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a b s t r a c t

Canonical correlation analysis (CCA) is a popular and powerful dimensionality reduction method to

analyze paired multi-view data. However, when facing semi-paired and semi-supervised multi-view

data which widely exist in real-world problems, CCA usually performs poorly due to its requirement of

data pairing between different views and un-supervision in nature. Recently, several extensions of CCA

have been proposed, however, they just handle the semi-paired scenario by utilizing structure

information in each view or just deal with semi-supervised scenario by incorporating the discriminant

information. In this paper, we present a general dimensionality reduction framework for semi-paired

and semi-supervised multi-view data which naturally generalizes existing related works by using

different kinds of prior information. Based on the framework, we develop a novel dimensionality

reduction method, termed as semi-paired and semi-supervised generalized correlation analysis

(S2GCA). S2GCA exploits a small amount of paired data to perform CCA and at the same time, utilizes

both the global structural information captured from the unlabeled data and the local discriminative

information captured from the limited labeled data to compensate the limited pairedness. Conse-

quently, S2GCA can find the directions which make not only maximal correlation between the paired

data but also maximal separability of the labeled data. Experimental results on artificial and four real-

world datasets show its effectiveness compared to the existing related dimensionality reduction

methods.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In real world, we often meet with such a case that one object is
represented by two or more types of features, e.g., gene can be
represented by the genetic activity feature and text information
feature [1], the same person has visual and audio features [2],
each webpage can be represented by the text in the page and the
hyperlinks jointly [3], CAD-catalogs are represented by some kind
of 3D model like Bezier curves or polygon meshes and additional
textual information like descriptions of technical [4]. This kind of
data is usually called multimodal or multi-modality [1,2,5–8],
multiple outlooks [9], multi-represented objection [4] or multi-
view [3,10–14] data (for convenience, we will uniformly call them
multi-view data hereafter). Analyzing such multi-view data to
acquire useful information and knowledge has attracted more and
ll rights reserved.

ter Science and Technology,

s, Nanjing 210016, China.
more attentions recently. These works include dimensionality
reduction (DR) [7,8,14–21], regression [22] and clustering
[1,4,11]. In this paper, we focus on DR for multi-view data with
the aim to avoid the curse of dimensionality [23] and overfitting
brought by high dimensionality for good generalization [15], i.e.,
learning the appropriate low-dimensional representations for
high dimensional data for subsequent task.

In recent years, a number of efficient algorithms [7,8,14–21]
emerged to address this problem for discovering inherent struc-
tures and relations among different views. Among all the meth-
ods, canonical correlation analysis (CCA) [16–18] is the most
widely used one. It works with two sets of related variables (x, y),
and aims to find the directions that maximize the correlation
between the two sets of projected representations in the low-
dimensional space. In its implementation, CCA requires the data
be rigorously paired or one-to-one correspondence among differ-
ent views due to its correlation definition. However, such require-
ment is usually not satisfied in real life due to various reasons,
e.g., (1) different sampling frequencies of sensors acquiring data
or sensor faulty in an audio-video system, which result in
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non-synchronicity between signals from different channels and
even the missing of samples of certain views so that the multi-
view data cannot keep one-to-one correspondence any more [7].
(2) Even having sufficient individual-view data, pairing them is
still difficult, time consuming, even expensive since needing the
efforts from experienced human annotators. Meanwhile, unpaired
multi-view data are relatively easier to be collected. So we are
often given only a few paired and a lot of unpaired multi-view
data. We refer such data as semi-paired multi-view data. In
literature, it is also named as weakly-paired multi-view data [6]
or partially-paired multi-view data [19]. The common approaches
to analyze such type of data include: (1) directly discarding
unpaired data and performing correlation analysis just on the
paired data, which usually results in overfitting on the given data
and poor generalization for unseen samples especially when the
paired data is scarce. (2) Creating synthetic samples in terms of
certain criterion with the aim to generate paired multi-view data
for correlation analysis [24]. These methods cannot achieve
reasonable improvement due to not incorporating the prior
information (such as clustering hypothesis and manifold hypoth-
esis) of the data. Now, the key point to address this problem is
how to utilize the meaningful prior information hidden in addi-
tional unpaired data. Most recently, some improved algorithms of
CCA that can effectively deal with semi-paired multi-view data
have emerged. Typically, Blaschko et al. [20] proposed semi-
supervised Laplacian regularization of kernel canonical correla-
tion (SemiLRKCCA) to find a set of highly correlated directions by
exploiting the intrinsic manifold geometry structure of all data
(paired and unpaired). Another paradigm is SemiCCA [15]. It
essentially resembles the manifold regularization [25], i.e., using
the global structure of the whole training data including both
paired and unpaired samples to regularize CCA. Consequently,
SemiCCA seamlessly bridges CCA and principal component ana-
lysis (PCA) [26,27], and inherits some characteristics of both PCA
and CCA. It is necessary to mention that the actual meaning of
‘‘semi-’’ in SemiCCA and SemiLRKCCA is ‘‘semi-paired’’ rather than
‘‘semi-supervised’’ in popular semi-supervised learning literature
[28,29]. Most recently, Gu et al. [19] proposed partially paired
locality correlation analysis (PPLCA), which effectively deals with
the semi-paired scenario of wireless sensor network localization
by virtue of the combination of the neighborhood structure
information in data. SemiCCA, SemiLRKCCA and PPLCA all cater
well for semi-paired multi-view scenario and thus achieve better
empirical results than CCA through preserving original paired
information and deeply utilizing the structure information
simultaneously.

