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Abstract. The functional connectome has gained increased attention in the
neuroscience community. In general, most network connectivity models are
based on correlations between discrete-time series signals that only connect two
different brain regions. However, these bivariate region-to-region models do not
involve three or more brain regions that form a subnetwork. Here we propose a
learning-based method to explore subnetwork biomarkers that are significantly
distinguishable between two clinical cohorts. Learning on hypergraph is
employed in our work. Specifically, we construct a hypergraph by exhaustively
inspecting all possible subnetworks for all subjects, where each hyperedge
connects a group of subjects demonstrating highly correlated functional con-
nectivity behavior throughout the underlying subnetwork. The objective func-
tion of hypergraph learning is to jointly optimize the weights for all hyperedges
which make the separation of two groups by the learned data representation be
in the best consensus with the observed clinical labels. We deploy our method to
find high order childhood autism biomarkers from rs-fMRI images. Promising
results have been obtained from comprehensive evaluation on the discriminative
power and generality in diagnosis of Autism.

1 Introduction

The brain can be partitioned into different regions according to various functions, and
connectivity networks can be composed where information is continuously processed
between these functionally linked brain regions [1]. In order to understand the
pathological underpinnings of neurological disorder, many functional neuroimaging
studies have been developed to investigate abnormal alternations among these brain
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connections. Recently, researchers have also used functional connectivity networks for
diagnosing brain disease at individual level [2].

The brain is complex and oscillatory activities behind cognition are essentially the
large-scale collaborative work among millions of neurons through multiple brain
regions. The bivariate region-to-region interactions do not capture high order network
architecture patterns that involve three or more brain regions in a subnetwork archi-
tecture. Recently, there is overwhelming evidence that brain network displays hierar-
chical modularity, making the investigation of high order network patterns more
attractive to neuroscience and clinical practice than ever before.

Here, we propose a novel learning-based method to discover high order network
connectome biomarkers that can be used to distinguish two clinical cohorts. Without
doubt, there are thousands of high order connectome patterns varying from the number
and combination of the involved brain regions. Considering the computational cost, we
propose the following criteria to promote one high order network connectome to the
biomarker: (a) Small subnetwork architecture. Since a triangle is one of the simplest
types of subnetwork, we take a first step to discover high order connectome patterns
that end up in the functional connectivity throughout the triangle cliques. (b) Entire
functional connectivity flow. We examine the functional connectivity behavior
throughout the subnetwork. Therefore, the connectome pattern is considered as a
biomarker only if the entire functional connectivity flow inside the subnetwork, instead
of particular predominant connection link, shows significant difference between two
clinical cohorts.

To achieve it, we first construct a subnetwork repository that consists of all possible
triangle cliques. The native solution is to measure and sort the significance of each
triangle cliques via the independent statistical t-test. Since the subnetworks are highly
correlated (e.g., large amount of overlap of edges among triangle cliques), independent
statistical test can hardly be effective in looking for the critical subnetworks.

We utilize hypergraph technique to jointly find a set of the most significant high
order connectome biomarkers by investigating subject-to-subject relationships based on
functional connectivity flows in all possible subnetwork architectures. Specifically,
each individual subject is treated as a vertex in the hypergraph. For each subnetwork
architecture, a hyperedge is formed for each subject at a time that includes other
subjects with similar functional connectivity flows throughout the same subnetwork
architecture. Thus, the hypergraph eventually encodes a wide spectrum of high order
connectome patterns in the population. The next step is to find the most significant
biomarkers hiding behind thousands of subnetworks. Since each subject has the clinical
label, the problem of seeking for high order biomarkers turns to the optimization of the
weights on hyperedges such that the separation of subjects by the learned data repre-
sentation (encoded by hypergraph) maximally agrees with the observed clinical labels.
Intuitively, the learned weights reflect the significance in distinguishing two clinical
cohorts. We have applied our learning-based method to discover the high order
functional connectome patterns for childhood autism spectrum disorders (ASDs) and
identify ASD individuals from ABIDE dataset. Promising classification results have
been achieved which demonstrate the power of learned high order connectome
patterns.
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2 Method

Method Overview. Figure 1 illustrates the intuition behind our proposed
learning-based method. For clarity, we assume there are three subjects in one cohort
(top left in Fig. 1) and two subjects in anther cohort (bottom left in Fig. 1). Only two
possible subnetworks (triangle cliques in purple and red) are under investigation. The
goal is to find out which subnetwork is able to separate subjects from two groups more
accurately than the other, based on the functional connectivity flow inside the sub-
network. Eventually, the selected subnetworks are considered as biomarkers to identify
other individual subjects.

