT) ( Kazemi and Josephine, 2014 ), using learning-based fea-

ures. 

. Conclusion and prospect 

Face alignment is an important and essential intermediary step

or many face analysis applications. Such a task is extremely chal-

enging in unconstrained environments due to the complexity of

acial appearance variations. However, extensive studies on this

roblem have resulted in a great amount of achievements, espe-

ially during the last few years. 

In this paper, we have focused on the overall difficulties and

hallenges in unconstrained environments, and provide a compre-

ensive and critical survey of the current state of the art in dealing

ith these challenges. Furthermore, we hope that the practical as-

ects of face alignment we organized can provide further impetus

or high-performance, real-time, real-life face alignment systems.

inally, it is worth mentioning that some closely related problems

re deliberately ignored in this paper, such as facial feature track-

ng in videos ( Ahlberg, 2001; Kapoor and Picard, 2002 ), which are

lso very important in practice. 

Despite of many effort s devoted to face alignment during the

ast two decades, we have to admit that this problem is far from

eing solved, and several general promising research directions

ould be suggested. 

• Challenging databases collection: Besides new methodologies,

another notable development in the field of face alignment has

been the collection and annotation of large facial datasets cap-

tured in-the-wild (cf., Table 4 ). But even so, we argue that the

collection of challenging databases is still important and has

the potential to boost the performance of existing methods.

This argument can be partially supported by the fact that: the

performance of most algorithms on IBUG is inferior to that on

other databases such as LFPW and HELEN, as the training set of

these algorithms is typically less challenging compared to IBUG.
• Feature learning: One of the holy grails of machine learning is

to automate more and more of the feature engineering process

( Domingos, 2012 ), i.e., to learn task-specific features in a data-

driven manner. In the field of face alignment, many approaches

that employ feature learning techniques, including both shal-

low feature learning ( Burgos-Artizzu et al., 2013; Cao et al.,

2012; Ren et al., 2014 ) and deep learning ( Huang et al., 2015;

Sun et al., 2013 ) methods, have achieved state-of-the-art per-

formances. We believe that, with the assistance of abundant

manually labeled images, automatic feature learning techniques

can be a powerful weapon for triumphing over various chal-

lenges of face alignment in the wild, and deserve the effort s

and smarts of researchers. 
• Multi-task learning: Multi-task learning aims to improve the

generalization performance of multiple related tasks by learn-

ing them jointly, which has proven effective in many computer

vision problems ( Yuan et al., 2012; Zhang et al., 2013 ). For

face alignment in-the-wild , on the one hand, many factors such

as pose, expression and occlusion may pose great challenges;

while on the other hand, these factors can be considered jointly

with face alignment to expect an improvement of robustness.

This has been confirmed by the work of Zhang et al. (2014c ),
which proposes to exploit the power of multi-task learning un-

der the deep convolutional network architecture, leading to a

better performance compared to single task-based deep model.

Although some attempts have been proposed, we believe that

multi-task learning remains a meaningful and promising direc-

tion for face alignment in future. 
• 3D face alignment: 2D face alignment has be extensively stud-

ied in literature. But as mentioned in Section 4.7 , 2D methods

are mainly designed for faces in small to medium poses (below

45 °). As face orientation varies from frontal to profile, 2D an-

notations (e.g., cheek landmarks) may lose correspondence. In

this setting, 3D face alignment from 2D images has been pro-

posed as a potential solution. Although a number of promising

3D methods have be proposed recently ( Bulat and Tzimiropou-

los, 2016; Jourabloo and Liu, 2015; 2016; Tulyakov and Sebe,

2015 ), we believe that 3D face alignment is a novel and impor-

tant topic that deserves ongoing effort. 

We believe that face alignment in-the-wild is a very exciting

ine of research due to its inherent complexity and wide practi-

al applications, and will draw increasing attention from computer

ision, pattern recognition and machine learning. 
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