As we have known, discriminative information is quite impor-
tant for DR serving the classification task. However, SemiCCA,
SemiLRKCCA and PPLCA are unsupervised DR methods, thus only
concerning the between-view correlation embedded the structure
information of each view is generally not enough for better
classification accuracy. Concretely, SemiLRKCCA utilizes the graph
Laplacians constructed through the unsupervised within-view k-
nearest neighbors with regardless of the labeled or unlabeled data.
SemiCCA employs unsupervised PCA as within-view regularization
terms to do semi-paired learning. PPLCA replaces total mean with
the neighborhood means into the formulation of CCA in each view
such that PPLCA can incorporate the unpaired data information.
Due to not exploiting the class information, the above three
methods unavoidably result in the limitation of recognition
performance. To overcome the limitation, Sun et al. [8] proposed
the discriminative canonical correlation analysis (DCCA) for super-
vised multi-view data. DCCA aims to obtain DR with discrimina-
tion by maximizing the within-class correlation while minimizing
the between-class correlation. Next, Sun et al. [7] further extended
DCCA to the fully supervised and semi-paired scenario and
developed the DCCA with Missing Samples (DCCAM). Borrowing
the idea of DCCA, Peng et al. [21] proposed the local discrimination
CCA(LDCCA) by incorporating the idea of local discriminant
analysis [30] into CCA. Specifically, LDCCA takes local discriminant
information of each view data into account for defining the local
between-class covariance and local within-class covariance
matrices and thus attempts to achieve effective between-class
separation by maximizing local within-class correlations and
minimizing local between-class correlations simultaneously.
Essentially, the common key of above three methods is to
construct the within-class and between-class correlation matrices.
However, such a construction is only suit for the case that the class
label-aligned discriminant information is given for each view data,
hence their performance will degrade greatly when just few
labeled data can be available.

Although DCCA, DCCAM and LDCCA can work reasonably well
in fully supervised case, in many real-world applications such as
image classification, web page classification and protein function
prediction, labeled samples are harder to be collected than
unlabeled samples since the labeling process is relatively expen-
sive and time consuming. Thus, a semi-supervised(SSL) scenario
occurred [28,29,31]. Recently, the multi-view DR in semi-super-
vised scenario has received increasing attention as a learning
paradigm. For example, Foster et al. [22] performed CCA first for
unlabeled data and then least squares regression for given labeled
data in the CCA-generated lower dimensional subspace. Kursun
and Alpaydin [32] proposed a Semi-supervised CCA(SCCA). In its
implementation, a key ingredient is to rebuild two-view data and
then perform correlation analysis, i.e., first for the one view,
SCCA keeps the other view when class label is absent, otherwise
replaces the samples by the corresponding class-centers, and
then performs semi-supervised DR for this view data, the
same process is repeated for the other view. Most recently,
Hou et al. [14] developed a multiple view semi-supervised
dimensionality reduction (MVSSDR) method with the discrimina-
tive information from given within-view pairwise must-link and
cannot-link constraints (similar to SSDR [33]). Here a pair of
‘‘must-link’’ samples implies that they belong to the same classes
of the same view and a pair of ‘‘cannot-link’’ samples implies that
they belong to different classes of the same view. MVSSDR
exploits the disparate structures and different statistical proper-
ties of different views to achieve better performance than SSDR
which is only fit for all the concatenated representations of all the
views. The above two methods [14,32] deal with a fully paired
and semi-supervised multi-view case. Undoubtedly, such a strict
pairing requirement among views naturally limits their applica-
tions in real world.

