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Abstract 
 

Classical fuzzy C -means (FCM) clustering is 
performed in the input space, given the 
desired number of clusters. Although it has 
proven effective for spherical data, it fails 
when the data structure of input patterns is 
non-spherical and complex. In this paper, we 
present a novel kernel-based fuzzy C-means 
clustering algorithm (KFCM). Its basic idea is 
to transform implicitly the input data into a 
higher dimensional feature space via a 
nonlinear map, which increases greatly  
possibility of linear separability of the patterns 
in the feature space, then perform FCM in the 
feature space. Another good attribute of 
KFCM is that it can automatically estimate the 
number of clusters in the dataset. The 
experimental results show that the proposed 
method has better performance in the Ring 
dataset. 
 
1. Introduction 
Clustering analysis is a useful technique for 
exploring the underlying structures of a given 
data set and is being applied in a wide variety 
of engineering and scientific disciplines such 
as medicine, psychology, biology, sociology, 
pattern recognition, image processing and data 
mining [1,2]. Generally speaking, clustering is 
the process of grouping the data into classes or 
clusters so that objects within a cluster have 
high similarity in comparison to one another, 
but are very dissimilar to objects in other 
clusters [2]. There are many methods 
concerning clustering, each has its own merits 

and disadvantages. Among these, maybe the 
most widely used approach is the C-means 
algorithm and its variations.  

Fuzzy C-means (FCM) [4] clustering 
algorithm is the soft extension of the 
traditional hard C-means. It considers each 
cluster as a fuzzy set, while a membership 
function measures the possibility that each 
training vector belongs to a cluster. As a result, 
each training vector may be assigned to 
multiple clusters. Thus it can overcome in 
some degree the drawback of dependence on 
initial partitioning cluster values in hard 
C-means. However, just like the C-means 
algorithm, FCM is effective only in clustering 
those crisp, spherical, and non-overlapping 
data. When dealing with non-spherical shape 
and much overlapped data, such as the Ring 
dataset (see Fig.3 (a)), FCM cannot always 
work well (see Fig.3 (b)-3c)). In this paper, we 
use the kernel method [3][5] to construct the 
nonlinear version of FCM, and propose a 
kernel-based fuzzy C-means clustering 
algorithm (KFCM). The basic ideas of KFCM 
is to first map the input data into a feature 
space with higher dimension via a nonlinear 
transform and then perform FCM in that 
feature space. Thus the original complex and 
nonlinearly separable data structure in input 
space may become simple and linearly 
separable in the feature space after the 
nonlinear transform (see Fig.1). So we desire 
to be able to get better performance. Another 
merit of KFCM is, Unlike the FCM which 
needs the desired number of clusters in 
advance, it can adaptively determine the 



number of clusters in the data under some 
criteria. The experimental results show that 
KFCM has best performance in the test for the 
Ring dataset. 
 

 
 
 
 
 
 
 
 
2. Review of classical FCM 
Before we discuss the kernel FCM algorithm, 
let us review the FCM algorithm briefly. Let 

},...,2,1,{ nixX i == denote a set of 

n input vectors, pRX ⊆ . c is the 

desirednumber of clusters. civi ,...,2,1, = ,is 

the ith vector of cluster centres, 

p
i Rv ∈ .And iku , i =1,2,…, c , k = 1,2,…,n , 

is the membership of kx  in the i th 

partitioning subset of X ,satisfying  

10 ≤≤ iku  for all i , k ;          (1a) 

∑
=

=
c

i
iku

1

1   for all k ;            (1b) 

0
1

>∑
=

n

k
iku   i∀ .                (1c) 

The FCM selects the following objective 
function, defined as 

∑∑
= =

−=
c

i

n

k
ik

m
ikm vxuJ

1 1

2||||       (2 ) 

where 1>m  is a weighting exponent on 
each fuzzy membership. According to (1b) 
and (2), by using an alternative iteration 

optimization procedure, the FCM can find the 

appropriate iku  and iv  so as to make mJ  

minimization for 1>m . Once the 

membership iku  are got for all i , k , we can 

label the input vector kx with kj , which is 

determined from the following equation 

ikik uj minarg=  for all k .      (3) 

3. The proposed kernel FCM algorithm 
From the equation (2) , we can see that 

classical FCM algorithm is based on the input 
space sum-of-squares clustering criterion. If 
the separation boundaries between clusters are 
nonlinear then FCM will unsatisfactorily 
work . To solve this problem we adopt the 
strategy of nonlinearly mapping the input 
space into a higher dimensional feature space 
and then performing linear FCM within the 
feature space. 

