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a b s t r a c t

In applying traditional statistical method to face recognition, each original face image is often vectorized
as a vector. But such a vectorization not only leads to high-dimensionality, thus small sample size (SSS)
problem, but also loses the original spatial relationship between image pixels. It has been proved that
spatial regularization (SR) is an effective means to compensate the loss of such relationship and at the

from two main problems: one is high computational cost due to high dimensionality and the other is the
selection of the key regularization factors controlling the spatial regularization and thus learning per-
formance. Accordingly, in this paper, we provide a new idea, coined as implicit spatial regularization
(ISR), to avoid losing the spatial relationship between image pixels and deal with SSS problem simul-
taneously for face recognition. Different from explicit spatial regularization (ESR), which introduces
directly spatial regularization term and is based on vector representation, the proposed ISR constrains
spatial smoothness within each small image region by reshaping image and then executing 2D-based
feature extraction methods. Specifically, we follow the same assumption as made in SSSL (a typical ESR
method) that a small image region around an image pixel is smooth, and reshape each original image
into a new matrix whose each column corresponds to a vectorized small image region, and then we
extract features from the newly-formed matrix using any off-the-shelf 2D-based method which can take
the relationship between pixels in the same row or column into account, such that the original spatial
relationship within the neighboring region can be greatly retained. Since ISR does not impose constraint
items, compared with ESR, ISR not only avoids the selection of the troublesome regularization parameter,
but also greatly reduces computational cost. Experimental results on four face databases show that the
proposed ISR can achieve competitive performance as SSSL but with lower computational cost.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Face recognition [1–10], as one of the most important issues in
computer vision and pattern recognition, has been advanced and
widely studied over the past few decades because of its wide
applications in security, human-machine communication, etc. Dif-
ferent from conventional image retrieval [11,12] or recognition [13]
tasks, face recognition has its own challenges and attracted exten-
sive research efforts. Among the existing face recognition methods,
subspace learning method [1–10] is one of the most successful and
well-studied techniques. In implementing the subspace learning
methods, one need to first convert a two-dimensional (2D) face
image of size m�n into a one-dimensional (1D) vector of length
u),
mn, i.e., representing each face image as a corresponding point in
the high-dimensional vector space, and then apply features
extraction for face recognition. However, such a vector conversion
often suffers from two main problems: 1) small sample size (SSS)
problem which leads to over-fitting in classification, and likewise
makes the subspace learning methods (e.g., LDA, LPP, NPE, etc.)
difficult to discover the real intrinsic discriminant or geometrical
structures [14]; and 2) it breaks the natural spatial structure of
images and thus makes the concatenated vector losing spatial
relationship between pixels. In this paper, we attempt to address
such two problems.

In order to retain the spatial relationship between image pixels
as much as possible and at the same time avoid SSS problem,
researchers have paid a lot of attention on original matrix or 2D
representation of face images and developed corresponding 2D
methods by directly operating on face matrices, for the vector-
based subspace dimensionality reduction methods especially for
PCA and LDA. The 2D versions of PCA include two-dimensional
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Fig. 1. Pseudocode of the proposed ISR.
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principal component analysis (2DPCA) [15], generalized low rank
approximations of matrices (GLRAM) [16], etc. While the 2D ver-
sions of LDA include single-side 2D-LDA [17] and bi-side 2DLDA
[18], etc. Among these methods, 2DPCA [15] and 2D-LDA [17]
extract features only along the row (or the column) direction of
image matrices, while GLRAM and 2DLDA can extract features
along both the row and column directions of image matrices.
Subsequently some researchers have further extended the sub-
space dimensionality reduction methods to higher order (HO)
tensor data [19–21]. Until now, almost all existing vector-based
subspace methods have been successively extended to their cor-
responding 2D or HO counterparts. Compared with the vector-
based approaches, 2D-based approaches have three main advan-
tages: 1) they can naturally and effectively elude SSS problem due
to far lower dimensionality of the scatter matrix directly defined
on images themselves, thus effortlessly avoiding singularity pro-
blem of the original within-class scatter matrix; 2) they partially
utilize the spatial relationship among pixels in the same whole
row (column); 3) they dramatically reduce the computational
complexity in feature extraction due to small-size scatter matrix
involved in dimensionality reduction. Extensive experimental
results have shown the superiority of these 2D-based approaches
to their corresponding vector counterparts. However, a recent
research [14] pointed out that 2D-based approaches actually
consider relationship between pixels only in the whole row (col-
umn) but fail to capitalize on the spatial information of the whole
images such that the embedding functions of 2D-based approa-
ches will still be spatially rough or not smooth enough.

To learn a spatially smooth subspace, recently, Cai et al. re-paid
their attention to the original vector representation of face image
and proposed a spatial regularization method called Spatially
Smooth Subspace Learning (SSSL) [14], whose idea is quite general
and thus suitable for almost all existing vector-based subspace
methods. As a result, as expected, SSSL indeed achieves better
recognition performance on benchmarks than the corresponding
vector-based and 2D-based counterparts. In its implementation, the
projection vectors are enforced to be spatially smooth by explicitly
introducing a regularization term reflecting spatial relationship
between pixels to the discriminant objectives of vector versions
such as LDA. Following SSSL method, several variants [22,23] have
been developed. In [22], Hou et al. proposed a orthogonal smooth
subspace learning method (OSSL) by constraining the transforma-
tion vectors to be orthogonal and spatially smooth simultaneously;
In [23], Zuo et al. improved SSSL by using LoG and DOG penalties as
spatial regularization to replace the Laplacian penalty. Since these
methods take into account the spatial relationship between image
pixels by explicitly smoothing projection vectors of face space, they
likewise significantly outperform their corresponding vector-based
subspace learning methods without such regularization and 2D-
based versions. However, these explicit spatial regularization (ESR)
methods still have some disadvantages: first, compared with 2D-
based methods, they have higher computational cost like traditional
vector-based subspace methods; second, as aforementioned, they
suffer from the relatively troublesome selection of key regulariza-
tion factor which seriously influences the recognition performance
and the optimal determination of the factor is still an open problem
in machine learning, especially when the value of the factor is
continuously changed; third, the size of image local region or
window involved in spatial smoothness must be set to an odd value
like 3�3, 5�5, or 7�7, etc., and each change of the spatial win-
dow size may make the selection of the regularization parameter be
re-searched.

