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a b s t r a c t

Constrained local model (CLM) is a classic method for facial landmarks estimation. While the CLM en-
hances the well-known active shape model with discriminative local appearance models, its shape
model is based on the point distribution model, which is essentially principal component analysis over
the training facial shape vectors and hence the nonlinear manifold of facial shapes is not well embedded.
In this paper, we propose a novel manifold learning method, i.e., local subspace smoothness alignment
(LSSA), to address this issue. The LSSA approach smoothes the nonlinear structure directly in the original
feature space, with a newly defined geometric measure for the curvature of the local structures. We then
proceed to apply this method for face alignment, with an ensemble of correlated local subspaces derived
from LSSA. The proposed method is demonstrated on both toy data and real-world datasets that it yields
reasonable manifold embedding and leads to encouraging performance for face alignment even under
difficult conditions.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

In face recognition, the representation of face images is a very
important issue to be addressed. Although the gray-scale face
images can be directly used as input in some methods such as
non-negative matrix factorization [1], sparse representation clas-
sification [2], etc., they usually assume that these face images are
cropped or the facial features in different images with the same
semantics are well aligned. However, this is usually not the case in
practice. In fact, the problem of aligning facial feature points is so
difficult that it is a separate research topic in the field of face re-
cognition [3–8], called face alignment or facial landmarks esti-
mation. Nowadays the successful registration and tracking of non-
rigidly varying geometric landmarks on face has become a key
ingredient to an automatic facial analysis system [9–12].

The challenges of facial landmarks estimation mainly come
from the variety of appearance patches centered on the land-
marks, such as lighting, occlusion, expression and so on. Many
approaches for accurate non-rigid facial registration and face
tracking focus on building a synthesis model to reconstruct the
landmarks of a possibly unseen face image based on the facial
shapes and appearances of training images. One of the most
ience & Technology, Nanjing
10016, PR China.
famous models is the active shape model (ASM) [13], which de-
rives the positions of landmarks based on the statistical informa-
tion of landmarks distribution. In ASM, the point distribution
model (PDM) [13] is used to model the valid shape space of face
landmarks with a set of deformation parameters.

Constrained local model (CLM) [14] is another famous approach
for non-rigid face registration/tracking. CLM is a generalization of
ASM in the sense that the searching space of ASM for potential
facial landmarks is 1D, while the CLMs are based on the 2D re-
sponse map. 2D response maps are usually estimated by a dis-
criminative local appearance model and can better capture ap-
pearance information around facial landmarks, and this informa-
tion, if used wisely, should give better results.

Many CLM variations have been proposed recently. These
methods pursue the same goal as CLM but use more robust and
complex models based on the distribution of landmarks response.
Particularly, the searching strategy of the original CLM is based on
the hypothesis that the locations of facial landmarks obey a dis-
tribution of isotropic Gaussian, which is obviously not so realistic.
So many methods consider anisotropic Gaussian instead [15–17].
Although this anisotropic Gaussian approximation of the response
maps effectively overcomes some drawbacks of its isotropic
counterpart, sometimes their performance can be poor especially
when the facial appearance changes a lot. To address it, some
other models are investigated as well, such as Gaussian mixture
model (GMM) [18] and nonparametric model [19]. Additionally,
some works focus on improving the quality of response maps [20–
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23]. These methods have a common characteristic, that is dividing
and conquering, independently training a special local model
(detector, regressor, or part template) for each feature point. So
they are known as local methods.

Relatively, the methods which consider all the feature points as
a whole, rather than treat them as conditionally independent are
regarded as holistic method. Active appearance models (AAMs)
[24] is the representative method. It simultaneously models the
intrinsic variation in both appearance and shape as a linear com-
bination of basis models of variation. Among the holistic methods,
explicit shape regression (ESR) [25], supervised descent method
(SDM) [26], ensemble of regression trees (ERT) [27] and local
binary feature (LBF) [3] are four state-of-the-art methods. All of
them performed under the cascaded shape regression framework
using shape-indexed features. ESR directly learns a regression
function to infer the shape from a sparse subset of pixel intensities
indexed relative to current shape estimate, while ERT substitutes
the weak fern regressor in ESR with a 4 regression tree which
further improves the performance. SDM employs a cascaded linear
regression to estimate the shape based on hand-designed SIFT
feature, while LBF learns a set of highly discriminative local binary
features for each feature point independently, and then uses the
learned features jointly to learn a linear regression for the final
prediction, which is highly efficient and achieves very accurate
performance.