Assume we define the nonlinear map as 

Fxx ∈Φ→Φ )(: ,where Xx∈ . X denotes 

the input space, and F denotes the feature 
space with higher dimension. Note that the 
cluster centre in the feature space can now be 
denoted by the following form 
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where ikβ  is the coefficients which will be 

calculated later. So similar to Equation (2) in 
section 2, we select the following objective 
equation to be optimized 
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We rewrite the norm in equation (5) as the 
following  
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Fig.1 The idea of kernel method

 



∑
=

ΦΦ−
n

l
l

T
kil xx

1
)()(2 β ∑∑

= =

ΦΦ+
n

l

n

j
jij

T
kil xx

1 1

)()( ββ .  (6) 

It’s interesting to see that equation (6) takes as 
the form of a series of dot products in feature 
space. And these dot products can easily be 
computed through Mercer kernel 
representations in the  input space 
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where 

iβ = T
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T
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K = ),...,,( 21 nKKK ,for k =1,2,..., n . We 

can calculate ijK in the following way 

ijK = ),( ji xxK  for all ji, =1,2,..., n .  (8) 

where K  is also named the kernel function. 
While any function satisfying the Mercer 
condition can be used as the kernel function, 
the best known is polynomial kernels, radial 
basis functions and Neural Network type 
kernels. 
Substituting for the norm in equation (5) with 
equation (7),  we get 
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Minimizing mJ  with 1>m  under the 

constraint of equation (1b), we have the 

expressions of iku  and iβ  as follows 
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The below is the full description of our 
proposed kernel FCM algorithm (KFCM). 
Step1: Fix 1>m and 0>ε  for some 
positive constant. 
Step2: Calculate the number of clusters 
c using the method in section 4. 
Step3: Initialize the coefficient vectors 

0
iβ = T

inii ),...,,( 00
2

0
1 βββ , for all i=1,2,..., c . 

Step4: Calculate the kernel matrix and its 
inverse using the expression (8) with 
one of the following kernel functions 
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Step5: For t =1,2,…, maxt  

a. Update all memberships t
iku with 

(10a). 

b. Update all t
iβ with (10b). 

c. Compute 
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,
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d. If tE ≤ ε , stop; else next t. 

Once the membership iku  are got, for all 

i , k , we can label the input vector kx  using 

the equation (3). And it is important to note 



that the proposed algorithm does not need to 
be given the number of clusters in advance. 
Instead, it can automatically compute the 
number of clusters in the data. In the next 
section, we’ll discuss in detail the method 
used in KFCM to estimate the number of 
clusters. 
4. Estimation of the number of clusters  

In the KFCM algorithm, it is the kernel 
matrix K , got by expression (8), that was 
mostly processed, which can be easily seen 
from the expression (10a) and (10b). In 
addition, the kernel matrix can be used to 
determine the number of clusters in the data 
set. In [6], Girolami first discussed that 
interesting phenomenon. His idea is very 
simple: as each element of the kernel matrix 
defines a dot-product distance in the feature 
space , the matrix will have a block diagonal 
structure when there are definite clusters 
within the data sets. And we can use this block 
diagonal structure to determine the number of 
clusters. Although Girolami’s method is first 
used in the C-means clustering , we found it 
also can be applied into our algorithm. An 
illustration for this method can be seen in 
Fig.2. Where Fig.2 (a) is the original 
well-separated spherical data set. Fig.2 (b) is 
the plot of kernel matrix in the KFCM 
algorithm clearly showing the inherent block 
structure. Fig.2 (c) shows the most significant 
eigenvalues of the kernel matrix in the KFCM 
algorithm. Thus through counting the number 
of significant eigenvalues of kernel matrix, we 
can get the number of clusters. And in this 
exam the value is five. 
5. Experimental results 

In this section, we show some 
experimental results from using the FCM and 
our proposed KFCM algorithm. And we use 
the method in section 4 to calculate the 
number of clusters. We first use the spherical 
dataset in Fig.2 (a), and the FCM and KFCM 
algorithms can both separate the five clusters 

completely. Whereas for the input data in 
Fig.3 (a), the results shown in Fig.3 (b)-3 (c) 
indicate the FCM algorithm is unable to 
correctly perform clustering for this input 
patterns. On the other hand, our proposed 
algorithm can successfully separate the two 
clusters, as shown in Fig.4 (a)-4 (b). 

Finally, we tested the real Iris data (150 
input patterns with 3 clusters). Fig.5 shows the 
process of estimation of the number of clusters. 
And from Fig.5 (b), we estimate the number 
of clusters in the Iris data at three. By using 
the FCM and KFCM algorithm respectively, 
we get 1-3 less errors with KFCM than with 
FCM. But the distinction is not so apparent as 
in the Ring data, chiefly because the Iris 
dataset is only a little overlapped and thus can 
nearly be separated by the ordinary methods, 
such as FCM.  
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(a) (b) (c)
Fig.2 Illustration of method used to determine the 

number of clusters in the KFCM algorithm 
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(a) (b) (c) 
Fig.3 (a) Original Ring data  (b) cluster 1 by FCM

(c) cluster 2 by FCM. 
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Fig.4 (a) cluster 1 by KFCM  (b) cluster 2 by KFCM  
For the Ring dataset.

Fig.5 (a) plot of kernel matrix  (b) the most significant
eigenvalues of kernel matrix for Iris dataset. 
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