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Abstract

In machine learning and computer vision fields, a wide range of applications, such as human age estimation and head
pose recognition, are related to ordinal data in which there exists an order relationship. To perform such ordinal
estimations in a desired metric space, in this work we first propose a novel ordinal margin metric learning (ORMML)
method by separating the data classes with a sequence of margins, which makes the classes distribute orderly in the
learned metric space. Then, to cope with more realistic scenarios where the data are sampled with each class across
multiple distributions, we present a cross-distribution variant of ORMML, coined as CD-ORMML, by maximizing the
correlation between distributions within each class when conducting metric learning. Finally, extensive experiments
on synthetic and publicly available image datasets demonstrate the superiority of the proposed methods in performance
to the state-of-the-art methods.
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1. Introduction

In machine learning and computer vision fields, most of the popular methods, such as the Support Vector Ma-
chines [[11]], decision tree [33]], k-nearest-neighbor classifier [3], logistic regression [13]] and k-means clustering [4],
are performed in the traditional Euclidean space. Although many of them can work well and usually yield compet-
itive results, their learning procedures essentially rely on the distance metric, especially for the k-nearest-neighbor
classifier and k-means clustering. In real world applications, the dimensionality of data is usually high with diverse
and complex distributions, which might deteriorate the estimation performance if using the Euclidean metric, since
the high-dimensional spatial relationship of the data in the Euclidean distance space cannot be properly depicted and
tends to be distorted [46].

To handle the aforementioned drawbacks of the Euclidean metric, researchers have developed a variety of metric
learning methods. In early 2002, Xing et al. [46] proposed a pioneering metric learning method called MMC by
enlarging the dissimilar pairwise distances, and meanwhile compacting the similar ones. Schultz et al. [36] presented
a triplet-based metric learning method, in which the metric matrix is decomposed as the product of a predefined ma-
trix and a diagonal metric matrix to make the optimization tractable. Goldberger et al. [§]] proposed Neighborhood
Component Analysis (NCA) to learn a similarity metric by maximizing the overall stochastic nearest neighbor prob-
abilities. However, the objective function of NCA is nonconvex, and thus easily results in local optima. To improve
the performance of NCA, Hong et al. [12] attempted to learn a metric by combining multiple objectives of NCA,
and Tarlow et al. [38]] extended NCA to the unsupervised scenarios. Later, Globerson et al. [7] developed a Max-
imally Collapsing Metric Learning (MCML) method by encouraging the distribution of data towards the ideal state
based on KL-divergence regularization. Weinberger et al. [44] proposed Large Margin Nearest Neighbors (LMNN)
learning, one of the most well-known metric learning methods, by making the distances between neighboring similar
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samples larger than those of dissimilar ones. Besides, Bar-Hillel et al. [1]] presented Relevant Component Analy-
sis (RCA) by introducing the “chunklet” to accommodate the similar samples and taking the inverse matrix of the
average within-chunklet covariance as the metric matrix to perform distance measure. However, in practice, RCA
is not so competitive because the discriminative between-chunklet information is ignored. To address this problem,
Yeung et al. [49] extended RCA by putting the between- and within- chunklet information together into the learning
algorithm. After that, Davis et al. [2] proposed the well-known Information-Theoretic Metric Learning (ITML) by
incorporating Bregman divergence term into the objective function as well as imposing pairwise distance constraints
between similar and dissimilar samples, respectively. Additionally, Qi et al. [34]] introduced the L;-regularization on
the Mahalanobis matrix to conduct Sparse Distance Metric Learning (SDML) to handle high-dimensional data. More
recently, Mei et al. [26] performed metric learning by minimizing LogDet divergence with triplet constraints, and
achieved competitive results on several pattern recognition tasks. Wan et al. [40] proposed a robust metric learning
approach to address the facial expression recognition problem. To utilize abundant unlabeled data for metric learning,
Niu et al. [30] developed a semi-supervised variant of ITML through entropy regularization. More importantly, to
encode the semantic contents of data into metric learning apart from the feature similarity, Yu et al. [50] proposed
to learn a metric space by taking both the feature similarity and label-based semantic relations into account for more
competitive image clustering. Zhu et al. [54] proposed to learn Neighborhood Distance Metric Learning (NDML) by
considering the locality, compactness and consistency of training data simultaneously, and then extended NDML to
its ensemble counterpart by integrating multi-granularity neighborhood distance metrics. Besides the aforementioned
works, many application-specific metric learning methods have also been proposed to cater for object reidentification
[I310], (330, (53], [21], cartoon synthesis [S1]], image classification [[L8]], [27]], kinship verification [23]], object tracking
[15], [37], and bioinformatics [41]], etc.

Actually, in recent years a number of multi-task metric methods have also been proposed, such as mt-LMNN [32]],
MLCS [48]] and GPML [47]. However, multi-task scenario is not our concern here and thus we ignore their details
(please interested readers refer to the related literature).