In this paper, we provide a new idea, coined as implicit spatial
regularization (ISR), to retain the spatial relationship between
image pixels and deal with SSS problem simultaneously for face
recognition. Different from explicit spatial regularization (ESR), ISR
is a direct realization for spatial relationship by just reshaping an
original image matrix into another matrix but not need to introduce
any explicit regularization term. Specifically, we use the prior
knowledge that a small image region (hereafter it is called as spatial
window) around a pixel is generally smooth, and reshape an ori-
ginal face image (denoted as a matrix) into a new alternative matrix
by vectorizing each small image region into column vector, then we
perform feature extraction on newly-formed matrix with the help
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Fig. 2. An illustration of image reshaping in non-overlapping way, where Vec ∙ð Þ is a
simple vectorization operation.

Fig. 3. An illustration of image reshaping in overlapping way.
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of any off-the-shelf 2D-based method. Since a spatial window is
reshaped into the same column, it can be desirable that the spatial
structure within a spatial window can be obtained by using 2D-
based methods. Compared with SSSL, our method not only avoids
the selection of the troublesome regularization parameters, greatly
reduces computational cost inherited from the 2D-based methods,
but also the size of spatial window can be arbitrarily set according
to the size of the whole face image. Compared with 2D-based
methods, our method considers the spatial relationship of pixels
within a small spatial region, rather than within a global row (or
column). As a result, more spatial relationship can be used.

Note that, although our method does not explicitly introduce
spatial regularization term to constrain spatial smoothness
between neighboring pixels, it is implicitly accomplished by
reshaping the image and then executing any off-the-shelf 2D-
based method. Hence, in some loose sense, our method plays the
role of spatial regularization, for which we coin it as implicit
spatial regularization (ISR).

To evaluate efficacy of ISR, we compare ISR with SSSL on four
face databases (Yale, ORL, Extended YALE B and CMU PIE), and the
results showed that the proposed ISR-motivated methods achieve
competitive performances against SSSL with lower computational
cost. In addition, we also analyze the influence of the size of spatial
window on performance of ISR.

The remaining parts of this paper are organized as follows. In
Section 2, a brief review about SSSL and 2D-based subspace fea-
ture extraction methods is given. In Section 3, implicit spatial
regularization (ISR) is formulated in detail. In Section 4, experi-
mental comparisons carried out on four face databases are
reported. Finally, a conclusion is drawn in Section 5.
2. Brief review of SSSL and 2D-based feature extraction
methods

Let A¼ ½A1;A2;…;AN� be the training face image set and its
corresponding vectorized training set be X ¼ ½X1;X2;…;XN �, where
N is the number of training samples, Aiði¼ 1;2;…;NÞ is the i-th
face image with the size of m�n, and Xi is the vector repre-
sentation of Ai. Also, let G be a graph constructed from A (or X), W
and L be the edge weight matrix and graph Laplacian matrices
associated with the G, respectively. With these definitions, we
below briefly review Spatially Smooth Subspace Learning (SSSL)
and related 2D-based subspace methods.

2.1. Spatially Smooth Subspace Learning (SSSL)

Spatially Smooth Subspace Learning (SSSL) [14] is a typical
explicit vector-based spatial regularization method which is sui-
table for almost all existing subspace methods. Its starting point is
to encourage projection vectors to be spatially smooth by using
discrete Laplacian smooth operator on the projection vectors. As a
result, SSSL can achieve better performance than the corre-
sponding subspace learning methods without such a spatial
smoothness constraint [14]. Mathematically, the objective function
of SSSL method can be formulated as

arg max
a

aTXWXa

ð1�βÞaTXLXTaþβJðaÞ
ð1Þ

where a is the projection vector to be solved, β is a regular-
ization factor, and J is a discrete Laplacian penalty function defined
as:

JðaÞ ¼ aTΔTΔa ð2Þ

where △ is a discrete approximation for two-dimensional
Laplacian matrix with the size of mn�mn:

Δ¼D1 � I2þ I1 � D2 ð3Þ

where I1 and I2 are m�m and n�n identity matrices, respec-
tively, � denotes the Kronecker product operator, and D1 (D2) is a
modified Neuman horizontal (vertical) direction discretization
operator defined by

Dj ¼
1

h2
j

�1 1 0
1 �2 1
U U U

1 �2 1
0 1 �1

0
BBBBBB@

1
CCCCCCA

ð4Þ

where h1 (h2) is the sample width along the horizontal (ver-
tical) direction. For more details, please refer to [7].

According to the above description, we can summarize that 1)
SSSL fixes the size of spatial (smooth) window to 3�3 and does
not further explore the influence of the size of spatial window on
classification performance. Although the size of such spatial win-
dow can take other numbers, it is limited to some odd values such
as 3�3, 5�5, or 7�7, etc. due to the requirement of the used
smooth operators; 2) as a vector-based method, SSSL suffers from
high computational cost; and 3) as an explicit spatial regulariza-
tion method, SSSL needs to expensively tune the regularization
factor for model selection, especially when its value continuously
varies, thus screening out optimal factor will be more difficult.



Fig. 4. Pseudocode of solving U and V .
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2.2. 2D-based feature extraction methods

In this paper, since our focus is not on improving existing 2D-
based methods but applying them as off-the-shelf methods, we
just give a brief review about 2D-based methods.

2D-based feature extraction methods are designed especially
for manipulating 2D images and have been effectively applied in
face recognition. In their implementation, each face image is
directly represented as a matrix on which 2D-based feature
extraction methods are performed. These 2D-based methods for
feature extraction can be classified into two categories: one class is
single-side method which extracts features only along the row (or
column) direction, and the other one is called bi-side method
which simultaneously extracts features along both the row and
column directions.

The aim of single-side 2D methods is to find a column projec-
tion matrix U or a row projection matrix V by optimizing some
specific criteria such as the reconstruction error [15,16] and linear
discriminant criteria [18], and then extract features UTAi (or AiV)
from the given face image Ai. An attractive property of the single-
side methods is that it can yield an analytic solution for U (or V)
through solving a generalized eigen-equation.

Different from the single-side 2D methods, the bi-side 2D
methods aim to find a column projection matrix U and a row
projection matrix V simultaneously. The optimization criteria with
respect to both U and V are not jointly convex, so one usually
adopt an alternating iteration strategy to solve U and V . More
specifically, for a fixed V , the optimal U is first computed by sol-
ving an optimization problem similar to single-side methods. With
the computed U, V is updated by solving the other optimization
problem. Such an alternative optimization process is repeated
until convergence of the value of the objective.
3. Implicit spatial regularization (ISR)

In this section, we provide a nominal yet simple spatial reg-
ularization method to avoid the loss of spatial information
between image pixels and deal with SSS problem, simultaneously.
The brief description of our proposed ISR algorithm is summarized
in Fig. 1.

