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Abstract. Brain connectivity networks have been widely used for diag-
nosis of brain-related diseases, e.g., Alzheimer’s disease (AD), mild cog-
nitive impairment (MCI), and attention deficit hyperactivity disorder
(ADHD). Although several network descriptors have been designed for
representing brain connectivity networks, most of them not only ignore
the important weight information of edges, but also cannot capture the
modular local structures of brain connectivity networks by only focusing
on individual brain regions. In this paper, we propose a new network
descriptor (called ordinal pattern) for brain connectivity networks, and
apply it for brain disease diagnosis. Specifically, we first define ordinal
patterns that contain sequences of weighted edges based on a functional
connectivity network. A frequent ordinal pattern mining algorithm is
then developed to identify those frequent ordinal patterns in a brain
connectivity network set. We further perform discriminative ordinal pat-
tern selection, followed by a SVM classification process. Experimental
results on both the ADNI and the ADHD-200 data sets demonstrate
that the proposed method achieves significant improvement compared
with state-of-the-art brain connectivity network based methods.

1 Introduction

As a modern brain mapping technique, functional magnetic resonance imaging
(fMRI) is an efficient as well as non-invasive way to map the patterns of func-
tional connectivity of the human brain [1,2]. In particular, the task-free (resting-
state) functional magnetic resonance imaging (rs-fMRI) have a small-world archi-
tecture, which can reflect a robust functional organization of the brain. Recent
studies [3–6] show great promises of brain connectivity networks in understand-
ing brain diseases (e.g., AD, MCI, and ADHD) pathology by exploring anatom-
ical connections or functional interactions among different brain regions, where
brain regions are treated as nodes and anatomical connections or functional
associations are regarded as edges.

Several network descriptors have been developed for representing brain con-
nectivity networks, such as node degrees [3], clustering coefficients [4], and sub-
networks [7]. Most of existing descriptors are designed on un-weighted brain con-
nectivity networks, where the valuable weight information of edges are ignored.
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Actually, different edges are usually assigned different weights to measure the
connectivity strength between pairs of nodes (w.r.t.brain regions). However, pre-
vious studies usually simply apply thresholds to transform the original weighted
networks into un-weighted ones [2,5], which may lead to sub-optimal learning
performance. In addition, existing descriptors mainly focus on individual brain
regions other than local structures of brain networks, while many evidences have
declared that some brain diseases (e.g., AD and MCI) are highly related to mod-
ular local structures [8]. Unfortunately, it is hard to capture such local structures
using existing network descriptors.
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Fig. 1. An overview of ordinal pattern based learning for brain disease diagnosis.

In this paper, we propose a new network descriptor, i.e., ordinal pattern,
for brain connectivity networks. The basic idea of the ordinal pattern is to
construct a sequence of weighted edges on a weighted network by considering
both the edge weights and the ordinal relations between edges. Compared with
conventional network descriptors, ordinal patterns are directly constructed on
weighted networks, which can naturally preserve the weight information and
local structures of original networks. Then, an ordinal pattern based learning
method is developed for brain disease diagnosis. Figure 1 presents the schematic
diagram of the proposed framework with each network representing a specific
subject. We first construct ordinal patterns on patients’ and normal controls’
(NCs) brain connectivity networks separately. A frequent ordinal pattern mining
algorithm is then developed to identify ordinal patterns that frequently occur in
patients’ and NCs’ brain networks. We then select the most discriminative ordi-
nal patterns from those frequent ordinal patterns, and regard them as feature
representation for subjects. Finally, we learn a support vector machine (SVM)
classifier for brain disease diagnosis, by using ordinal pattern based feature
representation.
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2 Method

2.1 Data and Preprocessing

The first data set contains rs-fMRI data from the ADNI1 database with 34 AD
patients, 99 MCI patients, and 50 NCs. The rs-fMRI data were pre-processed by
brain skull removal, motion correction, temporal pre-whitening, spatial smooth-
ing, global drift removal, slice time correction, and band pass filtering. By warp-
ing the automated anatomical labelling (AAL) [9] template, for each subject, we
concatenate the brain space of rs-fMRI scans into 90 regions of interest (ROIs).
For each ROI, the rs-fMRI time series of all voxels were averaged to be the mean
time series of the ROI. With ROIs as nodes and Pearson correlations between
pair of ROIs as connectivity weights, a functional full connected weighted net-
work is constructed for each subject. The second data set is ADHD-200 with the
Athena preprocessed rs-fMRI data, including 118 ADHD patients and 98 NCs
(detailed description of data acquisition and post-processing are given online2.