Although most of the metric learning methods above can be directly employed to handle ordinal data concerned
in this work, they may lead to suboptimal performance because the ordinal information of data is not considered in
them. For instance, for human age estimation, age 15 is elder than age 10 but younger than age 20. If we conduct age
estimation as a traditional multi-class classification problem, such an ordinal relationship will be ignored, thus making
the age estimation less reliable in age-based security surveillance (as we know, individuals at ages of 10, 15, and 20
should undertake definitely diverse criminal liability in crime). To this end, Xiao et al. [45] presented an ordinal
metric leaning method, named mkNN, for ordinal age estimation. In mkNN, the distances from one sample to the
samples within its k nearest neighbors are scaled proportional to their label difference, and meanwhile the distances
between pairs of samples outside are enlarged. While Fouad et al. [6]] extended the ITML to its ordinal counterpart,
named OITML, by incorporating the ordinality information into the constraints. More recently, Li et al. [[19] proposed
a ranking metric learning approach, named LDMLR, by preserving distances of samples within a local neighborhood
while enlarging the distances between other samples according to their rank differences, and then further extended
LDMLR to multiple kernel version to promote its generalization ability. As a result, the estimations made in the
LDMLR metric space on many problems, such as human age estimation, head pose regression and image retrieval,
achieve state-of-the-art.

Although the aforementioned ordinal metric learning methods, especially LDMLR, can yield competitive results
on ordinal problems, there still exist some shortcomings with them. Concretely, in mkNN, only the ordinal relation-
ships within a local neighborhood of samples are considered, but the ordinal relationships outside the neighborhood
are neglected. In OITML, a predefined distance relationship on the training data in the original Euclidean space is
introduced to the metric learning process, however, such a predefinition misleads the learning since the distance rela-
tionships in the Euclidean space are usually not consistent with the ones defined in the desired metric space. Finally,
in LDMLR, although it attempts to preserve the global ordinal relationships between data by weighting the between-
rank distances according to their rank difference, maximizing the sum of weighted distances is not powerful enough
to enforce the global ordinal relationship. To compensate for such drawbacks of the existing ordinal metric learning
methods and more effectively preserve the global ordinal relationship of the data, we propose a novel ordinal metric
learning method, coined as ORdinal Margin Metric Learning (ORMML), by enforcing global distance constraints
on all the classes jointly. Then, to cope with realistic estimation scenarios where the ordinal data classes are drawn
across multiple distributions, we further extend ORMML to its cross-distribution counterpart by incorporating the
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correlations between the data distributions within data classes into metric learning. Finally, extensive experiments on
synthetic and real-world image datasets demonstrate the superiority of the proposed methods.

The rest of this paper is organized as follows. In Section [2] we briefly review several related works. In Section
[3] we first propose our novel ORdinal Margin Metric Learning (ORMML), and then extend it to its cross-distribution
counterpart (i.e., CD-ORMML). In Section [d] we provide time complexity analysis of the proposed methods. In
Section [5] we report the experimental results to demonstrate the superiority of the proposed methods. Finally, we
conclude this paper in Section [6]

For the sake of understanding the mathematical symbols involved in this paper, we list their meanings in Table[I}

Table 1: Meanings of mathematical symbols involved in this paper.

Notation = Meaning ‘

A, A1, A2: Non-negative trade-off parameters

€0, & Slack variables

n: Margin scale coefficient of (CD-)ORMML

w: Weighting coefficient

Xt The i-th training sample

xff: The i-th training sample from the k-th class

A= 0: Positive semi-definite metric matrix

da(x;, xj):  Mahalanobis distance between x; and x; characterized by A
Cy: The mean vector of the k-th class

C,{: The mean vector of the j-th distribution of the k-th class
Ci: The mean vector of the k-th class with multiple distributions
S+ (SO The similarity (dissimilarity) constraint set

2. Related Works

Before presenting our methods, we briefly review mkNN [45], OITML [6], and LDMLR [19], which are three
representative ordinal metric learning methods mostly related to our work.

2.1. mkNN

In [45]], Xiao et al. proposed an ordinal distance metric learning method, named mkNN, to preserve the local
semantic neighborhood under the assumption that data within the same semantic neighborhood should have more
similar labels than those outside. Based on such an idea, they formulated the mkNN as follows:

maxu Z tr(AM;j) — A Z €j
ij ij

s.t. tr(AMij) +€j= dAl-zj, if nij = 1 (1)
A>0

€ij >0,

where A is the Mahalanobis metric matrix, tr(AM,;) = \/(xi — x;)TA(x; — x;) stands for the Mahalanobis distance
between two samples, M;; = (x; — x;)(x; — xj)T, A is a nonnegative trade-off parameter, €;; is the slack variable, n;; = 1
denotes that x; and x; are in the same neighborhood and 77;; = 0 otherwise. Further,

5 L(x;, xj) +y\p o
diy = (C - L(xi,Xj)) x i, X)) @

in which L(x;, x;) denotes the absolute value of label difference between x; and x;, y refers to the labelling noise,
C = max{L(x;, x;)} + €,€ > 0 ensures the denominator not equal to zero, p is a predefined parameter, and d(x;, x;)
denotes the Euclidean distance between samples x; and x;.

From the above Eqs. (I)) and (2)), it can be found that mkNN attempts to learn an ordinal metric space by rescaling
the pairwise distances of data within the same neighborhood while enlarging the ones outside.
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2.2. OITML

In [6]], Fouad et al. developed an ordinal counterpart of ITML, named OITML, by weighting the pairwise similarity
and dissimilarity constraints on samples with weights proportional to their label difference, and formulated the model
as follows:

mina»0,¢ Dpurg(A, Mo) + A - DBu,g(diag(f), diag(&y))
s.t. da(xi, xj) < & j) '19;}, if (x;,x;) €S, 3)
da(xi, xj) 2 &g jy - 0y 1 (%1, x7) € S,

where Dpye(A, My) = tr(AMy N—logdet(A My "Y—d represents the Bregman divergence defining the similarity between
metric matrix A and a predefined metric matrix M, and similarly, Dp,(diag(¢), diag(&))) measures the similarity
between slack variables & and their initial values &, d4(x;, x;) represents the distance parameterized by A between two
samples x; and x; from either similarity constraint set S, or dissimilarity constraint set S _, and 19;} (99;,) denotes the
weight coefficient for corresponding similarity (dissimilarity) constraint whose value is proportional to the class label
difference of x; and x;, and A is a nonnegative trade-off parameter balancing the two divergence terms.