3.1. Related works on reshaping and motivation

Reshaping images has been used in face recognition [24–27].
For example, in our previously proposed methods MatPCA and
MatLDA [24], we first converted a general vector pattern into a
corresponding matrix pattern and then performed 2DPCA [15] and
2D-LDA [17] on the converted matrix to extract features. The
motivation of doing so is to expect introducing some structural
information potentially hidden in data itself. In [25], Xu et al.
rearranged pixels of a given image to make correlations along
certain tensor dimensions maximal with an aim of removing as
much information redundancy as possible, and applied existing
tensor-based algorithms to reduce dimensionality. In [26], Chen
et al. proposed a Glocal image representation with a goal to
introduce two structurally-meaningful vector spaces to respec-
tively describe the global and the local image properties for
learning image metric. In [28], Kumar et al. transformed the ori-
ginal image into new representation so that the convolution
operation can always be represented as a linear operation. All the
above methods have shown their effectiveness to different degrees
in face recognition.

In this paper, we also adopt the reshaping trick for face
recognition. Our motivation to reshape image comes from the
following observation: as analyzed in SSSL that 2D-based methods
can obtain the spatial relationship within the whole row or col-
umn, however, the whole row or column space of image is spa-
tially rough or under-smoothness, as a result, they fail to fully
explore the spatial information of images. Since keeping smooth-
ness of spatial window is effective to improve the generalization
performance of subspace methods, we consider reshaping original
face image to increase smoothness of column vector and further
obtain the spatial relationship between pixels within the same
column vector by using tensor methods. That is, we reshape a
given face image (as a matrix) into an alternative matrix whose
each column corresponds to a vectorized spatial window, as a
result, the column space of the new matrix becomes enough
smooth. When 2D-based feature extraction method is performed
on the reshaped matrix, the spatial relationship within spatial
window will be considered.

3.2. Reshaping

Reshaping can usually be realized in non-overlapping and
overlapping ways. In non-overlapping way, we first divide a given
face image size of m� n into a set of equally-sized p� qð Þ spatial
windows (forming K ¼ ðm� nÞ=ðp� qÞ spatial windows) and then
convert each one into corresponding pq-dimensional column
vector to form a new matrix with size of pq� K . This reshaping
process is simply illustrated in Fig. 2. Obviously, after reshaping,



Y. Zhu et al. / Neurocomputing 173 (2016) 1554–15641558
the columns (corresponding spatial windows) of the new matrix
are usually smooth and characterize the local configurations while
the rows characterize the global configurations, thus when bi-side
2D-based methods are used to extract features, the local spatial
relationship within each spatial window (along the column
direction) and global features (along the row direction) can be
retained to great degree.

Such a non-overlapping partition breaks likely the spatial
relationship between neighboring windows due to non-smooth
sliding between them and thus leads to ignorance of the relations
to some degree. On the other hand, the overlapping partition way
can usually mitigate such issue due to the connection of adjacent
spatial windows and the combination of different information
between them. Fig. 3 illustrates the construction process of spatial
windows in an overlapping way for image of size 8�8 and spatial
window of size 4�4, where the gray grid stands for spatial win-
dow. As a result,9 spatial windows are generated and the size of
newly-formed matrix is 16�9.

3.3. Feature extraction using single- and bi-side 2D methods

After reshaping image, we can perform any off-the-shelf 2D-
based method on reshaped images to extract features. Let A0 ¼ ½A0

1
;A0

2…A0
N � be a set of reshaped training matrix belonging to C

classes and the i-th class Ci has ni images. Also, let G0 ¼ oA0;W 04
be an undirected weighted graph with vertex set being A0, the
weight matrix being W 0 whose entry W 0

i;j denotes the similarity
between vertexes A0

i and A‘
j and D be a diagonal matrix where

Di;i ¼
P
ia j

W 0
i;j. In the following, we will briefly describe these 2D-

based feature extraction methods involved.
In the paper, we use two families' algorithms, LDA family and

LPP family, in order to obtain different projection matrices. The
aim of LDA is to find a set of projection directions by maximizing
the between-class scatter matrix and minimizing the within-class
Fig. 5. Sample images fro

Table 2
Comparison on Yale database using bi-side methods (mean7std-dev%) (the best
performance in each case has been bolded).

Bi-side method G4 G5 G6 G7

ISR-LDA 79.874.2 83.473.6 86.273.3 87.972.6
ISR-LDA-overlapping 80.273.1 84.473.2 87.974.7 88.774.0
S-LDA 77.873.0 81.773.2 82.774.4 84.273.5
ISR-LPP 79.774.1 83.873.2 86.573.7 87.973.5
ISR-LPP-overlapping 80.173.0 84.672.8 87.374.5 89.173.5
S-LPP 76.073.4 81.472.9 82.574.5 84.074.3

Table 1
Comparison on Yale database using single-side methods (mean7std-dev%) (the
best performance in each case has been bolded).

Single-side method G4 G5 G6 G7

ISR-LDA 75.273.2 81.373.9 85.073.9 86.073.6
ISR-LDA-overlapping 76.274.1 82.373.8 86.773.9 86.972.6
S-LDA 77.873.0 81.773.2 82.774.4 84.273.5
ISR-LPP 75.573.3 81.373.6 85.773.8 86.373.2
ISR-LPP-overlapping 76.873.5 82.573.2 86.874.0 87.473.2
S-LPP 76.073.4 81.472.9 82.574.5 84.074.3
scatter matrix to achieve as large between-class separation as
possible in the reduced subspace; while the aim of LPP family is to
find local and intrinsic low-dimensional sub-manifold structures
hidden in high-dimensional space. Although there are different
motivations for LDA and LPP, they can be nicely interpreted in a
general graph embedding framework. If Y ¼ ½Y1;Y2;…;YN� is the
extracted feature set, the objective function based on graph
embedding framework can be formulated as follows:

min
X
i;j

Y i�Yj
2W 0

i;j

������ ð5Þ

LDA and LPP can be interpreted in this graph framework with
different weight matrix W ‘. For LDA, the weight can be defined as
follows:

WLDA
i;j ¼

1
nt
; if A‘

i and A‘
j belong to i�th class

0 ; otherwise

(
ð6Þ

As for LPP, the weight is

WLPP
i;j ¼ e�

‖A‘
i
� A‘

j
‖2

2σ2 ; if A‘
iANk A‘

j

� �
or A‘

jANk A‘
i

� �
0 ; otherwise

8><
>: ð7Þ

where Nk A‘
i

� �
denotes the set of k nearest neighbors of A‘

i, and
σ is a parameter.