2.2 Ordinal Pattern and Frequent Ordinal Pattern

Definition 1: Ordinal Pattern. Let G = {V, E ,w} denote a weighted network,
where V is a set of nodes, E is a set of edges, and w is the weight vector for those
edges with the i-th element w(ei) representing the weight value for the edge ei.
If w(ei) > w(ej) for all 0 < i < j ≤ M , an ordinal pattern (op) of G is defined
as op = {e1, e2, · · · , eM} ⊆ E , where M is the number of edges in op.

An illustration of the proposed ordinal patterns is given in Fig. 2(a), where
a weighted network contains 5 nodes and 7 edges. We can get ordinal patterns
that contain two edges, e.g., op1 = {ea−b, eb−c} and op2 = {eb−c, ec−e}. The
ordinal pattern op1 actually denotes w(ea−b) > w(eb−c). We can further obtain
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Fig. 2. Illustration of (a) ordinal patterns, and (b) frequent ordinal pattern mining
method.

1 http://adni.loni.usc.edu/.
2 http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline.

http://adni.loni.usc.edu/
http://www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline
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ordinal patterns containing three edges, e.g., op4 = {ea−b, eb−c, ec−e}. Hence, the
proposed ordinal pattern can be regarded as the combination of some ordinal
relations between pairs of edges. We only consider connected ordinal patterns
in this study. That is, an ordinal pattern is connected if and only if the edges
it contains can construct a connected sub-network. Different from conventional
methods, the ordinal pattern is defined on a weighted network directly to explic-
itly utilize the weight information of edges. Also, as a special sub-network, an
ordinal pattern can model the ordinal relations conveyed in a weighted network,
and thus, can naturally preserve the local structures of the network.

Definition 2: Frequent Ordinal Pattern. Let D = {G1,G2, · · · ,GN} repre-
sent a set of N weighted networks. Given an ordinal pattern op, the frequency
ratio of op is defined as follows

f(op|D) =
|Gn|op is an ordinal pattern of Gn, Gn ∈ D|

|D| (1)

If f(op|D) > θ where θ is a pre-defined threshold value, the ordinal pattern op
is called as a frequent ordinal pattern of D.

We can see that frequent ordinal patterns are ordinal patterns that frequently
appear in a weighted network set. For instance, a frequent ordinal pattern in
a brain network set may represent common functional or structural informa-
tion among subjects. Besides, frequent ordinal patterns have an appealing prop-
erty that plays an important role in data mining process. Specifically, for two
ordinal patterns opi = {ei1, e

i
2, · · · , eiM} and opj = {ej1, e

j
2, · · · , ejM , ejM+1}, if

eim = ejm (∀m ∈ {1, 2, · · · ,M}), opi is called the parent of opj , and opj is
called a child of opi. As shown in Fig. 2(a), op1 = {ea−b, eb−c} is the parent of
op4 = {ea−b, eb−c, ec−e}. It is easy to prove that the frequency ratio of an ordinal
pattern is no larger than the frequency ratios of its parents. That is, if an ordinal
pattern is not a frequent ordinal pattern, its children and descendants are not
frequent ordinal patterns, either.

2.3 Ordinal Pattern Based Learning

Ordinal Pattern Construction: Using the above-mentioned preprocessing
method, we can construct one brain connectivity network for each subject,
with each node denoting a ROI and each edge representing Pearson correla-
tion between a pair of ROIs. We then construct ordinal patterns on patients’
and normal controls’ (NCs) brain connectivity networks separately. Given all
training subjects, we can obtain a brain network set with patients’ and NCs’
networks.