From Eq.(3)), it can be found that the ordinality weight information is incorporated in the constraints, by which the
original ITML is extended to its ordinal counterpart.

2.3. LDMLR

In [19], Li et al. proposed the Linear Distance Metric Learning for Ranking, i.e., LDMLR, to learn an ordinal
metric by preserving both the local geometry structure and the ordinal relationship of the data, and formulated the
objective function as follows:

miny — Z w,-_,-df‘(x,-, )Cj) + 4 Z €ij
ij ij

s.t. (d5(xis x)) = di (xi, X)) = €;, if ni; =1 4)
A=0

€ij >0,

where w;; denotes the ordinal weight factor, dﬁ (xj, xj) = (x;—x j)TA(xi — x;) denotes the Mahalanobis distance between
samples x; and x; characterized by metric matrix A, dlz(xi, x;) denotes the Euclidean distance between x; and x;, €; is
a slack variable, ;; = 1 indicates samples x; and x; are in the same target neighborhood, 7;; = 0 otherwise, and A is a
nonnegative trade-off parameter.

From the above formulation (@), it can be found that LDMLR intends to preserve the local geometry relationships
of within-rank data in each semantic neighborhood, and meanwhile enlarge the between-rank pairwise distances
according to the rank difference.

2.4. Comment

After analyzing formulations (TJ), (3) and (@) (corresponding to mkNN, OITML and LDMLR, respectively), we can
find their limitations in preserving the ordinal relationship of data. Concretely, in mkNN, it can only preserve the local
ordinal relationships of data in a local neighborhood since the pairwise distances of data outside the neighborhood
are enlarged with identical weights, as stated by the first term of formulation (I). In OITML, although imposing
ordinal constraints between pairs of the samples, it drives the metric matrix to be as similar as possible to a predefined
distance matrix constructed in the original Euclidean space, doing so will mislead the learning due to that the distance
relationships in the Euclidean space are usually not consistent with the ones constructed in the desired metric space.
Even worse, when the amount of training data is large, extremely large number of constraints will be involved, thus
making the learning prone to infeasible. Finally, in LDMLR, although the between-rank distances have been weighted
in terms of the rank difference (as stated by the first term of the objective function in (@), it may be still not powerful
enough to learn a desirable ordinal metric because maximizing a sum of the weighted distances cannot necessarily
guarantee the given ordinal relationship of the data. In other words, such a weighting strategy is not preferable to
pursue an ordinal metric. We take Figure E] as an example, where x;, xi.; and x4 ; denote three samples from the
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Figure 1: Illustration of the limitation of LDMLR in preserving the ordinal relationship of data. xi, xz4; and Xxpyis )
denote samples from the k-th, (k + i)-th and (k + i + j)-th classes, respectively, while x}{, x}( ,; and x}{ it denote their
corresponding new distributions in the learned metric space. d(-,-) represents the distance between two samples in
the original metric space, while dy (-, -) describes the distance in the new metric space learned by LDMLR.

k-th, (k+i)-th and (k + i + j)-th ordinal classes, respectively. From the perspective of ordinal distribution, x,; is nearer
to x; than to x.;; since the label difference between x; and x;,; is i, smaller than difference i + j between x; and
Xi+i+)»> the original distance between x; and xi.;, however, is much larger than that between x; and x4, ;. As a result,
in the learned metric space the distance between x; and xi,;, via LDMLR, might be still larger than that between x
and x4, implying that the ordinal relationship between xi, xi4; and x4, ; cannot be preserved even the distance
weight for x4 is larger than that for xi.; (see the first term of the objective function in @)).

3. Proposed Methodology

To overcome the drawbacks of the ordinal metric learning methods aforementioned, in this section we first pro-
pose a novel ordinal metric learning method, coined as ORdinal Margin Metric Learning (ORMML). Then, to cope
with the scenario where data are sampled across multiple distributions, we extend ORMML to its cross-distribution
counterpart, named CD-ORMML.

3.1. ORdinal Margin Metric Learning (ORMML)
N

Suppose that we have a total of N data samples {x;, y;},_,, from K ordinal classes with x; € RP and its corresponding
label y; € {1,2, ..., K}, and denote the mean vectors of the K classes as {C}, Cy, ..., Ck}. In what follows, we attempt
to construct ORMML by compacting the within-class distances and simultaneously separating the between-class
distances, thus making the data classes distribute orderly. For the sake of clarification, we illustrate the key idea
behind our methodology in Figure

