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Abstract. Recently, machine learning techniques have been actively applied to the 
identification of Alzheimer’s disease (AD) and mild cognitive impairment (MCI). 
However, most of the existing methods focus on using only single network proper-
ty, although combination of multiple network properties such as local connectivity 
and topological properties may be more powerful. Employing the kernel-based me-
thod, we propose a novel classification framework that attempts to integrate mul-
tiple network properties for improving the MCI classification. Specifically, two  
different types of kernel (i.e., vector-kernel and graph-kernel) extracted from mul-
tiple sub-networks are used to quantify two different yet complementary network  
properties. A multi-kernel learning technique is further adopted to fuse these  
heterogeneous kernels for MCI classification. Experimental results show that the 
proposed multiple-network-properties based method outperforms conventional  
single-network-property based methods. 

1 Introduction 

Alzheimer’s disease (AD) is the most common form of dementia in elderly people 
worldwide. Diagnosis of mild cognitive impairment (MCI), i.e., the early stage of AD, is 
important for possible delaying the progression of the disease. At present, many re-
searchers have investigated the connectivity properties of the brain networks in AD/MCI 
using between-group analysis (i.e., between two clinically different groups). Abnormal 
connectivity patterns have been observed in series of brain networks, including the de-
fault mode network (DMN) [1] and other resting-state networks (RSNs) [2]. Existing 
findings suggest that the neurodegenerative diseases, such as AD and MCI, are asso-
ciated with a large-scale, highly connected functional connectivity network, rather in one 
single isolated region [3]. For instance, ‘small-world’ properties (i.e., characterized by 
high clustering coefficient and short average path length) have been reported to be dis-
rupted in functional brain network of AD/MCI patients [2]. 

Recently, machine learning approaches have been widely used to identify AD and 
MCI at individual level [4]. Many connectivity-network-based classification methods 
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have been proposed for accurate identification of AD and MCI [5, 6]. Though good 
performance was achieved, these methods used only single individual network prop-
erty to identify patients from healthy controls (HC). In fact, many properties can be 
extracted from a single connectivity network, including local connectivity and global 
topological properties, with each of them carries different characteristics of the  
network. Intuitively, integration of these properties may improve the classification 
performance. 

Accordingly, in this paper, we present a novel connectivity-network-based classifi-
cation framework to accurately identify individuals with MCI from HC. The key of 
our proposed approach involves using kernel-based method to quantify and integrate 
multiple network properties. To the best of our knowledge, our current study is the 
first attempt that integrates different yet complementary network properties to identify 
individuals with MCI from HC.   

2 Materials 

Table 1 shows the demographic information of the participants. Informed consent was 
obtained from all participants, and the experimental protocols were approved by the 
institutional ethics board. All the recruited subjects were diagnosed by expert consen-
sus panels. A 3T scanner was used to acquire resting-state fMRI volumes. The fMRI 
images of each participant were acquired with the following parameters: 
TR/TE=2000/32ms, flip angle=77°, acquisition matrix=64×64, FOV=256×256 mm2, 
34 slices, 150 volumes, and voxel thickness=4mm.  

Table 1. Demograhic information of the subjects used in this study 

Group MCI HC 
No. of subjects (male/female) 6/6 9/16 
Age (mean ± SD) 75.0 ± 8.0 72.9 ± 7.9 
Years of education (mean ± SD) 18.0 ± 4.1 15.8 ± 2.4 
MMSE (mean ± SD) 28.5 ± 1.5 29.3 ± 1.1 

3 Method 

Fig. 1 illustrates the proposed framework for MCI identification. Specifically, for 
each subject, we first construct a functional connectivity network from the mean time 
series of ROIs, each of which was computed by averaging the intensity of voxels in 
each ROI. Then, the connectivity network is decomposed into multiple sub-networks 
by thresholding the connectional weights with the predefined threshold values. From 
the sub-networks, we build two types of kernels, namely, vector-kernel and graph-
kernel. Feature extraction and selection are preceded before the vector-kernel con-
struction. Finally, these heterogeneous kernels are fused by means of a multi-kernel 
SVM for MCI identification.  
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Fig. 1. The proposed classification framework 

3.1 Preprocessing and Functional Connectivity Network  

The fMRI images were preprocessed for slice timing and head-motion corrections 
using the Statistical Parametric Mapping software package (SPM81). Specifically, the 
first 10 fMRI volumes of each subject were discarded to ensure magnetization equili-
brium. The remaining 140 images were corrected for the acquisition time delay 
among different slices before they were realigned to the first volume of the remaining 
images for head motion correction. In order to reduce the effects of nuisance signals, 
regression of ventricle and WM signals, and six head-motion profiles was performed.  