Despite these methods archived partial successes in face
alignment, the limitation of CLMs still remains. Particularly, most
CLM based models use the PDM to model the shape space. The
PDM is essentially a linear approximation to the shape of a non-
rigid object deformations with a global rigid transformation.
Compared with the complexity of the design on the response
distribution, the PDM model is too rough – actually, due to the
highly nonlinear and non-convex of the facial shape space, linear
analysis used by PDM is far from adequate.

In this paper, we propose a novel manifold learning method,
i.e., local subspace smoothness alignment (LSSA), to address this
issue. The LSSA approach smoothes the nonlinear structure di-
rectly in the original feature space, with a newly defined geo-
metric measure for the curvature of the local structures. After
performing the LSSA transformation, we use the adjacent shapes
for CLM fitting in ensemble of correlated local subspaces.

This paper is organized as follows: the background on PDM and
manifold learning are described in Section 2. The motivation and
details of local subspace smoothness alignment are described in
Section 3. CLM fitting with an ensemble of local subspaces learnt
from LSSA is given in Section 4. Comparison experiments on the
works of manifold learning and extensive experiments on de-
monstrating the importance of the prior on manifold in CLM fit-
ting are shown in Section 5; we conclude this paper in Section 6 at
last.
2. Background

2.1. The point distribution model

Both ASM and CLM use the point distribution model (PDM) to
model the shape space. Specifically, based on the principal com-
ponent analysis method (PCA), the PDM reconstructs the facial
shape of an unseen face image linearly:

Φ= ( ¯ + ) + ( )sx R x q t, 1

where R, s and t control the rigid rotation, scale and translations
respectively while q controls the non-rigid variations of the shape
and Φ denotes the submatrix of the basis of variations. Then all the
parameters of the shape model can be denoted as = { }sp R t q, , , ,
where the rigid transformation parameter q is often assumed to
exhibit a Gaussian distribution while the non-rigid transformation
parameters s, R and t that place the model in the image are all
assumed uniform distributions. The goal of this PCA-based CLM is
to reconstruct the face shape x from the parameters p.

This PDM is convenient but oversimplifies the distribution of
facial shapes. To visualize the distribution of facial shapes, we
apply the ISOMAP [28] method on a set of facial shapes from the
PUT dataset. The PUT database contains 9971 images from 100
subjects, and each image is annotated with a 194-point markup as
ground truth landmarks. Here we choose 63 landmarks in each
image and 1200 random facial shapes. Fig. 1 gives the learnt
manifold, where each point denotes one facial shape, and the
corresponding facial shapes of the red ones are illustrated along
the coordinate axes. It can be seen that along the X-axis the facial
orientation changes from left to right, while along the positive
direction of the Y-axis, the facial shapes become “thinner”.

2.2. Manifold learning

The objective of manifold learning is to model the true geo-
metric distribution of data. Although these algorithms could all be
categorized into graph embedding framework [29], they are rarely
regarded as a whole due to their different motivations and effi-
ciency. According to the directions on the research of manifold
learning, they are mainly of two kinds. The first one can be called
the “direct” approach, i.e., distance preservation. These approaches
focus on learning a low-dimensional space and keeping the simi-
larity relation between data. Typical methods include MDS (mul-
tidimensional scaling [30]) and ISOMAP (isometric mapping [28]).
The second one is an “indirect” approach, i.e., linear locality pre-
servation or patch alignment [31]. Based on the hypothesis that
the local structure of data is linear, these approaches try to pre-
serve the locality. Typical methods along this line include LLE
(locally linear embedding [32]), LPP (Locality preserving projections
[33]), LTSA (local tangent space alignment [34]), and so on.

Compared with the distance-preserving methods, linear-lo-
cality preservation is more simple and effective in practice. One of
the most popular algorithms is the LPP [33]. It is considerably fast
and has an explicit projection function, which, however, is a global
linear projection and hence is too rigid to handle the non-linearity
of data. By contrast, the LTSA [34] constructs the local coordinates
from each local patch and learns a set of linear projections for
them. After that, an alignment operation is used to combine the
local coordinates into a global one.