As shown in Figure for the sample x;_; from the (k-i)-th class, the distance d4(x;—;, Cy) between it and C} should
be no less than i X i with 1 being the margin scale, and the distance d(x—;, Cy+;) between it and Cy,; should be at
least 7 X (i + j); for the sample x; from the k-th class, the distance d4(xy, Cy—;) between it and Cy_; should be 7 X i,
and the distance da(x, Cr ;) between it and Cy, ; should be at least 77 X j; for the sample xy, ; from the (k + j)-th class,
the distance d4(x+j, Ck—;) between it and Cy_; should be 17 X (i + j), and the distance da(x;+, C) between it and Cy
should be 1 X j. When we take into account the distance relationships above together, a global ordinal relationship
among the classes will emerge automatically, as demonstrated in Figure |2l By this way, an ordinal metric space can
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Figure 2: Illustration of ORMML. Here, x;_;, x; and x;,; respectively denote samples from the (k-i)-th, k-th and
(k+j)-th classes, 7 is the margin scale, and the formulation d, (-, -) denotes the Mahalanobis metric parameterized by
metric matrix A.

be generated. Along this line, we can mathematically model the ORMML as follows:

ming > Bii+ A ) Engi Wy (5a)
kii psqi
st. di(P.C) = nlp— gl = Epgin (P # @) (5b)
di (x5, Cp) < B (5¢)
A>=0 (5d)
Bii =0 (5e)
&pgi 20 (5f)

where A is a nonnegative trade-off parameter, xl.p denotes the i-th sample from the p-th class, C, stands for the mean
vector of the g-th class, &, is a slack variable, 77 is a manually defined parameter to control the margin size, |-| denotes
the absolute-value operator, w,, = |p — g|" is the weighting factor with a predefined exponential parameter 4, and

di(x!,Cy) = (xF = CHT AL - C). (6)

From @, it can be found that when the metric matrix A is set to the identity matrix, the metric reduces to the Euclidean
metric.

As demonstrated in (3), by means of such distance constraints between- (corresponding to (3b)) and within- classes
(corresponding to (5c)), the distance space is enforced to be ordinal in terms of the class order.

Clearly, the problem in (3)) is a semi-definite programming (SDP), so in this work we employ the projected gradient
descent method [22] to solve it, due to its simplicity and effectiveness. More specifically, for the sake of computation,
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we eliminate all the slack and auxiliary variables from (3]) and reformulate it as

min Jormmr(A)

= > 305, Co+ ) max(0, nlp - gl = 3 (7, Cy)) - g
ki

Pt

=Y (d-co'Ank - ¢y
ki

+2) maxl0, lp - gl - (< = C) AGY = C)b - wyy D
P.qii

= > (= COTAGE =€)
ki
+ 4" max(0, nlp = gl = tr((x = CYTAGL = C)} - wp
Pgii
Taking a derivative of Jorym(A) With respect to A, we then obtain

0T ormmr(A) _
0A

Dk - coed -,
ki

i 7lp = gl < 1r(() = o) AGE = Cp): ®)

Dk = Cotd = CoT = A (o = CHOL = C)T Wi,
ki Dsqi

if nlp — gl > 1r((x] = C"AGT ~ Cy)).

Now, let A, denote the value of A after the #-th iteration of projected gradient descent, then A,;; can be computed
by

0T ormmL(A)
A1 =A—0c—mMmXmm— 9
t+1 t— 0 9A 4 )
where o is the learning rate computed via linear search [14].

To ensure the positive semi-definiteness of A,,|, we perform spectral decomposition of A,,| as
A = Ut+lAt+lUtT+1a (10)
and then threshold the eigenvalues to make them non-negative by

Ass1 = Upnimax(0, A)UY, (11

t+1°

We iteratively update A,.; based on (8)-(LI) until it converges or the maximal iteration number is reached. Table 2]
summarizes our whole ORMML algorithm. With the obtained metric matrix A through ORMML algorithm, we can
evaluate the distance between two data points in the learned ordinal metric space.

3.2. Cross-Distribution ORMML (CD-ORMML)

In real world applications, usually the data of interest are sampled across multiple distributions. That is, the
data within each class can be grouped into two or more clusters with each cluster representing one distribution. For
example, in age estimation human aging data are usually sampled across different races such as Caucasian and African.
To preferably perform ordinal metric learning in such a cross-distribution scenario, we should take into account
the potential correlation between the distributions, and demonstrate our idea in Figure 3] To be specific, because
of the positive semi-definiteness of the metric matrix A in formulation (§), it can be decomposed into A = PTP.

7



Table 2: Algorithm of ORMML.

Input: Training instances {xi}fi |

Parameters A, &, and 7.
Output: metric matrix A.
1. Initialize Ay = Ip;
2.fort=1,2,.., Ty do
3. Compute w based on (8);
4. Update A, based on (9);
5. Project A, onto the PSD cone based on and (TI));

N .
}i:I’

and ordinal labels {y;

6. end for
7.A <A,
/Distribution, , "\

N

/Distribution,

/
<

N /

Original Distance Space New Metric Space

(a) (b)

Figure 3: Illustration of cross-distribution metric learning. Here, Distribution| and Distribution, denote two different
distributions within the same class k, and C,l and C,% stand for their corresponding sample means, respectively. After
metric learning, the two distributions are projected into a metric space where their new means, C,;l and C}2, are pulled
much closer towards each other.