The brain space of fMRI images of each subject was then parcellated into 90 re-
gions-of-interests (ROIs) based on the Automated Anatomical Labeling (AAL) tem-
plate [7]. The mean time series of each individual ROI was computed by averaging 
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the intensity of the voxels in the ROI. The mean time series of each region was band-
pass filtered (0.025 - 0.1Hz) based on the investigation that the fMRI dynamics of 
neuronal activities are most salient within this frequency range.  

We then computed the Pearson correlation between the band-pass filtered time  
series of ROIs. Fisher's r-to-z transformation was applied to improve the normality  
of the correlation coefficients. These final correlation coefficients constructed a func-
tional connectivity network ࡳ ൌ ሾ߬௜௝ሿ௡ൈ௡, where ݊ denotes the number of ROIs. 

3.2 Network Decomposition  

The correlation-based functional connectivity network is densely connected, causing 
difficulties in utilizing the ‘small-world’ characteristics in human brain. In order to 
circumvent this problem, we decompose the original functional connectivity network ࡳ into multiple sub-networks via thresholding. However, since the decomposed sub-
networks can vary according to the applied threshold value, in this paper, we consider 
a set of threshold values, resulting in multiple sub-networks as follows: 

          ߬௜௝௠ ൌ ൜߬௜௝ if  ߬௜௝  ൒ ௠ܶ0 otherwise                                                         (1) 

where  ௠ܶ ሺ݉ ൌ 1, … ,  is the total number ܯ ,ሻ denotes the ݉-th threshold valueܯ
of threshold values, and ߬௜௝௠ is the ሺ݅, ݆ሻ-th element of the sub-network ܩ௠. Note that 
each sub-network represents a different level of topological properties. 

3.3 Kernel Construction 

From each of the ܯ sub-networks, we extract two types of characteristics inherent in 
the connectivity network, i.e., local clustering and topological structure. Unlike the 
previous methods that mostly considered the local clustering characteristic, our  
method further consider topological features that can provide complementary infor-
mation. The local clustering and topological structure reflect the efficiency of local 
information processing and information transmission between distant nodes in a net-
work, respectively. To this end, in this paper, we propose a kernel-based method to 
combine this complementary information for MCI identification. 

First, for local clustering, we use the local weighted clustering coefficient defined 
as follows [8]:              ܿ௣௠ ൌ 2 ∑ ሺ߬௣௜௠߬௜௝௠ ௝߬௣௠ሻଵ/ଷ௜,௝݀௣ሺ݀௣ െ 1ሻ  (2)

where ܿ௣௠ is the clustering coefficient of the node ݌ of the sub-network ܩ௠ and ݀௣ 
denotes the number of neighboring nodes directly connected to the node ݌. The coef-
ficients of ݊  nodes ࢌ௠ ൌ ൣܿ௣௠൧௣ୀଵ,ڮ,௡ , i.e., ROIs, compose a feature vector 

representing the local clustering characteristic of a sub-network ܩ௠. We then conca-
tenate the feature vectors of all the sub-networks to form a single large vector 
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܎ ൌ ሾሺࢌଵሻ் ڮ ሺࢌ௠ሻ் ڮ ሺࢌெሻ்ሿ். In order to remove irrelevant and/or redundant fea-
tures, we further perform feature selection by means of the least absolute shrinkage 
and selection operator (LASSO) [9], in which the sparsity or feature selection is ob-
tained with ݈ଵ-norm regularization. We then compute a kernel function using the ker-
nel-induced implicit mapping function ߮ሺ·ሻ as follows:                   ݇௩ሺ܎, ᇱሻ܎ ൌ ,ሻ܎ሺ߮ۃ ߮ሺ܎Ԣሻۄ  (3)

where ܎ and ܎Ԣ denote, respectively, the dimension-reduced feature vectors from two 
subjects. This kernel function measures the similarity of two functional connectivity 
networks in terms of a local clustering characteristic. Here, we call it ‘vector-kernel’. 

