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Single training image face recognition is one of the main challenges to appearance-based pattern recog-
nition techniques. Many classical dimensionality reduction methods such as LDA have achieved success
in face recognition field, but cannot be directly used to the single training image scenario. Recent graph-
based semi-supervised dimensionality reduction (SSDR) provides a feasible strategy to deal with such
problem. However, most of the existing SSDR algorithms such as semi-supervised discriminant analysis
(SDA) are locality-oriented and generally suffer from the following issues: (1) they need a large number of
unlabeled training samples to estimate the manifold structure in data, but such extra samples may not be
easily obtained in a given face recognition task; (2) they model the local geometry of data by the nearest
neighbor criterion which generally fails to obtain sufficient discriminative information due to the high-
dimensionality of face image space; (3) they construct the underlying adjacency graph (or data-depen-
dent regularizer) using a fixed neighborhood size for all the sample points without considering the actual
data distribution. In this paper, we develop a new graph-based SSDR algorithm called sparsity preserving
discriminant analysis (SPDA) to address these problems. More specifically, (1) the graph in SPDA is con-
structed by sparse representation, and thus the local structure in data is automatically modeled instead
of being manually predefined. (2) With the natural discriminative power of sparse representation, SPDA
can remarkably improve recognition performance only resorting to very few extra unlabeled samples. (3)
A simple ensemble strategy is developed to accelerate graph construction, which results in an efficient
ensemble SPDA algorithm. Extensive experiments on both toy and real face data sets are provided to val-
idate the feasibility and effectiveness of the proposed algorithm.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

One of the major challenges to appearance-based face recogni-
tion is the small sample size (SSS) problem (Duda et al., 2001). In
particular, in many practical applications such as law enforcement,
driver license or passport card identification, usually only one la-
beled sample per person is available. Under such scenario, most
of the traditional methods including Eigenface (Turk and Pentland,
1991) and Fisherface (Belhumeur et al., 1997) will suffer serious
performance drop or even fail to work. Therefore, special tricks,
such as synthesizing virtual sample (Beymer and Poggio, 1995)
and localizing the training image (Chen et al., 2004), are generally
required to deal with the single training sample problem. One can
refer to a recent survey (Tan et al., 2006) for more details on this
topic.

Although much success has been achieved by synthetic sample
techniques, such artificial process has trouble in capturing the real
face data distribution due to the variations of pose, illumination
ll rights reserved.
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and facial expression (Tan et al., 2006). An alternative and more
natural way to deal with such problem is semi-supervised dimen-
sionality reduction (SSDR) if considerable unlabeled samples are
available. For example, the recent semi-supervised discriminant
analysis (SDA) (Cai et al., 2007), a semi-supervised extension of
typical linear discriminant analysis (LDA), has been successfully
applied to the single training image face recognition problem.1 Be-
sides SDA, researchers have developed some special SSDR algo-
rithms, such as SSLDA (Song et al., 2008), SSMMC (Song et al.,
2008), and lapLDA (Chen et al., 2007) and reported that the semi-
supervised extensions can generally improve the performance over
their supervised counterparts like LDA and MMC (Li et al., 2006,
2007). Despite being independently proposed, these SSDR algo-
rithms share similar starting point and can be unified under a
graph-based dimensionality reduction framework (Yan et al., 2007;
Song et al., 2008). We will give a brief review on these methods in
the next section.
1 Strictly speaking, it should be called ‘‘single labeled image face recognition
problem”. We abuse the terminology, i.e., single training image face recognition
problem, just for keeping consistent with the expression in (Cai et al., 2007).
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Despite the success of many graph-based SSDR algorithms in
dealing with partially labeled face recognition problem (Cai et al.,
2007; Song et al., 2008), there are still some problems that are
not properly addressed, especially under the single labeled training
image scenario. In particular,

(1) Many existing graph-based SSDR algorithms are based on
manifold assumption, implying that sufficiently many
samples are required to characterize the data distribution
(Belkin et al., 2006). For example, with a large number of
auxiliary unlabeled training samples, SDA can remarkably
improve the performance of LDA. However, it is generally
uneasy to obtain a sufficient sampling for intrinsic high-
dimensional data such as face images.2 Therefore, a natural
question is: can we improve the performance of LDA just with
very few extra unlabeled samples?