Consequently, the Mahalanobis metric between two data points can be identically treated as a two-step procedure:
projecting them by the P and then evaluating their Euclidean distance in the projected space. Now, the Mahalanobis
metric (6) can be transformed as follows:

di(x/,Cy)
= - CT A - Cp)
=@l - C)"PTP(I - C,) 12

= (Pxl' = PC,)" (Px! — PC,)

=& -C)' () -C)
where x;.p and C, ;1’ respectively, denote the projected representations of the xf and C, in the Euclidean space. Using the
transformation (12), the Mahalanobis distance between x and C, is successfully converted to the Euclidean distance
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between x;p and C’q. Along this line, we can represent the correlation between two distributions of the k-th class,
shown in Figure 3] as follows:

R(C},CH) = (PCHT(PCY) = (CHT PTPCE = (C)TACE. (13)

Essentially, the term (T3)) describes the inner-product between the mean vectors, C ]1 and C,f, of the two distributions
E]from the k-th class, and the larger the inner-product is, the more similar the two vectors PC,l and PC% are, i.e., much
nearer to each other in the metric space. By integrating the correlation term (I3) into the objective function of
ORMML, we can develop its cross-distribution counterpart, coined as CD-ORMML, as follows:

ming ) Bii+ A1 ) Engi - Wpg = A2 ) (CDTACE (14a)
k,i Psq.i k

st dy(F,Co) 2 mlp = gl = Epgin (p # 9) (14b)

A5, CO) < Bu (14c)

A=0 (14d)

B =0 (14e)

&pgi 20 (14f)

where xl{’ is a sample from the p-th class, C,f and C,f denote the mean vectors of the first and second distributions of
the k-th class, respectively, while E; stands for the total mean vector across the distributions of the g-th class, and 2,
and A, are two nonnegative trade-off parameters to balance the within-distribution loss and the between-distribution
correlation.

Similar to ORMML in @), the formulation (I4) of CD-ORMML is also a SDP problem, so we also adopt the
projected gradient descent to solve it. After eliminating the slack and auxiliary variables, rewriting the objective
function, and taking a derivative of (T4)) with respect to A, we obtain

0T cp-ormmiL(A) _
0A N
D =GO = T - LG,
ki

if nlp — gl < (2 = CT ALY - Cp);
(15)

D =Gtk = G = 1 Y (] = Caf =€) wyy
ki 278

—LCUCYT,

if nlp — gl > (X" = CHT ALY - C).

Let A, denote the value of A after the #-th iteration of projected gradient descent, then A,,; can be computed by
0T cp-ormmL(A)

Api =A -0 A R (16)
Similar to (I0)-(TT), to guarantee the PSD characteristic of A, we perform spectral decomposition of A,,; as

A1 = Ui A UL, a7
and threshold the eigenvalues to make them non-negative by

A1 = Uppymax(0, AU . (18)

Based on (T3)-(T8), we iteratively update A,,; until it converges or the maximal iteration number is reached. Finally,
we summarize the CD-ORMML algorithm in Table[3] After obtaining the metric matrix A of CD-ORMML, we can
perform cross-distribution ordinal distance estimations.

IFor the sake of clarification, we in this work take two distributions as example, whereas it can be similarly extended to multiple distributions
via accumulating strategy.
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Table 3: Algorithm of CD-ORMML.

Input: Training instances {xi}ﬁ , and ordinal labels {y;}

Parameters A, A;, h, and 7.
Output: metric matrix A.
1. Initialize Ay = Ip;
2.fort=1,2,.., Ty do
3 Compute w based on (13);
4, Update A, based on (16);
5
6
7

N .
=1

Project A, onto the PSD cone based on and (T8);
. end for
LA E A,

In practice, we may only possess the data sampled across distributions without their concrete distribution infor-
mation. In this case, in order to make the CD-ORMML applicable, we can adopt existing unsupervised clustering
algorithms, such as k-means clustering [17]] and hierarchical clustering [29], to obtain the within-class distributions
for subsequent use of CD-ORMML.

Clarification

The cross-distribution metric learning in CD-ORMML may at first glance make the readers mistake it for the
cross-modality metric learning or multi-task metric learning. Actually, there are essential distinctions between them.
To be specific, in multi-task metric learning, usually fixed numbers of two or more metric tasks are involved, each
of which associates with an unshared metric matrix to be learned, and the tasks achieve to improve their respective
learning by means of collaborating with the others. More importantly, each of the tasks has its own (unshared) training
data as in [48], [47], [S], [25]. By contrast, throughout the learning process of CD-ORMML, only one metric matrix
is involved (see the metric matrix A in the formulation (T4)), meaning that our CD-ORMML is actually a single
task learning. Moreover, since the number of distributions in each class in our cross-distribution metric learning
scenario may be different, the multi-task based metric methods with fixed number of tasks cannot be applied here.
In cross-modality metric learning, each of training/testing samples has the same number and types of modalities,
and each modality correspond to a type of feature representation as in [28], [16], [42], [S2], [43]. By contrast,
in our cross-distribution learning of CD-ORMML, each of the training/testing samples has only one type of feature
representation. That is, the cross-distribution learning scenario in CD-ORMML is essentially with single modality.
Therefore, the cross-modality based metric learning is difficult to adapt to the cross-distribution scenario concerned
in this work.

4. Time Complexity Analysis

As summarized in Table [2] the time complexity of ORMML algorithm mainly consists of two parts: initializing
the metric matrix in line 1 and the iteration process from line 2 to line 6. Concretely, the initialization process for Ag
costs O(D?) with D being the data feature dimension. For the iteration procedure, the time complexity of computing
the derivative % in line 3 is O(max(ND?, KND?)) with N being the total number of training samples and K
the number of classes, updating A, in line 4 needs O(D?), and the time complexity for line 5 is O(2D?). Therefore, the
time complexity for lines 2-6 is O(T 4. - max(ND?* + D> + 2D?, KND? + D? + 2D?)). In total, the time complexity of
ORMML is O(D? + Typax - max(ND? + D> + 2D?, KND? + D? + 2D?)).