Regarding to the topological structure of a network, we utilize a ‘graph-kernel’, 
which aims at computing the similarity between graphs. Since the connectivity net-
work is a form of graph, where the ROIs and the connectivities between ROIs corres-
pond, respectively, to the nodes and edges, it is natural to apply this method to our 
data. The graph-kernel bridges the gap between graph-structured data and the kernel-
based learning algorithms. In this study, we utilize a subtree-pattern-based method 
[10] with Weisfeiler-Lehman test of isomorphism [11] to measure the topological 
similarity between two connectivity sub-networks.  

Given two graphs, we first label each node in the graphs with the number of edges 
connected to it, and then iterate the label-updating process until two label sets, one 
for each graph, become disjoint, or it reaches the predefined number of iterations. The 
label-updating process operates as follows: 

• For each node, we augment its label by concatenating the labels of its neigh-
boring nodes in an ascending order; 

• Then, we re-label each node with a new short one that is not used so far. 
Assume that after ݄ iterations of the label-updating process, we have ݄ sets of labels  

ۺ           ൌ ሼܮଵ, ڮ , ,௜ܮ ڮ , ௛ሽܮ  (4)

where ܮ௜ ൌ ൛݈௜ଵ, ݈௜ଶ, … , ݈௜|௟೔|ൟ, ݈௜௡, and |݈௜| denote a set of new labels, a unique label in ۺ, and the number of labels generated after ݅-th iteration, respectively. Based on the 
final label set ۺ, we define a mapping function as follows:     ߔሺܩሻ ൌ ቀߩ଴ሺܩ, ݈଴ଵሻ, … , ,ܩ଴൫ߩ ݈଴|௅బ|൯, … , ,ܩ௛ሺߩ ݈௛ଵሻ, … , ,ܩ௛൫ߩ ݈௛|௅೓|൯ቁ  (5)

where ߩ௜ሺܩ, ݈௜௝ሻ denotes the frequency of the label ݈௜௝  in the graph ܩ after ݅-th itera-
tion. This mapping function efficiently represents the topological features of a graph, 
i.e., a function connectivity network for our case. Then, it is straightforward to define 
a graph-kernel on graphs G and H as follows: ݇௚ሺܩ, ሻܪ ൌ ,ሻܩሺߔۃ  (6)                            .ۄሻܪሺߔ

3.4 Kernel Combination and Classification 

In this paper, we consider two types of kernels, i.e., vector-kernel and graph-kernel, 
and, as stated above, we believe these kernels can provide complementary information 
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for MCI identification. In order for systematical aggregation of the heterogeneous ker-
nels into a single model [6], we utilize a multi-kernel learning (MKL) technique via a 
linear combination of them:  

                 ݇ሺܠ, ᇱሻܠ ൌ ,܎௩݇௩ሺߚ ᇱሻ܎ ൅ ෍ ,௠ܠܩ௚,௠݇௚,௠ሺߚ ᇲ௠ሻெܠܩ
௠ୀଵ  (7)

where ܠ and ܠᇱ are the input fMRI data, ܎ and ܎ᇱ are their local clustering feature 
vectors, ܠܩ௠  and ܠܩᇲ௠  are their ݉ -th sub-network, ݇௩ሺ܎, ᇱሻ܎  is a vector-kernel, ݇௚,௠ሺܠܩ௠,  ௚,௠ are weight coefficients of the kernelsߚ ௩ andߚ ,ᇲ௠ሻ is a graph-kernelܠܩ
with the constraints of ߚ௩ ൒ ௚,௠ߚ ,0 ൒ 0, and ߚ௩ ൅ ∑ ௠ெ௠ୀଵߚ ൌ 1, and M is the num-
ber of total sub-networks. The optimal weight coefficients are determined via grid 
search [6] with SVM, which is called a multi-kernel SVM. 