(2) As pointed out in (Zhu, 2008), although graph is at the heart
of the graph-based semi-supervised methods, its construc-
tion has not been studied extensively. Most of the current
algorithms such as SDA and lapLDA construct their adja-
cency graphs by the nearest neighbor criterion on raw data
set. However, the nearest neighbor criterion generally fails
to obtain sufficiently discriminative information due to its
poor performance in the original high-dimensional face
space.

(3) The underlying adjacency graphs (or data-dependent regu-
larizers) involved in many SSDR algorithms are artificially
defined beforehand and use a fixed neighborhood size for
all the sample points. Not only does this ignore the actual
data distribution, but also bring the difficulty of parameter
selection, especially when only few labeled samples are
available as in single training image face recognition.

To address the above issues, in this paper, we present a new
graph-based SSDR algorithm called sparsity preserving discriminant
analysis (SPDA) which is motivated by the recent progress in sparse
representation (Qiao et al., 2010; Wright et al., 2009). Concretely,
we highlight the favorable properties of SPDA and main contribu-
tions of this paper:

(1) SPDA can remarkably improve the performance of typical
LDA only resorting to very few extra unlabeled samples,

because it does not based on manifold assumption, but mainly
focuses on the discriminative power which can be naturally
achieved by minimizing a ‘1-regularization objective function.
We will give a detailed discussion on this point in Section 3.

(2) Graph construction involved in SPDA relies on sparse repre-
sentation classification criterion (Wright et al., 2009) which
is generally superior to the nearest neighbor criterion, espe-
cially for high-dimensional data.

(3) The ‘‘neighborhood” size and edge weight for each sample
are automatically obtained in one single step by a ‘1 optimi-
zation problem. As a result, different sample will get differ-
ent neighborhood sizes, which is more adaptive to complex
data distribution.

(4) Alternatively, we develop a simple ensemble SPDA algo-
rithm to reduce the computational complexity involved in
obtaining sparse representation for graph construction
when a large number of unlabeled samples are provided.
Also, as a byproduct, we formulate the kernelized version
of SPDA.
2 A recent research (Meytlis and Sirovich, 2007) has shown that the face space is
estimated to have at least 100 dimensions.
(5) The idea behind SPDA is quite general, and can potentially be
extended to other graph-based semi-supervised learning
algorithms by integrating with different discriminant crite-
ria or loss functions.

The rest of the paper is organized as follows. Section 2 briefly
reviews several existing graph-based SSDR algorithms. In Section
3, we develop a new data-dependent regularizer and SPDA algo-
rithm. In Section 4, we extend SPDA to kernel and ensemble ver-
sions. Section 5 shows the experimental results, followed by the
conclusion and future work in Section 6.

2. Brief review of semi-supervised dimensionality reduction
(SSDR)

Firstly, we want to make clear that why we employ SSDR in-
stead of other Semi-supervised learning (SSL) algorithms for the
single training image face recognition problem. Indeed, various
SSL algorithms have been developed in the past few years. One
can refer to (Zhu, 2008) for a detailed literature survey. However,
as pointed out in (Cai et al., 2007), many of the existing SSL algo-
rithm can only work on transductive setting, which requires both
the training and test set are available during the learning process.
Therefore, they are not always suitable for face recognition appli-
cations where the test set is generally not available during the
training phrase. In contrast, SSDR first learns a subspace from the
available training set (containing labeled and unlabeled samples),
and then the forthcoming test sample is projected onto the sub-
space for further decision.

2.1. Semi-supervised discriminant analysis (SDA) (Cai et al., 2007)

SDA extends LDA to incorporate the manifold structure illus-
trated by both labeled and unlabeled data. Therefore, SDA aims
to best preserve the discriminative information as well as the geo-
metric structure in data. Given a set of data points X = [x1,x2, . . . ,xn]
including both labeled and unlabeled samples, the SDA objective
function is defined as follows:

max
w

wT Sbw
wT Stwþ k1wT wþ k2JMRðwÞ

; ð1Þ

where Sb and St are respectively the inter-class and total scatter ma-
trix calculated using the labeled training samples. wTw is the Tikho-
nov regularizer, and JMR(w) is a data-dependent manifold
regularizer (Belkin et al., 2006). k1 and k2 are two parameters, con-
trolling the balance among the three terms in denominator. Obvi-
ously, if k1 = k2 = 0, SDA becomes the standard LDA; if k1 – 0,
k2 = 0, it becomes the regularized discriminant analysis (RDA) (Has-
tie, 2009).

