Discriminative Subnetwork Mining for Multiple
Thresholded Connectivity-Networks-Based
Classification of Mild Cognitive Impairment

Fei Fei, Biao Jie, Lipeng Wang, Daogiang Zhang*
Dept. of Computer Science and Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Email: {feifei, jbiao, wanglipeng, dqzhang} @nuaa.edu.cn

Abstract—Recent studies on brain connectivity networks have
suggested that many brain diseases, such as, Alzheimer’s dis-
ease (AD) and mild cognitive impairment (MCI), are related
with large-scale connectivity networks, rather than individual
brain regions. However, it is challenging to find those networks
from the whole connectivity network due to the complexity
of brain networks. In this paper, we propose a novel method
to mine the discriminative subnetworks for classifying MCI
patients from healthy controls (HC). Specifically, we first apply
multiple thresholds to generate multiple thresholded connectivity
networks, and extract a set of frequent subnetworks from each
of the two groups (i.e., MCI and HC), respectively. Then, we
measure the discriminative ability of those frequent subnetworks
using graph-kernel-based classification method and select the
most discriminative subnetworks for subsequent classification.
The results on the functional connectivity networks of 12 MCI
and 25 HC show that our method can obtain a competitive results
compared with state-of-the-art methods on MCI classification.

I. INTRODUCTION

Alzheimer’s disease (AD), characterized by a progressive
impairment of cognitive and memory functions, is one of
the most prevalent neurodegenerative brain diseases in elderly
people. AD is the most common form of dementia worldwide
and it is predicted that AD will affect 1 in 85 people by
2050 [1]. The prodromal stage of AD is called mild cognitive
impairment (MCI), which is an intermediate state of cognitive
function between normal aging and dementia. Existing studies
have shown that MCI subjects progress to clinical AD at an
annual rate of 10-15% [2]. Some individuals with MCI remain
stable or return normal over time, but more than half progress
to dementia within 5 years [3]. Thus, accurate diagnosis of
AD, especially MCI, is very important for possible early
treatment and delay of the progression of the disease.

Existing studies show that we can obtain a better under-
standing of the brain disease pathology through exploring
structural and functional interactions among brain regions [4].
Thus, many attempts have been made to map the structural and
functional connectivity of human brain. Here, the structural
connectivity can be mapped using the brain grey matter areas
or cross-correlations in cortical thickness or volume across
individual brains [5, 6]. The functional connectivity refers
to functional association among brain regions [7]. Recently,
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machine learning and pattern classification methods have been
used in connectivity networks analysis of AD/MCI, includ-
ing group comparison and individual classification. Existing
studies have shown that AD/MCI is related with large-scale
connectivity networks, not only on the single brain region.
However, it is challenging to find those connectivity networks
from the whole connectivity network due to the complexity
of brain networks. To the best of our knowledge, few works
have employed the subnetworks, especially discriminative sub-
networks, for classification of brain diseases. In connectivity-
networks-based studies of AD/MCI, threshold-based methods
have been widely used for exploring the topological properties
of functional connectivity networks [8]. In functional network
analysis, it is noteworthy that there is no gold rule to determine
the choice of threshold. Therefore, many studies propose
multiple thresholds based methods for brain network research
[9, 10]. For example, in one of these works [9], multiple
thresholded functional connectivity networks are combined
with multiple kernel based method for MCI classification,
which achieves a better classification performance.

In this paper, we present a new method based on connectiv-
ity measures for functional connectivity-networks-based MCI
classification. Here, our hypothesis is that there exist different
frequent and discriminative subnetworks between MCI group
and HC group. The main idea of our method is to directly mine
the discriminative subnetworks from connectivity networks
and then use them for subsequent classification between MCI
patients from healthy controls. Specifically, we first construct
a functional connectivity from r-fMRI images on each sub-
ject, and apply multiple predefined thresholds for generating
multiple thresholded connectivity networks to reflect multiple
level topological structure of the original connectivity network.
Then, for each thresholded connectivity network, we mine two
sets of the frequent subnetworks through respectively using
subnetwork mining algorithm [11] on two different groups,
and evaluate their respective classification ability on training
data to select the most discriminative subnetworks. Finally,
graph-kernel based method will be used for classifying MCI
patients from health controls. Here, graph kernel [12] is used
for measuring the topological similarity between subnetworks.



TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF THE PARTICIPANTS

Group MCI HC

No. of subjects (Male/Female) 6/6 9/16
Age (mean + SD) 750 £80 | 729 £ 7.9
Years of education (mean £ SD) | 18.0 £ 4.1 158 £ 4.1

We validate our proposed method on the functional connec-
tivity networks of 12 MCI and 25 HC, and the experimental
results show that our method outperforms the state-of-the-art
connectivity-networks-based methods in the diagnosis of MCI.

II. MATERIALS

Table I gives the demographic and clinical information of
the participants. All the recruited subjects were diagnosed by
expert consensus panels. All the subjects were scanned using
a 3T scanner with the following parameters: repetition time
(TR) = 2000ms, echo time (TE) = 32ms, flip angle = 77°,
acquisition matrix = 64 x 64, FOV = 256 x 256mm?2, 34 slices,
150 volumes, and voxel size = 4mm.

III. METHOD

Fig. 1 gives the framework of our proposed method, which
includes four main steps: 1) preprocessing and connectivity
network construction, 1) frequent subnetwork mining, III)
discriminative subnetwork mining, IV) classification.
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Fig. 1. The framework of the proposed method

A. Preprocessing and Connectivity Network Construction

The fMRI images were first preprocessed by applying the
typical procedures of slice timing, motion correlation and
spatial normalization using the Statistical Parametric Map-
ping software package (SPMS8) (www.fil.ion.ucl.ac.uk.spm).
Then the brain space of fMRI images of each subject were

parcellated into 116 regions-of-interests (ROIs) based on the
Automated Anatomical Labeling (AAL) atlas [13]. The mean
fMRI time series of each subject were then computed by
averaging the GM-masked fMRI time series of the voxels
in the ROI. The mean time series of each region was band-
pass filtered (0.025-0.1HZ) based on the investigation that
the fMRI dynamics of neuronal activities are most salient
within this frequency range. Thus, for each subject a functional
connectivity network was constructed with each ROI as a
node and the Pearson correlation between ROIs as connectivity
strength. Fisher’s r-to-z transformation was applied on the
elements of the functional connectivity network to improve the
normality of the correlation coefficients. Moreover, since the
functional connectivity network is intrinsically fully connected
and weighted, we adopt multiple predefined values to generate
multiple thresholded connectivity networks to reflect multi-
level topological structure of the original connectivity network.

B. Frequent Subnetwork (subgraph) Mining

In this section, we will introduce the frequent subgraph
mining algorithm to discover the most frequent subnetworks
for MCI and HC, respectively. Here, in this study we adopt
the well-known gSpan algorithm [11] for mining the frequent
subnetworks from thresholded connectivity networks because
of its time efficiency. We first start with some preliminaries,
which are used to derive the gSpan algorithm [11].

Definition 1 (Labeled Undirected Graph). Let G =
(V,E,L,l) be a labeled undirected graph, where V is a set
of nodes and ECV XV is a set of edges. e = {u, v} indicates
a edge between the nodes v and v. L is a set of labels, and
l is a mapping function that assigns labels to vertices V' and
edges E.

Definition 2 (Subgraph). For two labeled undirected graphs
Gs = (Vs, Es, Lg,l5) and G = (V,E, L,1), we say G, is a
subgraph of G if V, C V. E, C E, Ly, C L and I5 = 1.

Definition 3 (Subgraph Frequency). Given a set of graph G,
the frequency of a subgraph g, is defined as:

_|gs is a subgraph of g and g € G|

Definition 4 (Frequent Subgraph Mining). Given a set of
labeled undirected graphs G and a support parameter s where

0 < s <1, find all undirected graphs that are subgraphs in at
least s - |G| of the input graphs.

Definition 5 (Intersect-graph). Given two graphs G; =
(Vi,Ey,Ly,Ly) and Gy = (Va, Es, Lo, ls), the intersect-
graph G’ = (V'  E')(denoted as G1 N G3) is defined as:
E' = E1 N E,, all the nodes in £’ form the nodes set V.

gSpan algorithm first constructs a new lexicographic order
among graphs, and maps each graph into a unique minimum
depth-first-search (DFS) code as its canonical label. Based
on this lexicographic order, gSpan algorithm utilizes the DFS
strategy to mine frequent connected subgraphs efficiently. The
performance of gSpan algorithm is better than other methods



in a bigger graph set with lower minimum supports. More
details about gSpan algorithm see [11].