3.3.1. Feature extraction using single-side 2D methods
The aim of single-side 2D methods is to find the projection

matrix U (or V) then project any given matrix A0
i into U (or V) to

obtain corresponding features using Yi ¼UTA‘
i (orYi ¼ A‘

iV). Since
one of aims of ISR is trying to use as much spatial structure among
neighboring pixels as possible, we prefer to extract features from
the reshaped images along column direction, i.e., extracting fea-
tures by Yi ¼UTA‘

i.
If replacing Yi using UTA0

i, we have

min
X
i;j

Y i�Yj
2W 0

i;j ¼min
X
i;j

UTA0
i�UTA0

j
2W 0

i;j

������
������

������ ð8Þ

With some simple algebraic formulations, minimization pro-
blem in Eq. (8) can be rewritten as

maxUT
X
i;j

W 0
i;jA

0
iA

0T
j ÞU ð9Þ

s.t.UTP
i;i
ðDi;iA

‘
iA

‘T
i ÞU¼1

It is easy to see that the optimal U can be obtained by solving
the maximum eigen-value problem:X
i;j

ðW 0
i;jA

0
iA

0T
j ÞU ¼ λ

X
i

ðDA0
iA

0T
i ÞU ð10Þ

Using different weight matrix W ‘ WLDA or WLPP
� �

, we can
obtain the single-side 2D projection matrix U ðULDA or ULPPÞ for 2D-
LDA [17] or 2DLPP [29]. Once we obtain projection matrix U, we
can extract features from A`

i using UTA`
i .

3.3.2. Feature extraction using bi-side 2D methods
Different from the single-side 2D methods, the bi-side 2D

methods extract simultaneously features from both the row and
column directions. Let U and V be the column and the row
m the ORL database.
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projection matrices respectively acting on the left- and right-side
of a matrix whose dimensionality is to be reduced, i.e.,Yi ¼UTA‘

iV .
Correspondingly, the objective function in Eq. (5) can be rewritten
as:

min
X
i;j

‖Yi�Yj‖2W ‘
i;j ¼min

X
i;j

‖UTA‘
iV�UTA‘

jV‖
2W ‘

i;j ð11Þ

With some simple algebraic formulations, minimization pro-
blem in Eq. (11) can be rewritten as Eqs. (12) or (13)

max UT
X
i;j

ðW ‘
i;jA

‘
iVV

TA‘T
j ÞU ð12Þ

s.t. UTP
i;i
ðDi;iA

0
iVV

TA0T
i ÞU¼1

maxVT
X
i;j

W 0
i;jA

0T
i UU

TA0
jÞV ð13Þ

s.t. VTP
i;i
ðDi;iA

0T
i UU

TA0
iÞV¼1

In the bi-side 2D methods, since U and V are simultaneously
involved and the optimization criteria are not jointly convex w.r.t.
U and V but biconvex, i.e., fixing either leads theoptimization
criteria to be convex w.r.t. the other, thus we have to obtain them
by resorting to the alternating iteration optimization strategy [19].
Concretely, we first fix V to optimize the objective function Eq.
(12) to obtain U as done in the single-side method, and then fix
the last-step U to optimize the objective function Eq. (13) to obtain
V . Such an optimization process is alternatively repeated until the
convergence of the value of the objective. The pseudocode of
solving U and V for bi-side 2D methods is shown in Fig. 4.

Similarly, with different weight matrix W ‘ðWLDA or WLPPÞ, we
can obtain the bi-side 2D projection matrix U ðULDAorULPPÞ and V
Fig. 6. Sample images from the

Table 4
Comparison on ORL database using bi-side methods (mean7std-dev%) (the best
performance in each case has been bolded).

Bi-side method G4 G5 G6 G7

ISR-LDA 95.671.6 97.471.4 98.270.8 98.371.4
ISR-LDA-overlapping 96.471.1 98.071.2 98.770.9 98.871.1
S-LDA 95.871.3 97.271.3 97.771.2 98.171.5
ISR-LPP 95.571.5 97.471.3 98.270.9 98.371.4
ISR-LPP-overlapping 96.471.1 98.071.3 98.770.9 98.871.1
S-LPP 95.871.3 97.271.3 97.271.1 97.471.6

Table 3
Comparison on ORL database using single-side methods (mean7std-dev%) (the
best performance in each case has been bolded).

Single-side method G4 G5 G6 G7

ISR-LDA 93.971.7 96.771.3 97.671.0 97.671.5
ISR-LDA-overlapping 95.371.4 97.571.5 98.370.9 98.771.1
S-LDA 95.871.3 97.271.3 97.771.2 98.171.5
ISR-LPP 93.971.8 96.771.3 97.771.1 97.671.5
ISR-LPP-overlapping 95.471.4 97.571.5 98.370.9 98.671.2
S-LPP 95.871.3 97.271.3 97.2þ1.1 97.471.6
VLDA or VLPPð Þ for 2DLDA [18] or TSA [19]. At the same time, we can
extract features from A‘

i by using UTA0
iV .

3.4. Recognition

Let P1 and P1 be two given face images and their corresponding
extracted features with the vector representation are denoted by
Z1 ¼ ½z11; z21;…; zd1� and Z2 ¼ ½z12; z22;…; zd2�, respectively. Then the
similarity between them, d Z1; Z2ð Þ can be defined as

similarity Z1; Z2ð Þ ¼ 1�
Xd
k ¼ 1

zk1�zk2
2

����� ð14Þ

where ‖∙‖ denotes the Euclidean distance.
When a known face image P is given, we first convert it into a

new matrix P0 by reshaping described in Section 3.2, and then
extract features F using UTP‘ ðor UTP‘VÞ in terms of single-side (or
bi-side) method. Let Y1;Y2;…;YN be the features extracted from
all of training image. If similarity Yt ; Fð Þ ¼max similarity Yi; Fð Þð Þ for
all i¼ 1;2;…;N; and YtACo, a final decision is made as PACo.
4. Experiments and analysis

4.1. Experimental settings

In order to evaluate the recognition performance of our method
ISR, we carry out some experiments on four benchmark face
databases: the Yale database, the Olivetti Research Laboratory
(ORL) database, the Extended Yale B database and the CMU PIE
extended Yale B database.

Table 6
Comparison on Yale B database using bi-side methods (mean7std-dev%) (the best
performance in each case has been bolded).