The data-dependent regularizer in SDA plays a role in preserv-
ing the manifold structure in data. It is constructed using both la-
beled and unlabeled training samples as follows:

JMRðwÞ ¼ wT XLXT w ¼
X

i;j

ðwT xi �wT xjÞ2pij; ð2Þ

where L is the graph Laplacian (Belkin and Niyogi, 2003), pij is the
edge weight between data point xi and xj. In particular,

pij ¼
expfkxi � xjk=2r2g; xi 2 NkðxjÞ _ xj 2 NkðxiÞ;
0; otherwise:

(
ð3Þ

Since SDA shares the similar objective function to LDA, one can
solve SDA by the following generalized eigenvalue problem:

Sbw ¼ gðSt þ k1I þ k2XLXTÞw: ð4Þ



Table 1
Several special SSDR algorithms proposed recently.

Algorithm Discriminant criterion Regularization term
Fisher MMCa Tiknonov Manifold

SDA (Cai et al., 2007)
p p p

LapLDA (Chen et al., 2007)
p p

SSLDA (Song et al., 2008)
p p p

SSMMC (Song et al., 2008)
p p p

a Maximum margin criterion.

3 In fact, suboptimal solutions can be found by a variety of strategies such as
greedy-based (Mallat and Zhang, 1993) and Bayesian-based (Ji et al., 2008) methods.
Here, we consider the ‘1 strategy simply due to that the equivalence of the ‘0 and ‘1

problem has been studied deeply from a mathematical perspective.
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2.2. Other SSDR algorithms

Although, in the recent years, many graph-based SSDR algo-
rithms have been proposed independently, most of them share
the same idea: the labeled sample points are used to maximize
the discriminative power, while the unlabeled sample points are
used to best preserve the geometric structure in data. As a result,
they are similar to each other with different choices of discrimi-
nant criterion and regularization term. Table 1 gives several popu-
lar examples of those methods.

Since the discriminant criteria (e.g., Fisher criterion and MMC)
are usually off-the-shelf, the data-dependent regularizer naturally
plays an important role in the graph-based SSDR algorithms. Also,
we notice that the data-dependent regularizer is generally deter-
mined by a graph constructed based on both labeled and unlabeled
samples. For example, in SDA, the manifold regularizer roots in the
above mentioned k-neighborhood graph (3). Therefore, in the next
section, we will start to introduce our SPDA algorithm from con-
structing a novel graph.

3. Sparsity preserving discriminant analysis

3.1. Graph construction based on sparse representation

3.1.1. Motivation from sparsity
We first give the reasons why the sparse representation is suit-

able to graph construction.

(1) Sparsity plays an important role in typical k-neighborhood
graph. On one hand, sparsity implicitly characterizes the
locality of data distribution; on the other hand, it can effec-
tively save computational cost and storage space. However,
for the typical k-neighborhood graph constructed by Eq.
(3), its sparsity depends on artificially fixed neighborhood
size. It seems to be unreasonable that all data points share
an identical k, which may not characterize the manifold
structure well, especially in undersampling case. This moti-
vates us to consider whether we can automatically learn the
sparsity from the data instead of artificial predefinition.

(2) The sparsest representation is naturally discriminative. Since
our ultimate goal is classification, we expect that the
graph can contain as much discriminative information as
possible. That is, two data points are linked by an edge
if they are likely from the same class. For the typical k-
neighborhood graph, this desirability depends heavily on
how well the nearest neighbor criterion works in original
space (Chen et al., 2005). Unfortunately, the nearest neigh-
bor criterion does not generally achieve good performance
for raw high-dimensional data, e.g., face images (Meytlis
and Sirovich, 2007). In contrast, the recent researches
(Wright et al., 2009) showed that sparse representation
has natural discriminative power and can work well under
high-dimensional scenario. Moreover, the discriminative
power is closely related to the class numbers rather than
the sample numbers (Wright et al., 2009). As a result, we
might construct a graph which contains considerable discrim-
inative information without requiring abundant unlabeled
samples.

3.1.2. The objective function for graph construction
Instead of considering k-neighborhood and the pairwise simi-

larity as in typical graph construction, we attempt to automatically
construct a graph G and make it well preserve discriminative infor-
mation based on sparse representation.