C. Discriminative Subnetwork Mining (DSM)

It is worth noting that gSpan is only used for mining
the frequent subnetwork from each thresholded connectivity
network, which by itself doesn’t have discriminative power.
Accordingly, we perform gSpan to extract two sets of frequent
subnetworks from MCI group and HC group, respectively.
However, some of the frequent subnetworks may still have less
discriminative information for classification. Therefore, we
further mine the most discriminative subnetworks according
to their classification power on training subjects. Specifically,
we first choose the same number of frequent subnetworks
from each group, and construct multiple pairs of subnetworks
across two groups. For each pair of frequent subnetworks, we
utilize graph kernel proposed in [12] to measure the similarity
between the training data and the frequent subnetworks and
classify the training data to the class with high graph kernel
value. After all, we choose those pairs of frequent subnetworks
with the best classification accuracy as the most discrimina-
tive subnetworks. Finally, all the discriminative subnetworks
from different threshold levels form the final discriminative
subnetworks set.

Algorithm 1 summarizes the details of our proposed dis-
criminative subnetwork mining (DSM) algorithm. Here, D
denotes the training set including connectivity networks of all
training subjects, and MCI and HC represent the MCI and
HC groups on the training set, respectively. Let G; denote a
sample in the dataset and y; be the corresponding label, and
S1 and S5 are two sets of frequent subnetworks mined from
MCI and HC groups, respectively. Also, S;° (Sy’) represents
i-th subnetwork in S1(Ss), and G (G2?) is i-th intersect-
graph between G and S1t(S2h). Finally, DS; and DS, are
two sets of selected discriminative subnetworks of MCI and
HC, respectively.

D. Classification

For classification of testing subject, we also compute the
graph kernel between each discriminative subnetwork and
the intersect-graph between testing subject and that discrim-
inative subnetwork, and then perform graph kernel based
classification. Specifically, we obtain two sets of graph kernel
value, one is gotten by measuring the topological similarity
between the subnetworks form MCI group and corresponding
intersect-graph of the testing subject, and the other is gotten
by measuring the similarity between the subnetworks from
HC group and corresponding intersect-graph of the testing
subject. Then we classify the testing subject to the class with
the highest graph kernel value.

Algorithm 2 gives the detailed procedure of graph-kernel-
based classification. Here, DS; and DS, represent two sets
of discriminative subnetworks which are gotten via DSM
algorithm, G represents a network in test subject set T, and
G11(G35Y) is i-th intersect-graph between G and S14(S2h).

Algorithm 1 Discriminative Subnetwork Mining(DSM)
Input:
Training subjects D={MCILHC }={(G1, ¥1)s---s(Gs, Yi)s---s
(Gn,yn)}, multiple thresholds set T
Output:
Two sets of discriminative subnetworks DS; and DS,
1: for each t € T do

2:  Threshold the connectivity networks using ¢

3 gSpan(MCL,S1), gSpan(HC,S5);

4:  Initialize a temporary list C' = [ ];

5: fori=1:ndo

6: for each G € D do

7. G1'=G N 51", G2'=G N Sy";

8: Compute the graph kernel on G+, 81" and G5',
S5t respectively;

9: Classify G to the class with larger graph kernel
value;

10: Compute the accuracy ¢ on D;

11: Update list C' = [C, ¢];

12:  Sort S, S according to the C' in an descending order;

13:  Select the top k£ subnetworks of S; (S2) as discrim-
inative subnetworks and add them into DS; (IDS,),
respectively;

Algorithm 2 Graph-kernel based classification
Input:
Discriminative subnetworks set DS; and DS,, testing
subject set T
Output:
Classification accuracy acc
1: for each G € T do
22 fori=1:kdo
3: G1'=G N DS;*, Go'=G N DSy’;
4 Compute the graph kernel on G:°,DS;’" and
G5, DS, respectively;
5. Classify G to the class with larger graph-kernel value;
6: Compute the accuracy acc on T;