However, there are still many difficulties when applying these
manifold methods in the real-world applications. Besides the
challenges concerning the generalization, such as dealing with
sparse, non-uniform data or incorporating discriminant informa-
tion into the model [35–39], finding the number of inherent di-
mensionality is another important problem that needs to be ad-
dressed, which is unfortunately still open to now. Although some
ad hoc methods can be used sometimes, if the dimensionality of
data is considerably high, it is quite time-consuming to estimate
the dimensionality of manifold. Meanwhile, it is inevitable to loss
some useful information during dimension reduction.
3. Local subspace smoothness alignment (LSSA)

In this section, we describe our local subspace smoothness
alignment method, which overcomes some limitations of the tra-
ditional manifold learning methods.



Fig. 1. Visualization of the distribution of facial shapes in 2D space. (For interpretation of the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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3.1. The motivation

The method is inspired by the local tangent space alignment
(LTSA) [34], but the key idea is to directly “unfold” the non-linear
data structure in the original feature space. For this purpose, we
first propose a method to measure the geometric structure of data
Fig. 2. Conceptual illustration of the local subspace smoothness alignment in 2D space
referred to the web version of this paper.)
based on the following observations. That is, for each local sub-
space or the neighborhood, when the sum of the differences be-
tween the midpoint and other points in the same neighborhood is
small, the curvature of the local structure is relatively smooth.
Otherwise the curvature of the local structure is large.

Fig. 2 demonstrates the idea in two-dimensional space, where
. (For interpretation of the references to color in this figure caption, the reader is



Fig. 3. Illustration of local subspace smoothness alignment on an artificial dataset.

1 Due to the correlation between Ti and T , this is equal to fix Ti.
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the black point xi denotes the midpoint of interest, and the red
points denote its neighbors inside some neighborhood ( )xN i

which is marked by the dashed circle. Assume that the real local
geometric structure of the data is represented by the red curve,
and black arrows respectively denote the difference vectors be-
tween the midpoint and all the remaining points in the neigh-
borhood, while the net vector (i.e., the sum of these difference
vectors) is denoted by the blue dash arrow. One can see that, the
norm of the net vector in the left figure is much larger than that in
the right figure, indicating that the curvature of the former figure
is higher than that of the latter one.

3.2. The method

Based on the above observations, to smooth the local struc-
tures, one just needs to constrain the norm of the net vector of
each neighborhood. Hence the model of local structure smooth-
ness is formulated as follows:

∑ ∑ ∑τ τ τ∥ − ∥ + ( − )
( )τ

( )
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟L xmin

2L
i j

ij c
i

ij
j

ij i
,

2 2

ij c

In the above objective, we use i to denote the index of the local
structure, and j denotes the index of the point in the local struc-
ture. Now xi is the midpoint of the structure in the feature space,
while xij is one of the point in the neighborhood of xi. We assume
that ∈ ( )x xNij i , but ≠x xij i. In addition, we use τij and τi to denote
the transformed points corresponding to xij and xi respectively
and ( )Lc

i is the local affine transformation of the local structure. Our
goal is to learn the transformation matrix ( )Lc

i and the locations τ{ }ij

of the transformed points from the data.
Note that the first term of Eq. (2) represents the relationship

between the original local structure and transformed one. That is,
the smoothed points are derived by local affine transformation
from the original points. The second term is the smoothness
constraint. For the efficiency of optimization, we first get the upper
bound of the smoothness term:
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where τ = ( )L xi c
i

i, Ti is the transformed data matrix of the local
structure with each column a datum, ek is an unit column vector
with the length k, and k is the number of points in the neighbor-
hood. Now let Xi denote the data matrix of the local structure in
the original feature space, the objective equation (2) is rewritten
as follows:

∑ (∥ − ∥ + ∥ − ( )∥ )
( )

( ) ( )
( )

T L X T L x emin
4T L i

i c
i

i F i c
i
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As the second part of the model, to align the smoothed local
structures, we have:

∑ ∥ − ∥

= ( )

TS T

TT I

min

s. t. 5

T i
i i F

T

2

where T is the transformed coordinates of the global data and Si is
the data index matrix of the ith local structure in T .

Now combining Eqs. (4) and (5), we obtain the final model of
local subspace smoothness alignment (LSSA):

∑ (∥ − ∥ + ∥ − ( )∥ )

= ( )

( ) ( )TS L X TS L x e

TT I

min

s. t. 6

T L i
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Fig. 3 gives an intuitive illustration of the local subspace
smoothness alignment on a toyed dataset constructed by sine
function.