Given a set of sample points X = [x1,x2, . . . ,xn], where xi 2 Rm,
i = 1,2, . . . ,n, we expect to reconstruct each sample point xi using
as few data points in X as possible. This can be expressed by the fol-
lowing ‘0-minimization problem:

min
si

ksik0

s:t: xi ¼ Xsi;
ð5Þ

where si = [si1, . . . ,si,i�1,0,si,i+1, . . . ,sin]T is a n-dimensional column
vector in which the ith element is equal to zero, implying the xi is
removed from X, and the element sij, j – i denotes the contribution
of xj for reconstructing xi. It is well known, (5) is a NP-hard problem.
Here, we bypass this difficulty by solving the following ‘1 optimiza-
tion problem3:

min
si

ksik1

s:t: xi ¼ Xsi;
ð6Þ

where ‘1 is used instead of ‘0. It can be effectively solved by linear
programming. Recent researches showed that if the optimal solu-
tion sought is sparse enough, the solution of ‘0 minimization prob-
lem is equal to the solution of ‘1 minimization problem (Baraniuk,
2007). After obtaining all of the optimal reconstruction coefficient
ŝi for each xi, we construct a sparse weight matrix S by

S ¼ ½̂s1; ŝ2; . . . ; ŝn�: ð7Þ

Then, the new constructed graph G = {X,S}, where X is the training
sample set, S is the edge weight matrix.

In practice, the constraint xi = Xsi in (6) does not always hold
due to noise or insufficient training samples. We extend it by incor-
porating a reconstructive compensation term ti as follows:

min
si

ksik1 þ kktikp

s:t: xi ¼ Xsi þ ti;
ð8Þ

which is equivalent to

min
si

ksik1 þ kkxi � Xsikp; ð9Þ
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where ti = xi � Xsi 2 Rm can be seen as a compensation (or error tol-
erance) for reconstructing xi. ktikp denotes the ‘p-norm, a special
measure of the compensation ti. From the Bayesian viewpoint, ktikp

essentially corresponds to different prior distribution (or assump-
tion) about ti. For example, ktik2 is related to Gaussian prior,4 while
ktik1 is related to Laplacian prior.5 k is a regularized parameter to
control the trade-off between the sparsity of reconstructive coeffi-
cient and the reconstructive compensation. Although the parameter
selection problem has been studied in-depth (Mallat and Zhang,
1993; Ji et al., 2008; Hastie, 2009), there is currently no reliable
method in theory to assign optimal value for k. Therefore, we simply
set k = 1 in all our experiments.

It is worthwhile to point out that the above graph construction
manner differs from the one in our previous SPP algorithm (Qiao
et al., 2010), though both are motivated by sparse representation
(Wright et al., 2009). More specifically, (1) in SPP we used two
independent sparse representation models, which are directly
developed from (Wright et al., 2009). In contrast, here we reveal
the inherent relationship between these models and unify them
in one single objective function (8). As a result, the graph construc-
tion models behind SPP are just two special instances of (8), and
we can develop new graph construction model from the unified
objective according to different priors. (2) In SPP, we require
sum-to-one constraint as in LLE (Roweis and Saul, 2000). However,
we ignore such constraint in SPDA, since we mainly concern dis-
crimination. Not only does this save computational cost, but also,
more fortunately, we achieve higher recognition rate than SPP
(see Table 4 in Section 5 for details).
3.2. Sparsity preserving regularization

Now we propose the new data-dependent regularizer based on
the previously-constructed graph G = {X,S}. Revisiting the manifold
regularizer (2) in SDA, it implies that if xi and xj are ‘‘close” to each
other, then their low-dimensional representation yi = wTxi and
yj = wTxj should be close to each other as well. However, for the
newly constructed graph G, its edge weight ŝij is not a rigorous sim-
ilarity measure, and thus we can not construct the data-dependent
regularizer as in SDA.

Note that the relationship between xi and xj is characterized by
xi �

Pn
j¼1ŝijxj instead of simple ‘‘closeness”, and hence we expect

that their low-dimensional representations yi and yj preserve such
relationship as well, i.e., yi �

Pn
j¼1 ŝijyj, which is motivated by LLE

(Roweis and Saul, 2000). Therefore, we propose the data-depen-
dent regularizer by minimizing the following objective function:

JSparsityðwÞ ¼
Xn

i¼1

kyi � Yŝik2 ¼
Xn

i¼1

kwT xi �wT Xŝik2
; ð10Þ

where Y = [y1,y2, . . . ,yn] is the low-dimensional representation of
the original data. Since the regularizer aims to preserve the sparse
reconstructive relationship, we call it sparsity preserving regularizer.
Then, with simple algebraic formulation (see Appendix), it can be
rewritten as

wT XLsX
T w; ð11Þ

where Ls = I � S � ST + SST. Although, the data-dependent regularizer
can potentially be incorporated into many semi-supervised learning
algorithms, we only focus on SSDR in this paper.
4 In this sense, the (9) has the same mathematical expression as the popular LASSO
(Tibshirani, 1996) in statistics.