4 Results 

Leave-one-out (LOO) cross-validation strategy was adopted in this study to  
evaluate the generalization power of our proposed framework. Specifically, for  ܰ total number of subjects, one was left out for testing, and the remaining ܰ െ 1 
subjects were used for training. This process was repeated for each subject. In the 
experiment, five sub-networks were constructed based on the thresholds of  ܶ ൌ ሾ0.2, 0.3, 0.38, 0.4, 0.45ሿ . In the feature selection step, LASSO-based method 
was implemented using the SLEP package [12], and the regularization parameter ߣ ሺߣ א ሾ0 1ሿሻ was determined based on the training subjects via another LOO cross-
validation.  

The classification performance was evaluated based on classification accuracy and 
area under receiver operating characteristic (ROC) curve (AUC). In this study, we 
compared the proposed method with the competing methods that use only a single 
network property. In the single-network-property based methods, only one kernel was 
used for classification, i.e., linear kernel (denotes as LK) or five graph kernels (de-
notes as GK1, GK2, GK3, GK4 and GK5, respectively). These five graph kernels, 
which correspond to five different levels of network topological properties, were 
combined using MKL technique, and is denoted as GK-C. The classification perfor-
mances for all compared methods are summarized in Table 2.  

The proposed multiple-network-properties based method yields a classification ac-
curacy of 91.9%, an increment of at least 10.8% from other compared methods. The 
AUC of 0.87 indicates a good generalization power. The results indicate that the inte-
gration of two network properties (i.e., local clustering coefficient and global topolog-
ical property) can significantly improve the classification performance.  

Furthermore, we performed an additional experiment by comparing our MKL me-
thod with a baseline scheme, i.e., assigning a uniform weight to all kernels including 
vector-kernel and graph-kernels. This method achieved a classification accuracy of 
86.5%, which is inferior to our MKL-based method as shown in Table 2. This result 
validates that the contributions of different types of kernels are different and thus 
different (instead of uniform) weights should be adopted in the combination. 
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Table 2. Classification performance of different methods 

Method Accuracy (%) AUC 
LK 81.1 0.84 

GK1 73.0 0.51 
GK2 73.0 0.79 
GK3 70.3 0.63 
GK4 73.0 0.83 
GK5 75.7 0.71 

GK-C 81.1 0.87 
Proposed 91.9 0.87 

Effect of Regularization Parameter ࣅ 

In LASSO-based feature selection, the regularization parameter, i.e., ߣ, is used to balance 
the complexity of the model and the goodness-of-fit. In the experiment, we seek to inves-
tigate the influence of different ߣ values on the classification accuracy. The classification 
accuracies with different ߣ values are plotted in Fig. 2. Here, the ߣ value varies within 
the range of  ሾ0.0, 0.1, 0.2, 0.3,0.4, 0.5ሿ. It is worth noting that, when ߣ ൌ 0, no feature 
selection step was performed, i.e., all features extracted from thresholded connectivity 
networks were used for linear kernel construction and classification.  

High classification accuracy of the proposed method is consistently observed for 
different ߣ values. The obtained classification accuracies are more than 80% for all ߣ 
values, indicating the robustness of the proposed method with respect to the regulari-
zation parameter, ߣ. In addition, when there is no feature selection, our method can 
achieve classification accuracy of 83.8%, which is still higher than the accuracies of 
other methods. This result again validates that the integration of multiple network 
properties can significantly improve the disease classification performance. 

 

Fig. 2. Performance of different methods with respect to ߣ  

5 Conclusion 

In summary, we present a novel connectivity network-based classification framework, 
which fuses multiple network properties, for MCI identification. In the proposed 
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framework, two different types of kernels are used to quantify two different yet com-
plementary network properties, i.e., local clustering and global topological property. 
A multi-kernel learning technique is further adopted to fuse these heterogeneous ker-
nels, and promising results obtained demonstrate the effectiveness of the proposed 
method in improving the classification performance. In the future, we will extend our 
current work to select the disease-related sub-networks from a connectivity network 
for further improving the classification performance.  
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