For the CD-ORMML algorithm in Table (3] the time complexities of all the lines, except for line 3 whose time
complexity is O(max(ND?* + D?>, KND? + D?)), are the same as those of ORMML in Table 2] Therefore, the total
time complexity of CD-ORMML algorithm summarized in Tableis O(D? + Typax - max(ND* +2D* + 2D, KND? +
2D? +2D%)).
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5. Experiment

In this section, we conduct experiments to make evaluations on the proposed methods.

5.1. Datasets and Settings

Prior to reporting the experimental results, we introduce the datasets used in the experiments and the settings,
respectively.

Datasets: We first conduct human age estimation and head pose recognition experiments on three commonly
used aging datasets, i.e., FG-NET, Morph Album I and Album II [9] and one head pose dataset UMIST, respectively.
For FG-NET, it consists of 1,002 facial images taken from 82 individuals, and their ages range from O to 69 years
old. For the Morph Album I, it contains 1,690 images from about 631 individuals mainly of African and European,
and the age ranges from 15 to 68 years old. For the Morph Album II, it consists of over 55,000 images from about
5,475 white individuals as well as other ethnic ones, averagely with about 2 to 3 pictures per person aging from 16
to 77. Moreover, the head pose dataset UMIST contains about 564 pictures from 20 persons. Image examples from
the four datasets are shown in Figure[d] Besides the above four face-domain related image datasets, we also conduct

Figure 4: Image examples from the FG-NET (a), the Morph Album I (b), the Morph Album II (c) and the UMIST (d).

experiments on a non-face related image dataset, i.e., the Mixed-Gambles task dataset [39], which is a functional MRI
dataset.

Settings: Throughout the experiments, the trade-off parameter « in (I) and @) is set to 10°, and 10® in (3)); the
parameters A; and A, in (T4) are set to 10® and lOirespectively. And we adopt the mean absolute error (MAE) as the
performance measure, in which MAE := 1%, Zﬁ 1 Ili = ;| with [; and I; denoting the ground-truth and predicted values,
respectively. Moreover, without loss of generality we uniformly adopt the 5-nearest-neighbors as the predictor after
the metric estimation. Besides the ordinal metric learning methods mkNN, OITML, and LDMLR reviewed in Section
[2l to demonstrate the effectiveness and superiority of the proposed metric learning algorithms, we also introduce
the representative metric learning methods LFDA [33]], ITML [2], LMNN [44]] and LDMLT [26] for experimental
comparison.

5.2. Evaluation Irrespective of Data Distributions

In this subsection, we first conduct evaluations on the four face-related image datasets, irrespective of the data
distributions. More specifically, to generate matching quantities of training data for each of the classes, we choose
an age range from O to 19 years old from FG-NET to constitute four age groups, and from 15 to 39 years old to
form five age groups from Morph Album I by dividing the ranges evenly. For the Morph Album II, we choose all the
samples from the white race to constitute totally five age groups, i.e., 16-25, 26-35, 36-45, 46-55 and 56-77 years old.
Moreover, to generate ordinal head pose classes with matching data, we divide the UMIST dataset into six angles of
head pose, from frontal view to profile. On the generated datasets, we extract AAM features from the FG-NET and
Morph Album I, BIF representations from the Morph Album II and raw pixel values to represent the head pose on

11



220 the UMIST. On the four datasets, we uniformly extract 95% energy of the feature representations for experiment, and
report the experimental results, averaged over 10 random runs, in Figure E} From it, we can find that,

| —O— LFDA =—H— [TML ' =X=" LMNN ' == LDMLT OITML mkNN LDMLR =—%— ORMML(ours)‘
0.9 1.5
1.4t
wl.31E
1<
=12
11
0.5 : : : ‘ 14 : : : :
12 14 16 18 20 12 14 16 18 20
# training samples from each class # training samples from each class
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1.4¢ 1 07
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# training samples from each class # training samples from each class

(c) (d)

Figure 5: Comparison of estimations in different metric spaces on the FG-NET (a), Morph Album I (b), Morph Album
II (c) and UMIST (d).

e Generally, the MAEs yielded by the weighting-based ordinal metric learning methods (i.e., the mkNN and
LDMLR, plotted in green color) are higher than those by most of the non-ordinal metric learning methods
(plotted in blue color). It shows that the strategy of weighting-based ordinal metric learning is not powerful

225 enough to learn an effective ordinal metric to preserve the ordinal relationship between the data classes.

o The MAEs of OITML are consistently lower than those of its non-ordinal version, i.e., ITML. It shows that
incorporating orinality weights can improve the performance of metric learning. On the other hand, the estima-
tion accuracies of OITML are still not so desirable, even worse than some of the non-ordinal methods such as
the LDMLT, which witnesses that inducing the metric matrix to learn following a metric relationship predefined

230 in the original Euclidean space is likely to mislead the metric learning.

e In most cases, the proposed ORMML yielded the lowest MAEs, which demonstrates the effectiveness and
superiority of our metric learning strategy.

Besides the experiments on the four face-related image datasets, we also conduct experiments on a non-face image

datset, i.e., the Mixed-gambles task dataset, which contains a set of images with 16 ordinal levels. Similar to [19], we

2 also adopt the GLM regression coefficients as the feature representation, and report the averaged experimental results

over 10 runs in Figure[6] which demonstrates similar rules as in Figure[5] It shows that besides the face-domain image
datasets, the proposed ORMML also works and demonstrates its superiority in performance on non-face image data.