Before ending this section, we briefly note the difference be-
tween LTSA [34] and our LSSA method. Particularly, the LTSA
method derives the local coordinates of data transformation based
on the assumption of local linearity, i.e., the linear correlation
between data in the local structures:

∑ ∑ τ τ∥ − − ( − )∥
( )τ τ

( )
( )

L x xmin
7L i j

ij i c
i

ij i
, ,

2

i ij c
i

where the local coordinates (i.e., −x xij i) are learnt by PCA on the
local structures. By comparing this with Eq. (4), we see that in our
LSSA method, no assumption on the local linearity is made and a
new geometric structure constraint is imposed on the model.

3.3. An efficient solution

To learn the model, we adopt an alternative optimization
method, which is very efficient with closed-form solution at each
step. Firstly, by fixing T , 1 the objective can be decoupled, and



Fig. 4. Flowchart of the proposed method. See text for details.
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according to Eq. (4), we have:

∥ − ∥ + ∥ − ( )∥
( )

( ) ( )
( )
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8L

i c
i
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Setting the differential of the above objective function on ( )Lc
i to be

0 gives us the solution:

= ( + ¯ ) ( + ¯ ¯ ) ( )( ) +L T X X X X X X 9c
i

i i i
T

i i
T

i i
T

where X̄i is the matrix of the midpoints, i.e., ×x ei k
T .

Next, plugging the solution of ( )Lc
i into the objective function of

Eq. (6), we have

∑ (∥ − ∥ + ∥ − ∥ )
( )

TS T A TS T B
10i

i i i F i i i F
2 2

where = ( + ¯ ) ( + ¯ ¯ ) ·+A X X X X X X Xi i i
T

i i
T

i i
T

i, = ( + ¯ ) ( + ¯ ¯ ) · ¯+B X X X X X X Xi i i
T

i i
T

i i
T

i.
Since =T T Si i, Eq. (10) can be rewritten as
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Now, denoting = ∑ ( (( − )( − ) + ( − )( − ) ) )C S I A I A I B I B Si i i i
T

i i
T

i
T ,

we finally reach the following objective for T by reformulating Eq.
(6) as

( )

= ( )

T T

TT I

Cmin trace

s. t. 12
T

T

T

Using the Rayleigh quotient [40], T could be easily derived by
calculating the eigenvectors of C .

3.4. Out-of-sample embedding

Due to the explicit projection functions of LSSA, it is relatively
easy to embed a new sample into the manifold space. Specifically,
Fig. 5. Visualization of the manifolds learnt using various methods, including ISOMAP, L
data and the corresponding ground truth; (b) shows the manifolds learnt in the inherent
data used are respectively Swiss roll, punctured sphere, twin peaks and toroidal helix (
since each point is the midpoint of a local subspace in the original
feature space and each local subspace is corresponding to a local
affine transformation Lc, we just need to first find the nearest point
xk for the query data x0 in the original feature space:

= ∥ − ∥ = …
( )

x x x iargmin , 1, 2,
13x

k i0
i

where { = …}x i, 1, 2,i are data points in the original feature space.
Then we simply embed x0 using the corresponding local affine
transformation ( )Lc

k of xk:

τ = × ( )( )L x 14c
k

0 0

where � denotes the projection operation. The output τ0 is the
coordinate of the query sample in manifold space.
4. Face alignment with an ensemble of local subspaces

In this section, we show how to apply the proposed method for
face alignment, which effectively improves the robustness of CLM
fitting compared to the traditional PDM model. Let us denote x0

the shape of points formed by concatenating the locations of facial
key points estimated with discriminative detectors, then one of
the most important components in a face alignment system is to
verify whether this newly estimated shape of x0 is a valid “face”
shape, and further to recommend a better one based on it using
the face shape model learnt before.

In the traditional point distribution model (PDM), this is done
with a bunch of global eigen-shapes learnt from PCA, suffering
from the oversimplified hypothesis of linear shape space. Later, Yu
et al. [41] proposed a new method named local coordinate coding
(LCC), which reconstructs the shape of interest using samples from
its neighborhood. Unfortunately, due to the noises in the initially
LE, HLLE, LTSA and ours (LSSA), one for each column, where (a) shows the original
dimensionality; and (c) shows the manifolds learnt in the original space, while the
by row, from top to bottom).
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Table 1
Comparison of the running time of various manifold learning methods.