Bi-side method G10 G20 G30 G40

ISR-LDA 88.271.2 93.970.6 95.870.6 96.570.6
ISR-LDA-Overlapping 90.671.2 94.670.5 96.170.6 97.070.6
S-LDA 88.271.3 92.971.0 94.570.6 95.270.8
ISR-LPP 88.071.3 93.870.6 95.870.6 96.570.6
ISR-LPP-Overlapping 89.271.2 94.470.5 96.270.7 96.870.7
S-LPP 87.871.3 92.870.5 94.570.6 94.970.9

Table 5
Comparison on Yale B database using single-side methods (mean7std-dev%) (the
best performance in each case has been bolded).

Single-side method G10 G20 G30 G40

ISR-LDA 86.771.3 93.370.6 95.770.6 96.470.4
ISR-LDA-overlapping 87.771.2 93.870.5 96.670.7 97.170.4
S-LDA 88.271.3 92.971.0 94.570.6 95.270.8
ISR-LPP 86.8þ1.3 93.570.7 95.670.6 96.470.4
ISR-LPP-overlapping 87.371.4 94.070.7 96.270.7 97.270.5
S-LPP 87.871.3 92.870.5 94.570.6 94.970.9



Fig. 7. Sample images from CMU PIE database.

Table 7
Comparison on CMU PIE database using single-side methods (mean7std-dev%)
(the best performance in each case has been bolded).

Single-side method G5 G10 G20 G30

ISR-LDA 70.7471.54 84.1870.79 91.6270.49 94.6670.41
ISR-LDA-Overlapping 75.6071.41 86.7570.82 92.7170.50 95.1270.37
S-LDA 66.2171.49 81.6170.81 90.8670.56 94.0070.34
ISR-LPP 70.7371.35 84.2170.85 91.5570.54 94.6470.42
ISR-LPP-Overlapping 75.1471.39 86.6370.77 92.6770.52 94.9470.36
S-LPP 63.0171.72 77.7970.81 87.8370.69 91.7070.40

Table 8
Comparison on CMU PIE database using bi-side methods (mean7std-dev%) (the
best performance in each case has been bolded).

Bi-side method G5 G10 G20 G30

ISR-LDA 74.3471.22 86.8070.76 92.9270.48 94.5770.37
ISR-LDA-overlapping 77.9271.16 89.3970.67 94.9170.44 96.1570.31
S-LDA 66.2171.49 81.6170.81 90.8670.56 94.0070.34
ISR-LPP 74.1471.34 86.6570.85 92.6270.58 94.6070.29
ISR-LPP-overlapping 77.3171.41 89.3370.69 94.8370.50 96.0570.32
S-LPP 63.0171.72 77.7970.81 87.8370.69 91.7070.40
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database. Considering the specific characteristics of these four
databases, the Yale database is employed to test the performance
of ISR under various facial expressions and slight lighting condi-
tions. The ORL is used to test the robustness of ISR to slight pose
variation. The Extended Yale B database is utilized to evaluate the
performance under severe variations of illumination. The CMU PIE
database is utilized to examine the performance under multiple
variations, i.e., slight lighting conditions, pose variation and
expression variation. All used images were provided by Cai
(available at: http://www.cad.zju.edu.cn/home/dengcai/Data/Face
Data.html) by manually cropping and resizing original images to
the size of 32�32, and we did not do any extra processing. In [14],
the authors compared SSSL with ordinary vector-based methods
and their 2D extensions, and their experimental results show that
SSSL significantly outperforms those compared subspace methods,
so in this paper, we only compare our ISR (ISR-LDA and ISR-LPP)
with SSSL (S-LDA and S-LPP) for each LDA and LPP families. In our
experiments, we use non-overlapping and overlapping ways to
partition an original image into some spatial windows. For non-
overlapping way, we uniformly set the size of spatial window to
3�3 and adopt nearest neighbor interpolation method to resize
face image to 33�33 in order to partition each face image into a
set of equally-sized spatial window. In experiments, we split each
database into two subsets: the training set and the test set, and
use Gl to denote that l images of each individual are used for
training and the remaining images for test. We run 20 times for
each method and report the average recognition accuracies and
standard deviations.

4.2. Experiments on the Yale face database

The Yale face database consists of 165 face images of 15 indi-
viduals, each providing 11 different images. The images are in
upright, frontal position under various facial expressions and
lighting conditions. Tables 1 and 2 list the average recognition
accuracies and standard deviations on Yale database using single-
side and bi-side 2D methods, respectively. From Table 1, we can
get the following observations: 1) in both overlapping and non-
overlapping ways, the ISR exhibits its efficacy and competitiveness
against explicit regularization method SSSL (S-LDA and S-LPP); 2)
the overlapping partition way for spatial window is more effective
in performance than the non-overlapping one, which can attribute
to the fact that the overlapping partition can connect the adjacent
spatial windows and combine the different information in each
spatial window, thus more structural information can be utilized;
3) although the single-side non-overlapping ISR is inferior to the
SSSL when the number of training set is small, with the increase of
the number of training samples, the recognition accuracies of ISR
is superior to the SSSL.

Similar conclusions can be drawn from Table 2. Using the bi-
side 2D methods, ISR in both overlapping and non-overlapping
ways is superior to SSSL in performance. By a further comparison
between the results in Tables 1 and 2, we can find that ISR based
on bi-side methods achieve higher recognition accuracies than ISR
based on single-side methods, which owns to the fact that bi-side
2D methods consider both the row and the column structural
information of face image simultaneously, while single-side
methods only consider the column-alone information.

4.3. Experiments on the ORL face database

The ORL database contains images from 40 subjects, with 10
different images for each subject. For some subjects, the images
were taken at different sessions. There are variations in facial
expressions (open or closed eyes, smiling or non-smiling), facial
details (glasses or no glasses) and scale (up to about 10%). More-
over, the images were taken with a tolerance for tilting and rota-
tion of the face of up to 20°. Fig. 5 shows all samples of one person
from the ORL database and the averaged results over 20 runs are
reported in Tables 3 and 4. The results show that: 1) compared
with SSSL, ISR is competitive in face recognition performance; and
more importantly 2) ISR is not sensitive to image slight variations
in pose angle and mis-alignment.

4.4. Experiments on the Extended Yale B face database

The Extended Yale B face database contains 21,888 single light
source images of 38 subjects captured under 576 viewing condi-
tions (9�64 illumination conditions). In this paper, we only use a
subset provided by Lee et al. [30], which only contains these images
with the frontal pose for each individual, including 2432 images
from 38 subjects and all of face images with the same subject have
minor differences beside of the lighting condition. Fig. 6 shows
some cropped images of one person from Extended Yale B database.