12
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Figure 6: Comparison of estimations on the Mixed-gambles dataset.

5.3. Evaluation Across Data Distributions

5.3.1. On Synthetic Dataset
Prior to experiments on real-world cross-distribution data, we first experiment on a synthetic dataset and demon-
strate in Figure [7] the superiority of CD-ORMML over ORMML in capturing the correlations of distributions within
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W Class 1 Center
20 @ Class2C
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Class 1 40|
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@ Class1 50
601 e Class 2
® Class2
W Class 1 Center
@ Class 2 Center

conm
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> 10|
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(a) In original space (b) In ORMML space (c) In CD-ORMML space

Figure 7: Distributions of a synthetic dataset in the original (a), ORMML (b), and CD-ORMML (c) distance metric
space. Different shapes represent the data classes, while different colors indicate the distributions.

the classes. From it, we can find that in the metric space of ORMML, there is a crossover between the distributions
from different classes (see the dotted ellipse region in Figure [7(b)). As a comparison, in the CD-ORMML space the
distributions of different classes are separated away with clear margin and the distributions belonging to the same
classes are pulled much closer (see Figure[7(c)). It means that compared with ORMML, CD-ORMML can preserve
more correlations between the distributions within each class and thus facilitates the subsequent estimations.

5.3.2. On Real-World Dataset

Besides the above synthetic experiment, we also conduct experiments on real cross-distribution data. To this
end, we collect four types of race groups, i.e., White Male (WM), White Female (WF), Black Male (BM) and Black
Female (BF), from the Morph Album II to simulate the cross-distribution scenario. Specifically, we randomly choose
8,057 WMs, 2,610 WFs, 8,057 BMs and 2,610 BFs, each of the races aging in the same age range as the Morph
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Album II (i.e., 16 to 77 years old), and represent them by extracting about 95% principle components of BIFs as
feature representation. Then, we divide each of the four races into five age groups, i.e., 16-25, 26-35, 36-45, 46-55
and 56-77 years old. Besides, to evaluate the applicability of CD-ORMML in handling such a scenario where the
data are sampled across distributions but the concrete distribution information is unknown, we first adopt the widely-
used k-means method to cluster the distributions and then perform CD-ORMML on the clustered data. For the sake
of distinction, we call the CD-ORMML with such clustering CD-ORMML (Distribution-Unknown), and meanwhile
we call the CD-ORMML as CD-ORMML (Distribution-Known) which is directly performed on training data with
distributions given. Finally, on the generated cross-distribution datasets, we conduct cross-distribution age estimation
and report the results in Table E} From it, we find that,

e By taking into account the correlation information between the distributions of each class, the CD-ORMML,
no matter the data distribution information is given or not, reduce the estimation errors from 1.02 by ORMML
to about 0.94, with about 8% MAE reduction. It confirms that introducing the distributions correlation into
learning can further improve the prediction accuracy of ORMML. In addition, the CD-ORMML yields the
lowest average estimation error (with the lowest MAEs in most cases) among all the compared methods. It
demonstrates the superiority of the CD-ORMML in handling such ordinal problems with cross-distribution
data.

e Even the data distribution information is not provided, through employing the existing clustering approach
to cluster the distributions, the CD-ORMML (Distribution-Unknown) still shares the best average estimation
accuracy with the CD-ORMML (Distribution-Known) which is performed directly on the given distributions. It
demonstrates the effectiveness and superiority of the proposed methods in handling the cross-distribution data
scenarios.

5.4. Influence of Margin Scale on Metric Performance

0.7
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w w
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< 06 S
0.55 ] 0.75
O 5 " " " " " 07 ]
~ 01 05 1 5 10 0.1 05 1 5 10
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Figure 8: Influence of margin scale  to ORMML on FG-NET (a), Morph Album II (b), UMIST (c) and Mixed-
gambles (d).
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From (5b) and (T4b), it can be found that the margins separating two classes are scaled by the hyper-parameter 7.
To explore its influence on the metric and without loss of generality, we conduct experiments by randomly selecting
16 samples for each age group from the FG-NET, Morph Album II, 12 samples from the UMIST, and 10 samples
from the Mixed-gambles, respectively, and plot the results in Figure[§] From the four subfigures in Figure [§] we can
see that when n > 1, the MAE generally begins to level off with increasing value of 1. And the influence of 7 on
CD-ORMML is quite similar to this. Therefore, it indicates that both ORMML and CD-ORMML are insensitive to
the margin scale and thus we can set 7 to a fixed value, e.g., 1 in the experiments.

5.5. Convergence Evaluation
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Figure 9: Convergence of ORMML algorithm on FG-NET (a), Morph Album II (b), UMIST (c) and Mixed-gambles
(d).

We also validate the convergence of ORMML and CD-ORMML algorithms, summarized in Tables [2| and
respectively. Specifically, we take the same experimental settings as in Section [5.4] and demonstrate the results in
Figure 9] It can be observed that after about 25 iterations the ORMML algorithm converges to the global optimum.
And the convergence speed of CD-ORMML algorithm in the experiments is similar to ORMML.