Structure Methods

ISOMAP (s) HLLE (s) LLE (s) LSSA (s)

Swiss roll 13.95 1.17 0.18 0.39
Punctured sphere 13.84 1.01 0.17 0.31
Twin peaks 14.58 0.98 0.20 0.26
Toroidal helix 14.70 1.03 0.15 0.31
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estimated query facial shape, the single supporting local subspace
used by LCC tends to be unreliable.

To address this issue, we propose to extend Yu et al.'s LCC
method by simultaneously finding an ensemble of correlated local
subspaces in the manifold space for the query, and then removing
the redundancy of deformations using the method of sparse re-
presentation. However, directly identifying these correlated local
manifolds in the original feature space suffers from the influence
of noise. Instead, a three-step strategy is adopted here, as illu-
strated in Fig. 4 – first, we project the query shape x0 into the local
manifold indexed by its nearest neighbor in the original space
(Fig. 4a and b). Next, we find K nearest neighbors τ τ{ … }, , K1 in that
local subspace (Fig. 4b). These neighbors serve as the robust in-
dexes of K most correlated local subspaces { … }M M, , K1 of x0

(Fig. 4b and c). Finally, we construct the deformation basis matrix
Ψ using samples in these local subspaces (Fig. 4c).

With these, we can reconstruct a new face shape x for the
query shape x0 using the method of sparse representation:

λ

Ψ

∥ ∥ + ∥ − ∥

= ( ¯ + ) + ( )

q x x

x R x qs t

min

s. t. 15

R q ts, , ,
1 0

2

where x̄ is the mean shape of training facial shapes, Ψ is the
deformation matrix obtained, λ is the regularization parameter on
the sparseness.

The above procedure of local subspace smoothness alignment
based CLM fitting is summarized in Algorithm 1.
Fig. 6. Example image of the LFPW database (a) and the LFW database (b). The origina
images in the LFPW database have higher quality than those in the LFW database.
Algorithm 1. LSSA for CLM fitting.
l imag
ut:

The facial shapes X of training face images. The query fa-
cial shape x0 of the unseen face image.

ps:
e

1. Learning the manifold space of shape vectors and pro-
jection functions Lc via Eq. (6), and embedding training
shapes X into the manifold, denoted as T .

2. Projecting the query shape x0 into the manifold space
(cf. Eqs. (14) and (13)). Denote the resulting image as τ0

and find its K adjacent points τ τ{ … }, , K1 among T on that
manifold.

3. Find the pre-images of τ τ{ … }, , K1 in original feature

space. Denote them as { … }x x, , K1
0 0 , each of which indexes a

local subspace Mk in original feature space. Construct the
deformation basis matrix Ψ using samples in these local
subspaces.

4. Solving Eq. (15) to get the optimal values of parameters
and using these to estimate a new facial shape x for x0.
Output x as the recommended face shape.
5. Experiments

In this section, we present our experiments on two tasks. The
first one is on manifold learning, in which we compare the pro-
posed method with several classic manifold learning methods.
Then we applied our method on the task of face alignment, and
verified its performance on two challenging face databases, i.e.,
LFPW database [21] and LFW database [42].

5.1. Experiments on manifold learning

In order to verify the performance of the proposed LSSA
method, we first compare our method with several representative
manifold learning methods using simulated data. Specifically,
three kinds of simulated data are used here: (1) the geometry
structure data—Swiss roll [43] and twin peaks, (2) the sparse and
s are in color but are shown in gray here for better visualization. Note that



Fig. 7. Examples of perturbed ground truth of test images of the LFPW database. (For interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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non-uniform sampled data—punctured sphere, (3) the noised and
non-uniform sampled data—toroidal helix. The methods for
comparison include: (1) the distance-preserved methods– ISOMAP
[28], (2) smoothness on the second-order difference of projection–
HLLE [44], (3) the local-linearity-preserved methods—LLE [32] and
LTSA [34]. For experiments, we randomly generate 800 points
Fig. 9. Illustration of the located fiducial points using different method, where the fi
from each type of data and the number of nearest neighbors in
each local structure is set to be 8.