5 It has been validated applicable to face images with partial occlusion (Wright
et al., 2009). In this paper, we use this prior by empirically modeling the variations of
expression and illumination as partial corruption on clear face images.
3.3. Sparsity preserving discriminant analysis (SPDA)

Similar to SDA, we extend LDA6 to semi-supervised version
based on the newly proposed data-dependent regularizer. Naturally,
the objective function can be defined as follows:

max
w

wT Sbw

wTðSt þ k1I þ k2XLsX
TÞw

; ð12Þ

where Sb and St are respectively the inter-class and total scatter matri-
ces, which are calculated just using the labeled training samples. I is
an identity matrix related to Tikhonov regularizer, and wTXLsX

Tw is
the sparsity preserving regularizer. The solution of (12) can be easily
achieved by the following generalized eigenvalue problem:

Sbw ¼ gðSt þ k1I þ k2XLsX
TÞw: ð13Þ

The algorithmic procedure is shown as follows. Concretely, we
assume the training sample set X = [x1, . . . ,xl,xl+1, . . . ,xl+u] = [XL,XU],
where the first l training samples fxigl

i¼1 are labeled and from c
classes (there are lk samples in the kth class), the last u training
samples fxiglþu

i¼lþ1 are unlabeled. Without loss of generality, the
sample points in XL are ordered according to their labels.
6

Algorithm 1. Sparsity Preserving Discriminant Analysis

Step 1. Calculate Sb ¼ XLHLXT
L and St ¼ XLXT

L based on the
labeled training samples inXL, where, HL =
diag(H1,H2, . . . ,Hc) is a block-diagonal matrix, and Hk

is a lk � lk matrix with all elements equal to 1/lk.
Step 2. Construct graph G = {X,S}. The weight matrix S is calcu-

lated based on all training samples in X using (6) or (8).
Step 3. Calculate the data-dependent (sparsity preserving)

regularizer wTXLsX
Tw, where Ls = I � S � ST + STS.

Step 4. Calculate the projections by the generalized eigen-
value problem (13), and the projection matrix
W = [w1,w2, . . . ,wd], where wi are the eigenvectors cor-
responding to the largest d eigenvalues.
4. Extensions of SPDA

In this section, we extend the proposed algorithm to its kernel-
ized version (for improving the flexibility of SPDA) and ensemble
version (for reducing the computational complexity), respectively.

4.1. Kernel SPDA

As described above, SPDA only focuses on linear dimensionality
reduction, and thus it may fail to deal with the highly nonlinear
structure in data. Fortunately, we can easily extend SPDA to per-
form in reproducing kernel hilbert space (RKHS) like other graph-
based dimensionality reduction algorithms.

Let /: x ? F be a function mapping the data points in the input
space to the feature space. According to the kernel trick, we expect
to replace the explicit mapping with the inner product K(xi,xj) = (/
(xi) � /(xj)). Furthermore, we assume /L = [/(x1),/(x2), . . . ,/(xl)],
/U = [/(xl+1),/(xl+2), . . . ,/(xn)] and / = [/L,/U], then the inter-class
scatter matrix and the total scatter matrix in the feature space
can respectively be denoted as

SF
b¼/LHL/

T
L ¼/

HL 0
0 0

� �
/T¼/H/T ; SF

t ¼/L/
T
L ¼/

I 0
0 0

� �
/T¼/eI/T ;

ð14Þ
where HL is defined as in the SPDA algorithm.
Of course, we can consider other discriminant criteria such as MMC if necessary.



426 L. Qiao et al. / Pattern Recognition Letters 31 (2010) 422–429
According to the Representer Theorem (Scholkopf et al., 2001),
the projection wF sought in feature space can be expressed as
wF = /a, where a = [a1,a2, . . . ,an]T is a coefficient vector that rep-
resents wF in the feature space. Let K = /T/ be the kernel matrix,
the objective function of kernel SPDA can be expressed as
follows:

max
w

aT KHKTa
aTðKeIKT þ k1K þ k2KLsK

TÞa
: ð15Þ

The optimal solution â can be obtained by solving the following
generalized eigenvalue problem:

KHKTa ¼ gðKeIKT þ k1K þ k2KLsK
TÞa: ð16Þ

Thus, given a new data point x, its low-dimensional representation
is ðwFÞT/ðxÞ ¼ âT Kð�; xÞ, where K(�, �) is a kernel function.