Tables 5 and 6 list the recognition performance for different
methods using single-side and bi-side 2D methods, respectively.
From these two tables, we not only draw the similar conclusions
with in Yale and ORL, that is, both ISR-LDA and ISR-LPP gain the
competitive recognition performance against S-LDA and S-LPP.
More importantly, our ISR is very robust to severe lighting varia-
tion. The main reason is that some of the local facial features of an
individual do not vary when the lighting direction (or pose) varies,
hence the features from the regions not affected by illumination (or
pose) will closely match with the features of the same individuals

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html


Fig. 8. The influence of the size of spatial window on performance of ISR-LDA: (a) Yale (b) ORL.

Table 9
The influence of size of spatial window on S-LDA for face image with size of
32�32 (%).

Size of window

Dataset 3�3 5�5 7�7

Yale 81.7 75.8 69.8
ORL 97.2 95.4 87.3
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face regions under normal conditions. In our method, each column
vector of reshaped matrix corresponds to a local region and local
features can be extracted from these column vectors by using the
2D methods, so better recognition accuracy with high robustness
can be achieved.
4.5. Experiments on CMU PIE database

The CMU PIE face database contains 41,368 images of 68 peo-
ple, each person under 13 different poses, 43 different illumination
conditions, and with 4 different expressions. In experiments, the
used database only contains five near frontal poses (C05, C07, C09,
C27, C29), so there are 170 images for each individual. Fig. 7 shows
some images of one person from the PIE database. We report the
average recognition performance and standard deviations of dif-
ferent methods using single-side and bi-side 2D methods in
Tables 7 and 8, respectively. From the two tables, we can observe
that both ISR-LDA and ISR-LPP significantly outperform S-LDA and
S-LPP, especially when the number of training samples per indi-
vidual is smaller. When using 5 training samples per class, the
maximum difference between SSSL and ISR is 8%, and the mini-
mum difference is 4.5%. We think this can attribute to character-
istics of CMU PIE database. As described above, CMU PIE database
consists of some images with multiple variations, i.e., slight
lighting conditions, pose variation and expression variation. When
number of training sample is very small, it is very difficult to learn
good regularization parameters for SSSL, so performance of SSSL is
very poor. In contrast, our method can directly extract local
information from the column vectors of the reshaped matrix, and
the local information is not affected too much, so it can achieve the
satisfying accuracies.
4.6. Parameter selection

The size of spatial window and the number of projection vec-
tors are two key parameters involved in our proposed method ISR.
In this subsection, we will take LDA as an example to study the
influence of the two parameters on the recognition performance of
ISR by using Yale and ORL databases with 5 training samples
per class.

We first study the influence of the size of spatial window on
ISR. In fact, the size of spatial window is an essential parameter in
ISR. Intuitively, the smaller is the size; the less spatial information
is obtained. One extreme case is that the size of spatial window is
1�1, i.e., only one-pixel size. On the contrary, the size should also
not be too big. The bigger is the size; the rougher is the spatial
window. Another extreme case is the size of spatial window is
equal to that of the whole image. So we need make a compromise
to select an appropriate size of spatial window. Along this line, we
conduct experiments on the original images with the size of
32�32 and resize the face images by adopting the nearest
neighbor interpolation method with the aim of partitioning the
face images into a set of equally-sized spatial windows in either
non-overlapping or overlapping way. The results with respect to
different spatial window sizes are demonstrated in Fig. 8. These
results verify our intuitional analysis, i.e., the size of spatial win-
dow should be neither too small nor too big. At the same time, we
observe that ISR achieves the best recognition accuracies when the
size of spatial window is selected as 3�3 (about 1/10 of the ori-
ginal image size) in both non-overlapping and overlapping ways.
Similar conclusion has been drawn that it is most helpful to
improve the recognition performance of sub-image methods when
block (or window) size is about 1/10 of the original size [31].

From the Fig. 8, we also observe that there are different change
trends against the size of spatial windows for Yale and ORL data-
bases. For Yale database (shown in Fig. 8(a)), the variation of
performance with respect to different window sizes is very big
(the maximum difference is up to 20%); while for ORL database
(shown in Fig. 8(b)), except for 2�2, the variation of performance
with respect to different window sizes is small (the maximum
difference is less than 5%). This difference of change trends can
attribute to the different characteristics of Yale and ORL databases.
As we know, the ORL database consists of some images with var-
iations of scale, pose, rotation and tilting; while the Yale database
only consists of some frontal face images with upright, frontal
position under various facial expressions and lighting conditions.



Fig. 9. Influence of the number of projection vectors on ISR-LDA: (a) single side for Yale; (b) single side for ORL; (c) non-overlapping and bi-side for Yale; (d) overlapping and
bi-side for Yale; (e) non-overlapping and bi-side for ORL; (f) overlapping and bi-side for ORL.
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In this situation, global features extracted from the whole image
may play more important role than local features extracted from
each spatial window for ORL database; while local features
extracted from the spatial window may be more important than
global features for Yale database. Since the column vectors and
row vectors of reshaped matrix descript the local features
(corresponding to the spatial window) and the global features,
respectively, and different spatial window size will cause a strong
change in the local information, while relatively small change in
the global information. As a result, the recognition performance is
relatively more stable on ORL database than on Yale database
when using different size of spatial window.



Table 10
Time comparisons for S-LDA and ISR-LDA (in seconds).

ISR-LDA (sin-
gle-side,
overlapping)

ISR-LDA (sin-
gle-side, non-
overlapping)

ISR-LDA (bi-
side,
overlapping)

ISR-LDA (bi-
side, non-
overlapping)

S-LDA

Time 15.07 5.80 118.79 26.17 38.74
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In addition, for ORL database, we also observe that ISR in non-
overlapping partition is much better than that in overlapping
partition way when size of spatial window is 2�2. The main
reason is that there exists much redundancy information between
row vectors when partitioning spatial window with size of 2�2 in
an overlapping way. For an image with size of 32�32, the size of
reshaped matrix in overlapping way is 4� (31*31), so there is
much redundancy information between row vectors of the
reshaped matrix. Since global information described by each row
vector is more important for ORL database and there exists much
redundancy information between row vectors, the recognition
accuracy is not satisfying. Note that, there also exists redundancy
in Yale database, but the local information extracted from the
column vector of reshaped matrix is more important than global
information for this database, and the column vector has no much
redundancy information, so ISR with overlapping partition
achieved good performance.