Fig. 5b gives the results. It shows that most of the compared
methods manage to reveal reasonable geometric characteristics of
the original data, provided that the inherent dimensionality of the
data is given. However, for some data (e.g., the twin peaks, cf. the
third row of Fig. 5) it is still difficult to embed them without local/
global distortions. In addition, the information about the inherent
dimensionality is seldom known to us in the real world, and few
research investigates this problem.

Hence, in the second series of experiments, we repeated the
above experiments but doing these in the original feature space, to
see how these algorithms behave when the information about the
inherent dimensionality is blind to us. One of the advantage of
doing manifold embedding directly in the original feature space is
that it effectively bypasses the difficulty of tuning the hyper-
parameters and the inevitable risks of information loss during
dimension reduction.

Fig. 5c gives the results. One can see that the performance of
these methods drops to various extends. Particularly, the embed-
ding data of the HLLE method is completely scattered, indicating
that this method actually fails in finding any interesting structures
from the data. The LLE method is better than HLLE, but it seems to
shear the data too much. The ISOMAP method works well on the
toroidal helix data, but not so good on the Swiss roll and punc-
tured sphere. For the LTSA method, the structures of all the data
are almost the same as those in the original data. This could partly
rst row is from the PDM method and the second row is from proposed method.
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Fig. 10. Performance improvement over the standard constrained local model
(CLM) [14] on the LFPW dataset (a) and the LFW dataset (b) by our method, where
red means improvement by more than 15.0%, blue between 0.0% and 15.0%, and
yellow means lower accuracy. (For interpretation of the references to color in this
figure caption, the reader is referred to the web version of this paper.)
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be explained by the fact that it mainly learns rotation as its major
transformation when working on the original feature space.

The figure reveals that overall our method works the best
among the compared ones, especially on the data of punctured
sphere and toroidal helix. Although the manifolds of the Swiss roll
data are compressed by our method (since it is not designed to be
distance-preserved), the contour of the manifold is successfully
found out. But for the data with the structure of two peaks, the
manifold cannot be derived well by our method and other com-
pared methods as well.

Another attractive aspect of the proposed LSSA method lies in
its efficiency, in the sense that we do not need to calculate the
geodesic distance or Hessian matrix during learning. Table 1 lists
the running time of different methods on a laptop computer with
a 2.83 GHz GPU and 8.0 GB RAM. One can see that local smoothing
methods like LLE and ours are much more efficient than the global
methods such as ISOMAP and HLLE. Although our method is not as
fast as the LLE method, our method yields better manifold than the
LLE method, as shown in Fig. 5.
5.2. Experiments on facial landmarks localization

In this section, we present our experimental results on the task
of face alignment (or facial landmarks localization). We first pre-
sent our results on two popular datasets for this task and compare
them with those of the state of the art methods under the CLM
framework. Next we focus on investigating the usefulness of the
LSSA-based CLM fitting by separating it from the effects of com-
ponents for facial feature detection. Finally, we give some discus-
sions about our method for constructing an ensemble of correlated
local subspaces described in Section 4.

5.2.1. Data and settings
Two popular databases for face alignment, i.e., LFPW database

(labeled face parts in the wild [21]) and LFW database (labeled face
in the wild [42]) are adopted in our experiments. The images of
the LFPW database [21] are collected from internet and contain
large variations in pose, illumination, expression, occlusion and so
on. Each image contains 29 fiducial points. Due to the null URLs of
some images, 833 of the 1100 training images and 232 of the 300
test images are used in our experiments. The original LFW data-
base [45] contains 13 233 low-resolution face images of 5749
subjects collected from web. It is originally used for face recogni-
tion and verification. In order to make it is available for face
alignment, 10 fiducial points are labeled for each face images by
Dantone et al. [42]. We add two more landmarks on the centers of
eyes for each images in our experiments to calculate the inter-
ocular distance. Example images with fiducial points of the above
two datasets are respectively demonstrated in Fig. 6.

Local detector is an important component of CLMs. In our ex-
periments, we use the popular strategy of “SIFT þ SVM” to train
local detectors. Additionally, we augmented the training images by
left–right flip and random rotations so that we have about 6000
training images for each database. Unless otherwise noted, we use
the RANSAC method [21] for initialization. The spareness para-
meters λ (cf. Eq. (15)) are set to be 0.01 and 0.005 respectively on
the two datasets. The neighbor number in each local structure is 8,
and the number of adjacent local structures are set to be 50 for the
LFPW dataset and 100 for the LFW dataset respectively.