4.2. Ensemble SPDA

According to (Wright et al., 2009), the sparsity of the ideal
solution sought is mainly related to the class numbers rather than
the sample numbers. Therefore, intuitively, a large number of
unlabeled samples do not necessarily help improve the perfor-
mance of SPDA significantly, and conversely incur high computa-
tional burden since SPDA constructs graph based on all the
training samples. Here, we introduce a very simple ensemble
strategy to speed up the proposed SPDA algorithm based on the
above observation.

In particular, given a set of training samples X = [x1, . . . ,
xl,xl+1, . . . , xl+u] = [XL,XU] as mentioned before, we randomly parti-
tion the unlabeled sample set XU into q small sample sets XU1,
XU2, . . . ,XUq, and thus we can generate a series of new training sets
X1 = [XL,XU1], . . . , Xq = [XL,XUq]. Then, we perform SPDA on each
new training sets and the test sample is classified by voting strat-
egy. Concretely, the ensemble SPDA algorithmic procedure is
shown as follows.
Algorithm 2. Ensemble SPDA

Step 1. Partition the training set X into q sub-sets X1,X2, . . . ,Xq.
Step 2. Implement SPDA on each sub-set, and get q subspaces.
Step 3. Project the test sample x onto each subspace, and then

implement classification (e.g., 1NN) on each subspace.
Step 4. Vote to decide the class label of the test sample.
7 See the next subsection for the description about this database. Here we just used
the face images taken in the first session.

8 Here, support point denotes the face image which contributes to represent the
given face image.
5. Experiments

5.1. Illustrative examples

In this subsection, we intuitively illustrate why the proposed
algorithm might work well through two illustrative experiments
on toy (5.1.1) and face (5.1.2) data sets, respectively.

5.1.1. Illustrative experiment on toy data
For simplicity of our illustration here, we only consider binary

classification problem and assume that each class lies in a one-
dimensional subspace embedding in three-dimensional ambient
space. We randomly sample three (one labeled and two unlabeled)
data points from per class for training. Fig. 1a gives an instance of
so-generated training sample points which are respectively signed
with pentacle and square. In order to approximate practical prob-
lem, the data points are corrupted by Gaussian additive white
noise with standard deviation 0.1.
Based on the training data, we construct the typical neighbor-
hood graph and the sparse reconstruction graph, respectively. In
particular, Fig. 1b gives the neighborhood graph, where the
neighborhood size k = 2. It is easy to see that the edges on the
graph link the data points which are close to each other, yet from
different class. Obviously, other locality-oriented graph construc-
tion manners such as the one involved in LLE may also suffer
from the fact that the samples from different class are close to
each other. In contrast, Fig. 1c gives the sparse reconstruction
graph behind SPDA. With the sparsity constraint, the non-zero
reconstructive coefficients for a given data point more possibly
match the data points in the same class. As a result, so-con-
structed graph tends to contain more discriminative information
than typical neighborhood graph. More specifically, we classify
100 randomly generated test samples using 1-nearest neighbor
(1NN) classifier on the obtained one-dimensional subspace by
SDA and SPDA, respectively. The average classification accuracies
corresponding to SDA and SPDA are 70.34% and 87.22%,
respectively.

5.1.2. Illustrative experiment on face data
The previous toy problem showed that locality-oriented graph

construction manners may affect the performance significantly.
How about on real-world data sets? Here, we take AR database7

as an example to compare the proposed algorithm with LLE, since
the graph behind SPDA is constructed by ‘1-minimization optimiza-
tion problem which is closely related to the least square graph con-
struction hidden in LLE.

More specifically, we assume the face data set X = [x1,x2, . . . ,xn],
where the samples are ordered according to their labels for the con-
venience of illustration. Then, given a face image xi 2 X, by solving
(8) or (9), we obtain a sparse reconstruction coefficient si in which
the non-zero values model the contribution of each support point8

or support face to represent xi. In other words, simply by solving (8)
or (9), we get both the graph and its corresponding edge weights
simultaneously, which is contrary to the scheme of LLE, where the
graph and its edge weights are estimated separately. In particular,
for a specific face image, Fig. 2 gives an illustration of support faces
and corresponding coefficient found by SPDA and those by LLE.

From the experiment result, we note that the support faces
found by SPDA with a ‘1-minimization criterion are more discrim-
inative than those by LLE with the least square criterion – two of
three faces with the same identity as the prototype are correctly
found by SPDA scheme.