IV. RESULTS

In the experiment, the Leave-One-Out (LOO) cross-
validation strategy was adopted to evaluate the performance
of our proposed method. Following the work in [9], five
threshold values (i.e., T={0.2, 0.3, 0.38, 0.4, 0.45}) were
adopted to threshold the connectivity networks. The gSpan
algorithm was performed with support above s = 80%. The
classification performance was evaluated based on classifica-
tion accuracy and area under receiver operating characteristic
(ROC) curve (AUC). The proposed method was compared with
two connectivity-networks-based methods using graph kernel.
Specifically, in the first method (denoted as Baseline), graph
kernel is computed on the original thresholded connectivity
networks without feature (or subnetwork) selection, while in
the second method (denoted as Jie et al. [9]) graph kernel
is computed on the subnetworks with selected brain regions



using a feature selection procedure. Table II gives the clas-
sification performances of all compared methods. As can be
seen from Table II, our proposed method achieves the best
overall classification accuracy of 97.3% with an increment of
at least 5.4% from the other compared methods. Actually, only
one MCI subject is misclassified by our method. Moreover,
our method can also achieve best classification performance
at each threshold level. On the other hand, we also compared

TABLE 11
CLASSIFICATION PERFORMANCE OF DIFFERENT METHODS

Methods Ty Ty T3 Ty Ts ALL
Baseline 73.0 73.0 70.3 73.0 75.7 81.1
Accuracy | Jieetal. [9] | 86.5 | 83.8 | 75.7 | 757 | 649 | 919
(%) Proposed 89.2 | 973 | 973 | 919 | 919 | 973
Baseline 0.51 | 0.79 | 0.63 | 0.83 | 0.71 | 0.87
AUC Jieetal [9] | 0.85 | 0.86 | 0.77 | 0.78 | 0.60 | 0.94
Proposed 0.90 | 0.96 | 0.96 | 0.86 | 0.94 | 0.96
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Fig. 2. The discriminative subnetworks of HC (the first column) and MCI (the second
column). STG.R= Right superior temporal gyrus, STG.L= Left superior temporal gyrus,
HES.R= Right transverse temporal gyri, HES.L= Left transverse temporal gyri, INS.R=
Right insula, INS.L= Left insula, CAL.R= Right calcarine sulcus, CAL.L= Left calcarine
sulcus, LING.R= Right lingual gyrus, LING.L= Left lingual gyrus, CRBL45.R= Right
lobule IV, V of cerebellar hemisphere, CRBL45.L= Left lobule IV, V of cerebellar
hemisphere, TPOsup.R= Right superior temporal pole, PHG.R= Right parahippocampal,
PHG.L= Left parahippocampal, Vermis3= Lobule III of vermis, CRBL3.L= Left Lobule
III of cerebellar hemisphere, HIPR= Right hippocampus, HIP.L= Left hippocampus,
OLF.R= Right olfactory cortex, AMYG.R= Right amygdala, ORBinf.R= Right orbital
part of inferior frontal gyrus.

our proposed method with the recent state-of-the-art methods
for connectivity-networks-based MCI classification, including
Wee et al.’s method [14] and Jie et al.’s method [10]. The
accuracy of 91.9% and AUC of 0.90 were reported in [14],
while in [10] the accuracy of 91.9% and AUC of 0.87
were reported. Obviously, those results are inferior to the
performance of our proposed method.

Fig. 2 shows the mined discriminative subnetworks of
HC and MCI groups, which suggest possible disruptions in

connectivity between these regions as reported in previous
studies [7]. Those pictures were visualized with the BrainNet
Viewer [15] (http://www.nitrc.org/projects/bnv/).

V. CONCLUSION

In this paper, we have proposed a connectivity-networks-
based classification framework to identify automatically MCI
patients from HC. The core of the proposed method involves a
discriminative subnetwork mining algorithm, which is used to
discover the most discriminative subnetworks of MCI and HC.
Moreover, multiple thresholds are used to threshold the func-
tional connectivity networks to generate multiple thresholded
connectivity networks with correspondingly different levels of
topological structure. Finally, we combine the discriminative
subnetworks from different threshold levels together and use
graph-kernel-based classification method for the identification
of MCI from HC. Experimental results showed the effective-
ness of the proposed method. In the future, we will further
evaluate our proposed method with larger dataset.
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