In most of the following experiments, we use the normalized
root-mean-squared error (NRMSE) relative to the ground truth as
the error measurement. The NRMSE is computed by dividing the
root mean squared error by the distance between the two eye
centers.

5.2.2. Contribution of the LSSA manifold learning
In this first series of experiments, we focus on verifying the

effectiveness of the proposed LSSA manifold learning. Since the
task of face alignment is complex and consists of several steps, we
separate the component of CLM fitting from other components
(e.g., facial feature detection) of the whole system by simulating
the response maps and using them for LSSA learning. Specifically,
we perturb the ground truth facial shapes of test images by adding
Gaussian noise with mean 0 and standard deviation 10, and use
these to simulate the response of the local facial feature detection.
Finally, we respectively apply two fitting methods, i.e., the tradi-
tional PCA-based PDM method and the proposed LSSA method,
over these simulated responses to reconstruct the corresponding
improved facial shapes.

Fig. 7 demonstrates some perturbed facial shapes, where the
red stars are the ground truth and the green triangles are the
perturbed facial landmarks. It can be observed that some of the
perturbed locations of facial points are quite far from the ground
truth. This significantly increases the difficulty of CLM fitting.

To measure the performance intuitively, instead of normalized
root-mean-squared error (NRMSE), in this series of experiments



Fig. 11. Illustration of the aligned face images from the LFPW database (a) and the LFW database (b) respectively. In each figure images in the first row are from the PDM
method while those for the second row from the proposed method. Some of the most improved landmarks using our method compared to the PDM are marked with red
dots. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 2
Comparative performances measured by normalized root mean square error
(NRMSE) (%) on LFPW.

Algorithm NRMSE

Consensus of Examplars (CoE) [21] (our implementation) 4.30
Discriminative response map fitting (DRMF) [20] 4.68
Optimized part mixtures (OPM) [46] 6.65
Exemplar-based Graph Matching (EGM) [47] 3.98

CLM baseline with RANSAC initialization 4.96
LTSA based CLM fitting 4.83
LSSA based CLM fitting (proposed) 4.14

Table 3
Comparative performance measured by normalized root mean square error
(NRMSE) (%) on LFW.

Algorithm NRMSE

Consensus of Examplars (CoE) [21] (our implementation) 5.95
Discriminative response map fitting (DRMF) [20] 6.23
Optimized part mixtures (OPM) [46] 7.27

CLM baseline with RANSAC initialization 6.1
LTSA based CLM fitting 5.57
LSSA based CLM fitting (proposed) 5.31

Table 4
Comparison of different neighborhood finding strategies for CLM fitting. Perfor-
mance measured with NRMSE.

Strategy Dataset

LFPW LFW

Estimation via SR in manifold space 5.21 6.58
Estimation via SR in original space 4.53 5.47
The proposed method 4.14 5.31
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we use the mean pixel error of each landmark between the esti-
mated shapes and ground truth, defined as ( ) = ∑ ∥ − ∥x oerr i

N j j
i

j
i1

2,

where xj
i is the estimated 2D coordinate of j-th landmark in the i-

th face images, oj
i is the corresponding coordinate of ground truth,

and N is the number of test images. The sparseness parameter λ in
Eq. (15) is set to be 0.01, and the number of neighbors in local
structures is 8, the number of adjacent local structures is 20.

Fig. 8 gives the results. It shows that compared with the



2 Unfortunately the results of the EGM [47] method on the LFW dataset are not
available in their paper.
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original PDM model, our method yields better fitting accuracy
consistently over all of the 29 fiducial points defined in the LFPW
dataset. Particularly, the mean error of ours is 3.7 pixels, compared
to 5.2 pixels of the PDM model. This clearly demonstrates that our
method behaves more robustly against large feature detection
errors. Fig. 9 illustrates 29 located fiducial points with white dots
by the two methods in some face images. It shows that although
not all fiducial points are aligned well using our method due to the
large perturbations, it works much better than the PDM method.

5.2.3. Comparison with the baseline algorithm
First we compare our algorithm with the baseline algorithm, i.e.,

the standard constrained local model (CLM) [14]. Both algorithms
share the same face alignment pipeline and the same sets of local
feature detectors, and the difference is that the CLM's face shape
vector updating component is based on PCA while ours is based on
LSSA as described in Section 4.