Frequent Ordinal Pattern Mining: We then propose a frequent ordinal
pattern mining algorithm to identify ordinal patterns that are frequently occur
in a brain network set, by construcing a deep first search (DFS) tree. We first
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randomly choose an edge whose frequency ratio is larger than a threshold θ
as the root node. As illustrated in Fig. 2(b), a path from the root node to the
current node forms a specific ordinal pattern, e.g., op1 = {ea−b, eb−c}. We then
record the number of occurrences and compute the frequency ratio of this ordinal
pattern in a network set (with each network corresponding to a subject). If its
frequency ratio defined in Eq. (1) is larger than θ, the ordinal pattern (e.g., op1)
is a frequent ordinal pattern and its children (e.g., op4) will be further searched.
Otherwise, the ordinal pattern (e.g., opM ) is not a frequent ordinal pattern,
and its descendants will be discarded directly. The max depth of a DFS tree is
limited by the level number. For example, if the level is 3, the frequent ordinal
patterns contain at most 3 edges. Obviously, more levels bring more frequent
ordinal patterns as well as more run-time.

Discriminative Ordinal Pattern Selection: There are a number of frequent
ordinal patterns, and some of them could have less discriminative power. Accord-
ingly, we perform a discriminative ordinal pattern selection process on those
frequent ordinal patterns. Specifically, we first mine frequent ordinal patterns
from the patients’ brain network set and the NCs’ brain network set separately.
According to the discriminative power, we select the most discriminative ordinal
patterns from all frequent ordinal patterns in both patients’ and NCs’ sets. The
ratio score [10] is used to evaluate the discriminative power of frequent ordinal
patterns. Given a frequent ordinal pattern opi mined from the patients’ brain
network set (denoted as D+), the ratio score of opi is defined as

RS(opi) = log
|Gn|opi is an ordinal pattern of Gn, Gn ∈ D+|

|Gn|opi is an ordinal pattern of Gn, Gn ∈ D−| + ε
× |D−|

|D+| (2)

where D− means the NCs’ brain network set, and ε is a small value to prevent
the denominator to be 0. Similarly, the frequent ordinal pattern opj mined from
the NCs’ brain network set (i.e., D−), its ratio score is computed as

RS(opj) = log
|Gn|opj is an ordinal pattern of Gn, Gn ∈ D−|

|Gn|opj is an ordinal pattern of Gn, Gn ∈ D+| + ε
× |D+|

|D−| (3)

Classification: A total of k discriminative ordinal patterns are first selected,
with half from patients’ and the other half from NCs’ brain connectivity network
sets. We then combine those discriminative ordinal patterns to construct a fea-
ture matrix for representing subjects. Specifically, given |D| brain connectivity
networks (with each network corresponding to a specific subject) and k selected
discriminative ordinal patterns, we denote the feature matrix as F ∈ R

|D|×k,
where the element Fij represents the j-th feature of the i-th subject. Specifi-
cally, if the j-th discriminative ordinal pattern appears in the brain connectivity
network of the i-th subject, Fi,j is equal to 1, and otherwise 0. Finally, we adopt
an SVM classifier to identify AD/MCI/ADHD patients from NCs.
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3 Experiments

Experimental Settings: We perform three classification tasks, i.e., AD vs.
NC, MCI vs. NC and ADHD vs. NC classification, by using a 10-fold cross-
validation strategy. Note that those discriminative ordinal patterns are selected
only from training data. Classification performance is evaluated by accuracy
(ACC), sensitivity (SEN), specificity (SPE) and area under the ROC curve
(AUC). The parameter ε in ratio score in Eqs. (2) and (3) is set as 0.1 empirically.
With a inner cross-validation strategy, the level number in our frequent ordinal
pattern mining algorithm is chosen from [2, 6] with step 1, and the number of
discriminative ordinal patterns are chosen from [10, 100] with step 10.

We compare our method with two widely used network descriptors in brain
connectivity network based studies, including cluster coefficients [4] and dis-
criminative sub-networks [7]. Since these two descriptors require a threshold-
ing process, we adopt both single-threshold and multi-thresholds [5,11] strate-
gies to transform weighted networks to un-weighted ones. In summary, there
are four competing methods, including (1) clustering coefficients (CC) with
single-threshold, (2) clustering coefficient using multi-thresholds (CCMT), (3)
discriminative sub-networks (DS) with single-threshold, and (4) discriminative
sub-networks using multi-thresholds (DSMT). The linear SVM with the default
parameter (i.e., C = 1) is used as the classifier in different methods.