As mentioned in previous introduction section, for SSSL, the
authors just set the size of spatial (smooth) window to 3�3 and
do not further analyze the influence of size setting on classification
performance. In this work, we also simply examine the effect of
spatial windows with different sizes on SSSL based on LDA (S-
LDA).We conduct experiment on Yale and ORL databases with
5 training samples per class for the window sizes of 3�3, 5�5
and 7�7, respectively, and show their average recognition rates of
20 runs in Table 9. Interestingly, we witness likewise that S-LDA
also gain the best recognition accuracies when the size of spatial
window is set to about 1/10 of the size of original image.

Another parameter which needs to be tuned in ISR is the
number of projection vectors. Since we use both single-side and
bi-side 2D methods, in this section, we will discuss the impact of
the number of projection vectors on both single-and bi-side ISR-
LDA, respectively. We resize the image to 33�33 and set the size
of spatial window to 3�3, as a result, the size of reshaped matrix
is 9�121 and 9�256 when partitioning spatial window in non-
overlapping and overlapping ways, respectively. For the bi-side
method, we change the number of column projections from 1 to 9,
and the number of row projections from 10 to 120 (in non-
overlapping way) or 250 (in overlapping way) by interval 10;
while for the single-side method, only the number of column
projections is changed from 1 to 9. In our preliminary experi-
ments, we find that the recognition accuracy of S-LDA increases
monotonically with the number of projections, that is to say, S-LDA
can gain the best recognition accuracy when the number of pro-
jection vectors is C�1 (where C is the number of classes). So we
only show the best performance of S-LDA in order to emphasize
the superiority of ISR-LDA. Fig. 9 shows the influence of the
number of projection vectors on performance of ISR-LDA in both
ORL and Yale databases, where n in ISR-LDA (n) denotes the
number of column projections. From this figure, we can observe
that 1) ISR-LDA, on the whole, is competitive to S-LDA over a large
range of number of projection vectors especially the bi-side ISR-
LDA in overlapping way; 2) unlike S-LDA, the recognition perfor-
mance of ISR-LDA does not monotonically vary with the number of
projection vectors but first increases then decreases, which shows
that the number of projection dimensions should be neither too
small nor too big. For single-side ISR-LDA, when the number of
projections is between 20 and 40, and for bi-side ISR-LDA, when
the number of column projections is 1 or 2 and the number of row
projections is between 30 and 80, ISR-LDA can gain high recog-
nition performance.

4.7. Time complexity for ISR-LDA and S-LDA

Efficiency is one of important factors to evaluate whether an
algorithm is good or not. In this section, we will take LDA as an
example to simply analyze the time complexities of SSSL and ISR.
Let the size of face image be m� n, the number of training samples
be N and the size of spatial window be p� q, then the time com-
plexities of S-LDA and ISR-LDA are O m3n3

� �
and Oðp3q3Þ, respec-

tively. Since p and q are usually far less than m and n, respectively,
so ISR-LDA has less time complexity than S-LDA. Meanwhile, we list
in Table 10 the running time-consuming for S-LDA and ISR-LDAs
(single- and bi-side) on Yale database with 5 images for training per
individual. As can be seen from this table, the ISR-LDAs (but the bi-
side ISR-LDA in overlapping way) is much faster than S-LDA. All the
algorithms are implemented in Matlab7.0 and run on an Intel Core 2
2.0 GHz PC with 2 GB memory.
5. Conclusions

In this paper, a nominal yet simple implicit spatial regulariza-
tion (ISR) method was provided for face recognition via retaining
as much spatial information between image pixels as possible. As
opposed to existing explicit spatial regularization (ESR) for vector
representation, our proposed ISR is based on a second-order ten-
sor representation and retains spatial information through
reshaping face image rather than constraining the projection
vectors to be spatially smooth by introducing explicit regulariza-
tion term, so ISR does not need to select regularization parameters.
Compared with 2D methods and ESR, on the one hand, from the
viewpoint of 2D methods, ISR takes advantages of the spatial
information of the image, so more spatial information can be
gained. On the other hand, from the perspective of ESR, ISR can
avoid the awkward selection of regularization factor involved in
the optimization objective and reduce the computational cost by
inheriting from the 2D methods. As a result, ISR possesses the
advantages of both ESR and 2D methods. Comprehensive experi-
mental results demonstrated that the proposed ISR method is
considerably competitive in face recognition accuracy to the
explicit regularization method SSSL but with much lower
computational cost.
Acknowledgment

This work was supported by the Natural Science Foundation of
Jiangsu Province under Grant no. BK20130813, the National Nat-
ural Science Foundation of China under Grant nos. 61035003 and
61170151, the Fundamental Research Funds for the Central Uni-
versities under Grant no. NS2014100 and Jiangsu Qinglan project.
References

[1] K. Fukunage, Introduction to statistical pattern recognition. 2 ed., 1990.
[2] M. Turk, A. Pentand, Eigenfaces for recognition, J. Cogn. Neurosci. 3 (1) (1991)

71–86.
[3] A. Mashhoori, M. Zolghadri.Jahromi, Block-wise two-directional 2DPCA with

ensemble learning for face recognition, Neurocomputing 108 (2) (2013)
111–117.

[4] J. Gui, et al., Discriminant sparse neighborhood preserving embedding for face
recognition, Pattern Recognit. 48 (8) (2012) 2884–2893.

http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref2
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref3


Y. Zhu et al. / Neurocomputing 173 (2016) 1554–15641564
[5] X. Chen, et al., Spatially correlated nonnegative matrix factorization, Neuro-
Computing 139 (2) (2014) 15–21.

[6] Y. Pang, A.B.J. Teoh, F.S. Hiew, Locality regularization embedding for face
verification, Pattern Recognit. 48 (1) (2015) 86–102.

[7] X. He, P. Niyogi. Locality preseving projections, in: Advances in Neural Infor-
mation Processing Systems, 2003.

[8] D. Xu, et al., Marginal Fisher analysis and its variants for human gait recog-
nition and content- based image retrieval, IEEE Trans. Image Process. 16 (11)
(2007) 2811–2821.

[9] X. He, et al. Neighborhood preserving embedding, in: ICCV, 2005.
[10] H.T. Chen, H.W. Chang, T.L. Liu. Local discriminant embedding and its variants.

Computer Vision and Pattern Recognition, 2005.
[11] Y. Gao, et al., 3-D object retrieval with Hausdorff distance learning, IEEE Trans.