6. Conclusion

In this work, we proposed a novel type of ordinal metric learning method, coined as ORMML, by seeking a
sequence of margins to make the ordinal data distribute orderly in the metric space. Then, to cope with more realistic
cross-distribution data scenarios, we developed a cross-distribution variant of ORMML, named CD-ORMML, by
maximizing the correlation between the within-class distributions and formulating it as a regularization term in the
objective function. Finally, extensive experiments demonstrated the effectiveness and superiority of the proposed
methods on ordinal image data estimation, no matter the data are sampled across distributions or not. Although the
ordinal characteristic of the data is well considered in the proposed metric learning methods, some more characteristics
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behind the data are not considered yet, such as the spatial structure information of images and the type of sample
representation space. Therefore, in the future we will extend our methods to tensor learning [[10], [24], by representing
the samples in advanced representation space like Banach space [20].
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Table 4: Comparison of cross-distribution age estimations (MAE+STD) generated in different metric spaces. Along each row, the results in bold are the best

ones. Here “Dis.1” and “Dis.2” denote the two data distributions within each age group, respectively.

#Training samples

Dis.1 Dis.2  (each age group, LFDA ITML LMNN LDMLT OITML mkNN LDMLR ORMML CD-ORMML CD-ORMML
cach distribution) (Distribution-Unknown)  (Distribution-Known)
WM  WF 6 1.00+0.08 1.16+0.09 1.26+0.05 0.92+0.03 1.08+0.07 1.13+0.06 1.41+0.10 0.98+0.05 0.93+0.04 0.93+0.05
WM  WF 8 0.94+0.04 1.13+0.07 1.21+0.08 0.91+0.03 1.02+0.05 1.16+0.04 1.46+0.22 0.97+0.06 0.91+0.03 0.90+0.03
WM  WF 10 0.95+0.05 1.04+0.07 1.12+0.06 0.90+0.05 0.97+0.06 1.11+0.04 1.26+0.09 0.94+0.07 0.89+0.04 0.88+0.04
WM BM 6 1.04+0.08 1.15+0.08 1.25+0.07 0.95+0.05 1.03+0.05 1.15+0.05 1.35+0.09 1.02+0.06 0.95+0.04 0.94+0.05
WM  BM 8 0.96+0.03 1.15+0.07 1.22+0.09 0.93+0.03 1.02+0.06 1.18+0.03 1.50+0.11 1.01+0.07 0.94:+0.04 0.93+0.04
WM  BM 10 0.96+0.03 1.08+0.06 1.16+0.06 0.91+0.04 0.98+0.05 1.16+0.05 1.23+0.05 1.01+0.07 0.93+0.04 0.93+0.04
WM  BF 6 1.02+0.13 1.17+0.09 1.25+0.09 0.90+0.03 1.02+0.08 1.12+0.06 1.34+0.10 0.98+0.07 0.94+0.06 0.94+0.05
WM  BF 8 0.92+0.05 1.09+0.09 1.21+0.08 0.87+0.05 1.01+0.06 1.15+0.04 1.47+0.17 0.97+0.09 0.92+0.06 0.92+0.04
WM  BF 10 0.90+0.04 1.06+0.08 1.12+0.08 0.85+0.04 0.95+0.06 1.13+0.06 1.23+0.11 0.92+0.08 0.88+0.04 0.89+0.05
WF BM 6 1.08+0.06 1.28+0.11 1.37+0.12 1.04+0.07 1.08+0.12 1.21+0.06 1.48+0.12 1.11+0.08 1.02+0.08 1.00+0.08
WF  BM 8 1.05+0.07 1.21+0.07 1.33+0.08 1.03+0.08 1.03+0.05 1.21+0.03 1.43+0.20 1.08+0.10 1.00+0.05 0.98+0.06
WF BM 10 1.06+0.07 1.20+0.09 1.27+0.03 1.04+0.08 1.03+0.07 1.19+0.05 1.36+0.09 1.06+0.07 0.99+0.05 0.98+0.06
WF BF 6 1.10+0.06 1.23+0.09 1.27+0.10 0.99+0.05 1.01+0.06 1.11+0.06 1.37+0.11 1.11+0.05 1.02+0.05 1.02+0.06
WF BF 8 1.04+0.04 1.14+0.08 1.23+0.10 0.99+0.05 0.98+0.09 1.15+0.03 1.38+0.17 1.05+0.06 1.01+0.05 0.97+0.06
WF BF 10 1.04+0.05 1.11+0.07 1.17+0.08 0.99+0.05 0.96+0.06 1.17+0.05 1.26+0.11 1.03+0.05 0.95+0.05 0.97+0.05
BM BF 6 1.11+0.05 1.11+0.10 1.24+0.07 1.00+0.05 0.97+0.08 1.21+0.06 1.34+0.13 1.05+0.06 0.96:+0.06 0.95+0.06
BM BF 8 1.05+0.05 1.13+0.10 1.25+0.08 0.96+0.05 0.95+0.07 1.26+0.04 1.40+0.13 1.03+0.08 0.93+0.06 0.93+0.06
BM BF 10 1.03+0.04 1.09+0.09 1.17+0.08 0.95+0.04 0.95+0.08 1.21+0.04 1.27+0.12 0.99+0.08 0.91+0.05 0.93+0.08
Average Performance (Ranking) 1.01+0.06(5) 1.14+0.08(7) 1.23+0.08(9) 0.95+0.05(3) 1.00+0.07(4) 1.17+0.05(8) 1.36+0.12(10) 1.02+0.07(6) 0.94:+0.05(1) 0.94:+0.05(1)
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