Hypergraph is employed to measure the high order subject-wise relationships based
on the functional connectivity flow running inside each subnetwork. Specifically,
subjects are considered as vertices (v1–v5 in Fig. 1) in the hypergraph. In general, a set
of subjects fall into the same hyperedge only if their functional connectivity flows in
the same subnetwork show high correlations. Thus, hyperedge can accommodate high
order relationship that is beyond two subjects in the conventional graph technique. For
example, subject v2 and v3 stay in the same hyperedge e1 with v1 since their functional
connectivity flows (designated by the black arrows) are very similar inside the purple
triangle clique. The standard way to construct hyperedges is to exhaustively visit each
subject per each subnetwork. As the example shown in Fig. 1, we obtain four
hyperedges (e1–e4) that are displayed by curves. Note, the identical hyperedges are
discarded and the color on each hyperedge indicates the associated subnetwork.

A hypergraph learning technique is used to jointly quantify the significance of each
subnetwork based on the ground truth clinical label on each subject. Intuitively, the
more label discrepancies occur within the hyperedges related to the underlying sub-
network, the lower the significance of that particular subnetwork becomes. Finally, the
subnetworks with high overall significance value across related hyperedges are
regarded as the biomarkers from rs-fMRI image. As shown in the left panel of Fig. 1,
the labels in e1 and e2 (purple curves) are highly consistent, suggesting that the
functional connectivity flow running on the purple triangle clique is a good biomarker
to separate the subjects from two different groups. On the contrary, the functional

Fig. 1. The overview of our learning-based method to discover high order brain connectome
patterns by hypergraph inference. (Color figure online)

Identifying High Order Brain Connectome Biomarkers 3



connectivity flow inside the red triangle clique fails to be the biomarker since there are
hyperedges built on the red triangle clique having subjects with different clinical labels,
e.g., v1 and v4 are both in the hyperedge e3.

2.1 Encode Subject-Wise Relationship in Hypergraph

Given a training set of N subjects fvnjn ¼ 1; . . .;Ng, where each subject has already
been partitioned to R anatomical regions. Without loss of generality, we use ‘+1’ and
‘−1’ to distinguish the label for two clinical groups, and thus form a column vector
y ¼ y1; y2; . . .; yN½ �T . Considering the computational cost and efficiency, we first con-
struct the pool of all possible subnetworks D ¼ fDjjj ¼ 1; . . .;Cg, where each triangle
clique Dj is formed by three brain regions randomly picking up from totally R regions.

Therefore, there are C ¼ R
3

� �
combinations in total. Given subject vn and particular

subnetwork Dj, we can obtain a three-element vector of functional connectivity flow
an;j ¼ ½a1n;j; a2n;j; a3n;j�, where each element in an;j is eventually the Pearson’s correlation
degree of the mean rs-fMRI signals, from subject vn, between any two brain regions
within the triangle clique Dj.

Construct Hypergraph. Next, we construct hypergraph, as denoted by G ¼ V ;Eð Þ,
where the hypergraph vertex set V ¼ vnjn ¼ 1; . . .;Nf g includes all subjects in the
population. We use star-expansion algorithm to build a set of hyperedges by exhaus-
tively visiting each vertex vn for particular subnetwork Dj, thus forming the hyperedge
set E ¼ en;jjn ¼ 1; . . .;N; j ¼ 1; . . .;C

� �
. For each hyperedge en;j, we examine the

similarity between functional connectivity flow an;j at current vertex vn and an0;j
(n0 ¼ 1; . . .;N; n0 6¼ n) at all others vertices. The criteria of allowing vn0 be in the
hyperedge en;j (i.e., vn0 2 en;j) are (a) the Euclidian distance dj n; n0ð Þ ¼ jjan;j � an0;jjj22
between an;j and an0;j should be smaller than certain threshold; and (b) an0;j should be
within the k-nearest neighborhood in terms of djðn; n0Þ.
Encode Hypergraph in Incidence Matrix. In a conventional graph based method,
the relationships among graph vertices are encoded in a N � N affinity matrix. In
hyper-graph, instead, the relationships between vertices are encoded using an incidence
matrix H, with the row and column denoting the vertices and hyperedges, respectively.
Since each hyperedge en;j is related with both vertex vn and subnetwork Dj, we use the
column index h to delegate the bivariate index ðn; jÞ, i.e., h $ ðn; jÞ, where h ranges
from 1 to H ¼ N � C. Thus, H is a N �H matrix. For each entry hðn; hÞ, we set
h n; hð Þ ¼ 1 if the vertex vn is in hyperedge eðn; jÞ: Otherwise, h n; hð Þ ¼ 0. The
example of incidence matrix is shown in the right panel of Fig. 1. Apparently, the
incidence matrix conveys more information than the affinity matrix used in conven-
tional approaches based on simple graphs.