Ind. Electron. 61 (4) (2014) 2088–2098.
[12] Chen, K., J. Hennebert. Content-based image retrieval with LIRe and SURF on a

smartphone-based product image database, in: (editor) José Francisco Martí-
nez-Trinidad, Pattern Recognition, Springer, 2014, p. 231–240.

[13] Y. Gao, et al., 3-d object retrieval and recognition with hypergraph analysis,
IEEE Trans. Image Process. 21 (9) (2012) 4290–4303.

[14] D. Cai, et al. Learning a spatially smooth subspace for face recognition,
in: Computer Vision and Pattern Recogntion, 2007.

[15] J. Yang, et al., Two-dimensional PCA: a new approach to appearance-based
face representation and recognition, IEEE Trans. Pattern Anal. Mach. Intell. 26
(1) (2004) 131–137.

[16] J. Ye. Generalized low rank approximations of matrices, in: Proceedings of the
ICML Conference. 2004.

[17] M. Li, B.Z. Yuan, 2D LDA: a statistical lineardiscriminantanalysis for image
matrix, Pattern Recognit. Lett. 26 (5) (2005) 527–532.

[18] J. Ye, R. Janardan, Q. Li. Two-dimensional linear discriminant analysis, in: NIPS,
2004.

[19] X. He, D. Cai, P. Niyogi. Tensor subspace analysis, in: Advances in Neural
Information Processing Systems, 2005.

[20] W. Zhang, Z.C. Lin, X.O. Tang, Tensor linear Laplacian discrimination (TLLD) for
feature extraction, Pattern Recognit. 42 (2009) 1941–1948.

[21] D. Cai, X. He, J.W. Han, Subspace Learning Based on Tensor Analysis, University
of Illionois at Urbana Champaign Urbana (Report No: UIUCDCS-R-2005-2572),
2005.

[22] C.P. Hou, et al., Learning an orthogonal and smooth subspace for image clas-
sification, IEEE Signal Process. Lett. 16 (4) (2009) 303–306.

[23] W.M. Zuo, et al., Spatially smooth subspace face recognition using LOG and
DOG penalties, Adv. Neural Netw. 5553 (2009) 439–448.

[24] S.C. chen, et al., Feature extraction approaches based on matrix pattern:
MatPCA and MatFLDA, Pattern Recognit. Lett. 26 (2005) 1157–1167.

[25] S. Yan, et al. Element rearrangement for tensor-based subspace learning, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2007.

[26] H.T. Chen, T.L. Liu, C.S. Fuh. Learning effective image metrices from few pair-
wise examples, in: Proceedings of the Internation Conference on Computer
Vision, 2005.

[27] R. Kumar, et al., Trainable convolution filters and their application to face
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 34 (7) (2012) 1423–1436.

[28] R. Kumar, et al., Trainable convolution filters and their application to face
recognition, IEEE Trans. Pattern Anal. Mach. Intell. 34 (7) (2012) 1423–1436.

[29] D. Hu, G. Feng, Z. Zhou, Two-dimensional locality preserving projections
(2DLPP) with its application to palmprint recognition, Pattern Recognit. 40 (1)
(2007) 339–342.
[30] K. Lee, J. Ho, D.J. Kriegman, Acquiring linear subspaces for face recognition
under variable lighting, IEEE Trans. Pattern Anal. Mach. Intell. 27 (5) (2005)
1–15.

[31] Q. Hong, S.C. Chen, X.L. Ni, Sub-pattern canonical correlation analysis with
application in face recognition, Acta Autom. Sin. 34 (1) (2008) 21–30.
Yulian Zhu received her B.S and M.S degrees in com-
puter application from Nanjing University of Aero-
nautics & Astronautics (NUAA) in 2001 and 2004,
respectively. Then she worked in NUAA from April
2004. There she received a Ph.D. degree in computer
application in 2010. Her main research interests include
machine learning, pattern recognition, and image
processing.
Songcan Chen received the B.S. degree from Hangzhou
University (now merged into Zhejiang University), the
M.S. degree from Shanghai Jiaotong University and the
Ph.D. degree from Nanjing University of Aeronautics
and Astronautics (NUAA) in 1983, 1985, and 1997,
respectively. He joined in NUAA in 1986, and since
1998, he has been a full-time Professor with the
Department of Computer Science and Engineering. He
has authored/co-authored over 170 scientific peer-
reviewed papers and ever obtained Honorable Men-
tions of 2006, 2007 and 2010 Best Paper Awards of
Pattern Recognition Journal respectively. His current

research interests include pattern recognition, machine

learning, and neural computing.
Qing Tian received the B.S. degree in computer science
from Southwest University for Nationalities, China, and
the M.S. degree in computer science from Zhejiang
University of Technology, China, respectively with the
honors of Sichuan province-level excellent graduate
and Zhejiang province-level excellent graduate in 2008
and 2011. From Feb 2011 to Feb 2012, as a researcher in
the field of gender/age recognition, he worked in Arc-
soft, U.S. Now he is a Ph.D. candidate in computer sci-
ence at Nanjing University of Aeronautics and Astro-
nautics, and his current research interests include
machine learning and pattern recognition.

http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref4
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref5
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref5
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref5
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref6
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref7
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref7
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref7
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref8
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref8
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref8
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref9
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref9
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref9
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref9
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref10
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref10
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref10
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref11
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref11
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref11
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref12
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref12
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref12
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref13
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref13
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref13
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref14
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref14
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref14
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref15
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref15
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref15
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref16
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref16
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref16
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref17
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref17
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref17
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref18
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref18
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref18
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref18
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref19
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref19
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref19
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref19
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref20
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref20
http://refhub.elsevier.com/S0925-2312(15)01336-3/sbref20

	Spatial regularization in subspace learning for face recognition: implicit vs. explicit
	Introduction
	Brief review of SSSL and 2D-based feature extraction methods
	Spatially Smooth Subspace Learning (SSSL)
	2D-based feature extraction methods

	Implicit spatial regularization (ISR)
	Related works on reshaping and motivation
	Reshaping
	Feature extraction using single- and bi-side 2D methods
	Feature extraction using single-side 2D methods
	Feature extraction using bi-side 2D methods

	Recognition

	Experiments and analysis
	Experimental settings
	Experiments on the Yale face database
	Experiments on the ORL face database
	Experiments on the Extended Yale B face database
	Experiments on CMU PIE database
	Parameter selection
	Time complexity for ISR-LDA and S-LDA

	Conclusions
	Acknowledgment
	References