Results: Experimental results are listed in Table 1, from which we can see
that our method consistently achieves the best performance in three tasks. For
instance, the accuracy achieved by our method is 94.05% in AD vs. NC clas-
sification, which is significantly better than the second best result obtained by
DSMT. This demonstrates that the ordinal patterns are discriminative in dis-
tinguishing AD/MCI/ADHD patients from NCs, compared with conventional
network descriptors.

We further plot those top 2 discriminative ordinal patterns identified by
our method in three tasks in Fig. 3. For instance, the most discriminative
ordinal pattern for AD, shown in top left of Fig. 3(a), can be recorded as op =
{eDCG.L−ACG.L, eACG.L−ROL.L, eROL.L−PAL.R, ePAL.R−LING.L, ePAL.R−MOG.R}.

Table 1. Comparison of different methods in three classification tasks

Method AD vs. NC MCI vs. NC ADHD vs. NC

ACC SEN SPE AUC ACC SEN SPE AUC ACC SEN SPE AUC

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

CC 72.62 73.53 67.94 70.94 71.14 72.73 68.00 68.69 71.29 72.03 70.41 70.51

CCMT 80.95 82.35 80.00 76.35 74.50 75.76 72.00 74.79 74.53 75.43 73.47 77.64

DS 76.19 76.47 76.00 75.59 77.18 78.79 74.00 74.89 81.01 81.36 80.61 80.82

DSMT 85.71 85.29 86.00 87.59 79.19 80.81 76.00 76.99 83.79 84.74 82.65 84.63

Proposed 94.05 96.77 92.45 96.35 88.59 87.27 92.31 84.57 87.50 88.89 85.85 87.37
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(a) AD vs. NC classification

(b) MCI vs. NC classification

(c) ADHD vs. NC classification

From MCI Set

From ADHD Set

From AD Set From NC Set

From NC Set

From NC Set

Fig. 3. The most discriminative ordinal patterns identified by the proposed method in
three tasks. In each row, the first two columns show those top 2 discriminative ordinal
patterns selected from positive classes (i.e., AD, MCI, and ADHD), while the last two
columns illustrate those selected from the negative class (i.e., NC).

These results imply that the proposed ordinal patterns do reflect some local
structures of original brain networks.

We investigate the influence of frequent ordinal pattern mining level and the
number of selected discriminative ordinal patterns, with results shown in Fig. 4.
From this figure, we can see that our method achieves relatively stable results
when the number of selected ordinal patterns is larger than 40. Also, our method
achieves overall good performance when the level number in the frequent ordinal
pattern mining algorithm are 4 in AD/MCI vs. NC classification and 5 in ADHD
vs. NC classification, respectively.

We perform an additional experiment by using weights of each edge in ordinal
patterns as raw features, and achieve the accuracies of 71.43%, 67.11%, and
69.91% in AD vs. NC, MCI vs. NC and ADHD vs. NC classification, respectively.
We further utilize a real valued network descriptor based on ordinal patterns
(by taking the product of weights in each ordinal pattern), and obtained the
accuracies of 78.52%, 72.37%, and 72.69% in three tasks, respectively.
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Fig. 4. Influence of the level number in frequent ordinal pattern mining method and the
number of discriminative ordinal patterns in AD vs. NC (left), MCI vs. NC (middle),
and ADHD vs. NC (right) classification.

4 Conclusion

In this paper, we propose a new network descriptor (i.e., ordinal pattern)
for brain connectivity networks. The proposed ordinal patterns are defined on
weighted networks, which can preserve the weights information of edges and the
local structure of original brain networks. Then, we develop an ordinal pattern
based brain network classification method for the diagnosis of AD/MCI and
ADHD. Experimental results on both ADNI and ADHD-200 data sets demon-
strate the efficacy of our method.
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