Hyperedge Weights. For convenience, we use eh denote the particular hyperedge in
the following text, instead of en;j. Each hyperedge eh has a non-negative weight wh.
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Furthermore, we construct aH�H diagonal matrix W where each diagonal element is
the hyperedge weight wh. Given H and W, we can define the vertex degree d nð Þ ¼PH

h¼1 whhðn; hÞ for each vn and the hyperedge degree d hð Þ ¼PN
n¼1 hðn; hÞ for each eh.

2.2 Discover High Order Brain Connectome Patterns by Hypergraph
Learning

Our learning-based method aims to find out the biomarkers by inspecting the perfor-
mance of each hyperedge in separating subjects from two groups. To that end, we first
assume the label on each subject is not known yet. Thus, we use hypergraph learning
technique to estimate the likelihood fn for each subject vn, which is driven by (a) the
minimization of discrepancies between ground truth label vector y and the estimated
likelihood vector f ¼ f1; f2; . . .; fN½ �T , and (b) the consistency of clinical labels within
each hyperedge. The consistency requirement can be defined as:

Xf Wð Þ ¼
XH

h¼1

XN

n;n0¼1

whh n; hð Þhðn0; hÞ
dðhÞ

fnffiffiffiffiffiffiffiffiffi
dðnÞp � fn0ffiffiffiffiffiffiffiffiffiffi

dðn0Þp !2

: ð1Þ

The regulation term Xf Wð Þ penalizes the label discrepancy by encouraging the dif-
ference between the normalized likelihoods fn=

ffiffiffiffiffiffiffiffiffi
dðnÞp

and fn0=
ffiffiffiffiffiffiffiffiffiffi
dðn0 Þp

to be as small as
possible if vn and vn0 are in the same hyperedge eh. It is clear that the regularization
term Xf Wð Þ is a function of both W and f , which eventually makes the optimization of
W reflect the quality of each hyperedge being the biomarker. In order to avoid over-
fitting, we use Frobenius norm on the weighting matrix W. Therefore, the objective
function to look for high order connectome patterns is:

argminW;f Xf Wð Þþ kjjy� fjj22 þ ljjWjj2F : ð2Þ

where k and l are two scalars controlling the strength of data fitting term and Frobenius
norm on the weighting matrix W, respectively.

Optimization. Xf Wð Þ in Eq. (2) is called as hypergraph balance term in [3] and can be
reformulated into a matrix form: Xf Wð Þ ¼ fTðI� KÞf ¼ fTLf, where L is the nor-

malized hypergraph Laplacian, I is the identity matrix, and K ¼ D
�1

2
v HWD�1

e HTD
�1

2
v .

Note, Dv ¼ diagðdðnÞÞ and De ¼ diagðdðhÞÞ are the diagonal matrices of the vertex
degrees and the hyperedge degrees, respectively. It is clear that the objective function
in Eq. (2) is not jointly convex with respect to W and f. Hence, we propose the
following solution to find W and f, alternatively.

Solve Likelihood Vector f. Fixing W, the objective function becomes:

argminf / fð Þ ¼ fTLf þ kjjy� fjj22: ð3Þ
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Conventional hypergraph inference method can be used to estimate f by letting @/
@f ¼ 0,

which leads to the deterministic solution: bf ¼ Iþ 1
kL

� ��1y.

Optimize the Hypergraph Weight W. After discarding unrelated terms w.r.t. W in
Eq. (2), we derive the objective function for hypergraph weight as:

argminW u Wð Þ ¼ fTLf þ l
XH

h¼1
whð Þ2: ð4Þ

Since each wh in W is independent, we can yield the optimized hyperedge weight as

bwh ¼ max fTD
�1
2

v HIhD�1
e HTD

�1
2

v f
2l ; 0

� �
by letting the derivative @u

@wh
¼ 0 and projecting bwh to

meet the non-negative constraint. Note, Ih is the H�H selection matrix which is zero
everywhere except at entry ðh; hÞ.
Discover High Order Connectome Biomarkers. Since W and f are coupled in
Eq. (2), the estimated hypergraph weights in W is driven to achieve (a) the least
discrepancy between ground truth y and estimated likelihood f, and (b) highest label
consistency within each hyperedge, which exactly matches with the important prop-
erties of imaging biomarkers. In our method, we sort the significance of the subnet-
works according to the mean hyperedge weight over all subjects, i.e., bwj ¼PN

n¼1 bwðn; jÞ. After that, a set of the critical subnetworks P ¼ fDjjj ¼ 1; . . .;
C; bwj [ eg, as long as their mean hyperedge weights beyond certain threshold e, are
considered as the biomarkers where the functional connectivity flows running inside
have significant difference between two clinical cohorts.