5.2. One (labeled) training image face recognition

In this subsection, we perform one training image face recogni-
tion experiments on three publicly available face databases: CMU
PIE, Extended Yale B and AR databases.

5.2.1. Database description
CMU PIE face database contains 68 subjects with 41,368 face

images as a whole. The face images were captured under varying
pose, illumination and expression. Similar to (Cai et al., 2007), in
the experiment, we choose the frontal pose (C27) with varying
lighting which leaves us 43 images per person. The size of each face
image is cropped to have 32 � 32 pixels as shown in Fig. 3(top).

Extended Yale B database (Lee et al., 2005) contains 2414 front-
view face images of 38 individuals. For each individual, about 64
pictures were taken under various laboratory-controlled lighting



Fig. 2. Illustration of three support faces with corresponding coefficients (bottom row) for a given face image (the first image on the left side of the approximately equal mark
in bottom row) and the reconstruction coefficient distribution (upper row) using SPDA (left) and LLE (right), respectively.

Fig. 1. Toy problem.
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conditions. In our experiments, we simply use the cropped images9

with the resolution of 32 � 32 as shown in Fig. 3(middle). The data-
base may be substantially more challenging than the above PIE data-
base due to much larger illumination variations.

AR database consists of over 4000 face images of 126 individu-
als. For each individual, 26 pictures were taken in two sessions
(separated by two weeks) and each section contains 13 images.
These images include front view of faces with different expres-
sions, illuminations and occlusions. In our experiments, we only
use the images without occlusion in the AR face database provided
and preprocessed by Martinez and Kak (2001). This sub-dataset
contains 1400 face images corresponding to 100 person (50 men
and 50 women), where each person has 14 different images taken
in two sessions. The original resolution of these image faces is
165 � 120. Here, for computational convenience, we resize them
to 66 � 48 as shown in Fig. 3(bottom).

5.2.2. Experimental setting
On each face database, we perform two groups of experiments

with different unlabeled training sample numbers. Table 2 gives
the specific experimental setting. For example, for PIE database,
experiment 1 denotes that three images are randomly selected
from each class as the training set, and the rest images as the test-
ing set. Among the three training images, only one image is ran-
domly selected and labeled, which leaves the rest two images
unlabeled; while, in experiment 2, the labeled training samples
keep the same, but the number of the total training samples per
subject increases to 30. In fact, the experiment 2 is also considered
in (Cai et al., 2007) where the authors justified that their proposed
9 We directly download the cropped image data from http://www.cs.uiuc.edu/
homes/dengcai2.
SDA algorithm achieved better performance than some popular
algorithms, e.g., LPP (He and Niyogi, 2003) and LapSVM (Belkin
et al., 2006). For all the experiments here, we report the averaged
results over 30 random training/test splits.

Based on each data partition, we compare SPDA with Baseline,
unsupervised SPP, supervised LDA10 and semi-supervised SDA.
The baseline approach denotes the 1-NN classifier on the original
face space without dimensionality reduction. For LDA, the face sub-
space is learnt only using the labeled samples; for SPP, the face sub-
space is learnt using all the training samples without label
information; for SDA and SPDA, the face subspace is learnt using
both labeled and unlabeled samples. Then, based on the learnt sub-
space, 1-NN classifier is employed to evaluate the recognition rate on
the test data. As descript previously, SPDA suffers from high compu-
tational cost when a large number of unlabeled samples are consid-
ered. Therefore, for the experiment 2 on each database, we adopt the
ensemble version of SPDA where the unlabeled samples are simply
and randomly partitioned into q = 10 small sub-sets.

5.2.3. Parameter selection
LDA and SPP are both parameter-free. SDA contains four param-

eters: two regularized parameters and two free parameters for
graph construction. Here, we use the same parameter values for
SDA as in (Cai et al., 2007). For convenience of comparison, the
two regularized parameters in SPDA are assigned the same values
as in SDA. In addition, for all the above algorithms, the subspace
dimension is set to c � 1, where c is the class number. Table 3 gives
specific parameter values for SDA and SPDA.
10 Strictly speaking, under the single training sample case, typical LDA fails to work
since the intra-class variation cannot be obtained. Here, we simply replace the intra-
class scatter matrix using a constant matrix as in (Zhao et al., 1999).

http://www.cs.uiuc.edu/homes/dengcai2
http://www.cs.uiuc.edu/homes/dengcai2


Table 3
Parameter setting for SDA and SPDA.