Fig. 10 gives the results. The figure shows that our method
significantly outperforms the baseline algorithm. Particularly, by
replacing the linear subspace of CLM with the local manifolds
learnt with LSSA, our algorithm improves the CLM by 15.0% over
44.8% of the 29 fiducial points on the LFPW dataset. By checking
the distribution of the locations of these mostly improved fiducial
points, we find that among others eyebrows (index 2,3,5–8),
medial angle of eyelid (11,12), wing of nose (19,20) and lips (25–
27) benefit most. Since the appearance of these facial points is
easy to be varying, the geometrical support from nonlocal parts
become more crucial, which partly explains why our algorithm is
effective in dealing with these facial regions. While for the re-
maining fiducial points, it seems that the performance of local
facial detectors plays more important role than the shape con-
straints during face alignment, and our method improves by a
small margin on them.

Fig. 11 gives some illustration of the aligned face images from
both datasets, where the landmarks of the images in the first row
are predicted by the PCA-based traditional CLM method and the
ones in the second row are from our algorithms. It shows that our
method performs more reliable than the CLM method especially
on those facial points with large appearance or geometric varia-
tions, such as middle of lips, canthus, chin and eyebrows for LFPW
additionally.

5.2.4. Comparison with the state of the art CLM variants
Next we compare our method with several state of the art al-

gorithms. Most of these algorithms can be understood as variants
of the traditional CLM methods with different enhancement. For
example, the optimized part mixtures (OPM) [46] focuses on
modeling the distribution of facial parts instead of that of the
global shape vectors, discriminative response map fitting (DRMF)
[20] improves the CLM by discriminatively learning from response
maps, and both Consensus of Examplars (CoE) [21] and its variant
—Exemplar-based Graph Matching (EGM) [47] can be thought of
as nonparametric CLM models. In addition, we also compare our
method with another manifold-based CLM fitting method by re-
placing the PCA component with the LTSA. The dimensionality of
LTSA is tuned to be optimal over the validation set and the whole
training procedure and other experimental settings are kept the
same as those in our method.

Tables 2 and 3 respectively give the comparative results on the
LFPW dataset and the LFW dataset. These tables reveal that, al-
though among these CLM variants our method is possibly the most
simplest one by simply replacing the PCA with the proposed LSSA
manifold learning, we achieve comparable or preferable perfor-
mance with the state of the art variants of CLM methods. Parti-
cularly, on the LFPW dataset, our method performs better than
most of the compared ones except the EGM [47], while on the LFW
dataset, our method performs the best,2 with improvement by
0.64% over the CoE method in terms of the NRMSE value. The ta-
bles also show that our method works consistently better than the
LTSA method on both datasets.

5.3. Discussions

In Section 4, we mention that to find an ensemble of correlated
local subspaces in the manifold space for a query shape, we pro-
pose a three-step strategy. Here we empirically compare this with
another two optional strategies to find the neighborhood in the
algorithm of CLM fitting:

� Estimate neighborhood facial shapes in the manifold for the
query using sparse reconstruction (SR) and then project back
the reconstructed point into original space.

� Directly find the neighborhood in the original feature space
using sparse reconstruction (SR).

Table 4 gives the comparative performance using various strategies
on the LFPW dataset and the LFW dataset. It can be seen that the
proposed three-step strategy performs the best on both datasets. Note
that theoretically the second alternative strategy is very similar to ours
but the chosen data for reconstruction are not local enough, while for
the first strategy, since the manifold embedding (LSSA here) is not
distance-preserved, the scaling variety could damage the robustness.
This partly explains why we should reconstruct shape vector in the
original feature space. Actually, our method chooses the neighborhood
for the query in the manifold but do the reconstruction in the original
space, which effectively combines the best of both worlds.
6. Conclusion

In this paper, we present a novel manifold based constrained
local model fitting named local subspace smoothness alignment
(LSSA). The LSSA method learns the manifold in the original di-
mensionality with a new geometric measurement for the curva-
ture of local structures. Based on the learnt manifold, we introduce
an improved face alignment method under the framework of
constrained local model (CLM). It performs robust CLM fitting in
the original feature space but using adjacent deformations of the
query found in the manifold space, hence effectively combining
the best of both worlds. We demonstrate the effectiveness of the
proposed method on two challenging face alignment datasets with
encouraging results.
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