3 Experiments

3.1 Critical Subnetworks Learned by Hypergraph Inference

In this section, we applied our learning-based method to find critical subnetworks P
based on 45 ASD and 47 typical control (TC) subjects from the NYU site of Autism
Brain Imaging Data Exchange (ABIDE) database [4]. The first 10 obtained rs-fMRI
images of each subject are removed to ensure magnetization equilibrium. After slice
timing and head motion correction, the images are normalized into MNI space and then
segmented into 116 regions-of-interest (ROIs) according to Automated Anatomical
Labeling (AAL) template. Following this, the images underwent signal detrending and
bandpass filtering (0.01–0.08 Hz). For each subject, the mean time series of each ROI
is obtained by averaging the rs-fMRI time series over all voxels in that particular ROI.

Note, the total number of possible subnetworks is 116
3

� �
¼ 253,460. We jointly find

the best parameters for k and l in Eq. (2) using the line search strategy with range from
0.1 to 10.0.

Figure 2 shows the top 10 most critical subnetworks (white triangle cliques) out of
253,460 candidates between ASD and TC cohorts. The color on each vertex differ-
entiates the functions in human brain. It is clear (a) most of the brain regions involved
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in the selected top 10 critical subnetworks locate the key areas related with ASD, such
as amygdala, middle temporal gyrus, superior frontal gyrus; and (b) most of the
selected subnetworks travel cross the subcortical and cortical regions, which is in
consensus with the recent discover of autism pathology in neuroscience community [5].

3.2 Identification of ASD Subjects with the Learned Subnetwork

In the following experiments, we use functional connectivity flows on top 200 critical
subnetworks as the feature representation (feature dimension: 200� 3) to classify ASD
and TC subjects. Then traditional Support Vector Machine (SVM) [6] is adopted to
train the classifier directly based on the concatenated feature vector, denoted as Sub-
network-SVM. Since the functional connectivity flow comes from each subnetwork, it
is straightforward to organize them to a tensor representation and use advanced Support
Tensor Machine (STM) [7] to take advantage of the structured feature representation,
denoted as Subnetwork-STM in the following experiments. In order to demonstrate the
advantage of subnetwork over the conventional region-to-region connection in brain
network, we compare with two counterpart methods Link-SVM (use the Pearson’s
correlations on each link as the feature) and Toplink-SVM (select top 600 links by t-test
and use the Pearson’s correlation on the selected links to form the feature vector).

Evaluation on Discrimination Power. In this experiment, we use 10-fold cross
validation strategy to evaluate the classification accuracy (ACC), sensitivity (SEN),
specificity (SPE), positive predictive value (PPV), and negative predictive value
(NPV) on 45 ASD and 47 TC subjects from NYU site in ABIDE database. As the
classification performance plots and the ROC curves shown in Fig. 3, the classifiers
trained on connectome features from our learned subnetworks have achieved much
higher classification performance than those trained by the same classification tool but
based on the connectome features from the conventional region-to-region connection
links. Also, the substantial classification improvements by Subnetwork-STM over
Subnetwork-SVM indicate the benefit of using structured data presentation in classifi-
cation where such high order information is clearly delivered in the learned
subnetworks.

Fig. 2. The top 10 selected subnetworks (white triangle cliques) where the functional
connectivity flow running inside has significant difference between ASD and TC cohorts.
(Color figure online)

Identifying High Order Brain Connectome Biomarkers 7



Evaluation on Generality. To verify the generality of learned subnetworks, we
directly apply the subnetworks learned on the NYU dataset to the classification of 44
ASD and 53 TC subjects from the UM (University of Michigan) site in ABIDE
database. The accuracies obtained by Link-SVM and Toplink-SVM are 0.6086 and
0.6253, respectively, which is comparable to that in reference [8]. Our Subnetwork-
SVM and Subnetwork-STM can improve the accuracy up to 0.6469 and 0.6610,
respectively. Again, the classification methods using the features extracted from the
learned top subnetworks achieve much higher classification accuracy than the coun-
terpart Link-SVM and Toplink-SVM methods.

4 Conclusion

In this paper, we propose a novel learning method to discover high order brain con-
nectome biomarkers which are beyond the widely used region-to-region connections in
conventional brain network analysis. Hypergraph technique is introduced to model
complex subject-wise relationships in terms of various subnetworks and quantify the
significance of each subnetwork based on the discrimination power across clinical
groups and consistency within each cohort. We apply our learning-based method to
find the subnetwork biomarkers between ASD and TC subjects. The learned top
subnetworks are not only in consensus with the recent clinical findings, but also able to
significantly improve accuracy in identifying ASD subjects, strongly supporting their
potential use and impact in neuroscience study and clinic practice.
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