Algorithms Reg. para. k1 Reg. para. k2 Neighbor k Edge weights

SDA 0.01 0.1 2 Cosine
SPDA 0.01 0.1 Auto Auto

Fig. 3. Some face images from PIE (top), Yale B (middle) and AR (bottom) databases.

Table 2
Data set description and partition.

Database Samples sizes per class Class numbers Experiment 1 Experiment

Train Labeled Train Labeled

PIE 64 68 3 1 30 1
Yale B 43 38 3 1 30 1
AR 14 100 3 1 10 1
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5.2.4. Experimental results and overall observations
Based on the above experimental setting, Table 4 reports the

classification accuracies corresponding to different algorithms
and databases, where E1 and E2 denote the first and second groups
of experiments, respectively.

From the experimental results on the three popular face dat-
abases, we can achieve several observations as follows:

(1) Among the discussed dimensionality reduction methods,
LDA generally achieve relatively low accuracies due to the
fact that only one labeled sample per class is used to learn-
ing the face subspace.

(2) Despite its unsupervised nature, SPP can outperform LDA
with the help of extra training samples. However, the perfor-
mance of SPP does not always be improved with the increase
of training samples. Interestingly, SPP can even achieve bet-
ter performance than SDA in some of the experiments,
which benefits from the natural discriminative power of
sparse representation.

(3) Semi-supervised SDA and the proposed SPDA always out-
perform LDA if considerable unlabeled training samples are
available. That is, the extra unlabeled training samples can
generally help improve the performance.
Table 4
Performance comparison for single training image face recognition problem.

Baseline (%) LDA (%) SPP (%) SDA (%) SPDA (%)

PIE
E1 25.88 ± 1.2 25.88 ± 1.2 62.55 ± 2.0 30.91 ± 2.1 67.47 ± 1.8
E2 26.21 ± 1.6 26.21 ± 1.6 51.29 ± 3.1 59.57 ± 3.2 70.44 ± 3.0

Yale B
E1 12.60 ± 1.2 12.60 ± 1.2 17.95 ± 3.1 16.1 ± 1.6 31.27 ± 3.6
E2 13.01 ± 1.4 13.01 ± 1.4 14.28 ± 3.2 26.77 ± 2.5 35.44 ± 3.3

AR
E1 24.55 ± 1.4 24.55 ± 1.4 44.57 ± 2.6 22.48 ± 1.6 58.46 ± 2.0
E2 24.69 ± 2.4 24.69 ± 2.4 55.06 ± 3.1 26.22 ± 2.1 61.23 ± 2.5
(4) SPDA consistently outperforms SPP and SDA on all the used
face databases. This illustrates both label information and
well-constructed graph (or equivalently, data-dependent
regularizer) play important roles in the ultimate recognition
rates. More importantly, the proposed SPDA algorithm can
remarkably improve the performance of LDA even when
only few unlabeled training samples are available.
6. Conclusion and future works

In this paper, we developed a new semi-supervised dimension-
ality reduction method called sparsity preserving discriminant
analysis (SPDA). The newly proposed algorithm does not only mod-
el the ‘‘locality” automatically, but also remarkably improves the
performance of typical LDA only resorting to very few additional
unlabeled samples. As a result, SPDA algorithm is more applicable
to face recognition problem with only a few training samples.

From the experimental results, we can find that SPDA is more
effective than the popular SDA algorithm, but has still a big gap from
practical face recognition applications. Therefore, in the future work,
we will attempt to integrate the typical strategies (e.g., synthesizing
virtual samples, localizing the training images) with the proposed
algorithm and expect to further improve the performance.
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Appendix. The formulation for sparsity preserving regularizer

JSparsityðwÞ ¼
Xn

i¼1

kyi � Yŝik2 ¼
Xn

i¼1

kwT xi �wT Xŝik2

¼ wT
Xn

i¼1

ðxi � XŝiÞðxi � XŝiÞT
 !

w:

Let ei be a n-dimensional unit vector with the ith element 1, 0 other-
wise, then the above equation is equal to
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wT
Xn

i¼1

ðXei � XŝiÞðXei � XŝiÞT
 !

w

¼ wT X
Xn

i¼1

ðei � ŝiÞðei � ŝiÞT
 !

XT w

¼ wT X
Xn

i¼1

eieT
i � ŝieT

i � eiŝT
i þ ŝiŝT

i

 !
XT w ¼ wT XLsX

T w;

where Ls = I � S � ST + SST and S ¼ ½̂s1; ŝ2; . . . ; ŝn�.
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