With the successive emergence of new application problems
and the rapid development of data collection and processing
techniques, multi-view data is more complex and diverse, i.e.,
between-view data may be paired or unpaired, and within-view
data may be labeled or unlabeled simultaneously. According to
whether the multi-view data under study is fully paired or not,
the existing corresponding DR methods can be roughly categor-
ized into paired ones (CCA, SCCA, MVSSDR, DCCA and LDCCA) and
semi-paired ones (SemiCCA, SemiLRCCA, PPLCA and DCCAM). The
former can further be divided into unsupervised, semi-supervised
and supervised ones. The latter is subdivided into supervised and
unsupervised ones. Table 1 summarizes the characteristics of the
above related methods in terms of pairing information, discrimi-
native information and structural information used.

From the ‘‘paired information’’ and ‘‘discriminative informa-
tion’’ columns of Table 1, we observe that, there is no DR method
to deal with semi-paired and semi-supervised multi-view
data. Furthermore, we find that besides the paired information,
both discriminative information and structural information are



Table 1
Comparison of CCA, SemiCCA, SemiLRCCA, DCCA, LDCCA, DCCAM, MVSSDR, SCCA and PPLCA.

Paired information Discriminative information Structural information

Paired Semi-paired Unsupervised Semi-supervised Supervised Locala Global

CCA [16–18] | |
SemiCCA [15] | | |
SemiLRCCA [20] | | |
DCCA [8] | |
LDCCA [21] | | |
DCCAM [7] | |
MVSSDR [14] | |
SCCA [32] | |
PPLCA [19] | | |

a ‘‘Local’’ means to use the data neighborhood information (e.g., manifold information) to construct scatter matrix.
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meaningful for DR. Consequently, in this paper, we try to design a
general framework called semi-paired and semi-supervised
dimensionality reduction(S2DR), especially for multi-view data
by combining the semi-paired correlation analysis and the semi-
supervised DR into a unified framework, which takes not only the
discriminant information but also the within-view structural
(local and global) information into account.

Based on our S2DR framework, we put forward a novel multi-
view DR algorithm, and refer it as semi-paired and semi-super-
vised generalized correlation analysis (S2GCA). S2GCA makes as
maximal correlation as possible by performing CCA on given
paired data, while preserves geometric structure of unlabeled
data as sufficiently as possible and separates labeled data from
different classes as far as possible. Consequently, S2GCA can seek
the desirable directions which not only have maximal correlation
for paired data but also reflect the separability for the labeled
data. Experimental results on a toy dataset and four publicly-
available datasets including semi-supervised learning data (SSL)
[34,35], Multiple Feature Database(MFD) [36], WebKB dataset
[37] and advertisement dataset (Ads) [38] show its effectiveness
compared to the related DR methods.

Finally, it is worthwhile to highlight several advantages of our
S2GCA as follows:
(1)
 To the best of our knowledge, S2GCA is the first DR method to
deal with the semi-paired and semi-supervised multi-view data.
A general framework is further constructed in such scenario
including SemiCCA and SemiLRCCA as its special cases.
(2)
 Different from unsupervised SemiLRCCA and SemiCCA
which just utilize global or local (manifold) structure of
each view data, S2GCA fuses not only the global and local
structural information but also the discriminative information
into a single objective function, consequently, making it more
effective and flexible in modeling the given data since not
limited to whether paired and/or unpaired data should have
labels.
(3)
 Compared with the traditional semi-supervised DR methods
which can only be applicable in single-view data, S2GCA can
perform semi-supervised learning on two or more views data
simultaneously and thus can capture the latent knowledge in
data more sufficiently. Compared to existing multi-view
semi-supervised methods such as SCCA and MVSSDR which
work on semi-supervised and fully paired multi-view data,
S2GCA is free of the limitation of the correspondence between
different views to great extent.
(4)
 Compared with the works on supervised multi-view data,
such as DCCA, DCCAM and LDCCA, S2GCA copes with semi-
supervised multi-view data, which is more general and more
applicable.
(5)
 S2GCA characterizes the optimization objective as a generalized
eigenvalue problem, which can be solved simply and efficiently
as CCA, SCCA, DCCA, DCCAM, LDCCA, PPLCA, SemiCCA and
SemiLRCCA.
The rest of the paper is organized as follows. Section 2 gives a brief
review of the related works. In Section 3, we put forward a general
DR framework for multi-view data, semi-paired and semi-supervised
dimensionality reduction (S2DR). We then utilize the S2DR frame-
work as a general platform to design S2GCA algorithm, including the
motivation, formulation and solution in Section 4. Then we present
the experimental results and analysis both on toy data and real-
world datasets including SSL, MFD, WebKB and Ads databases in
Section 5. The conclusions and future works are listed in Section 6.
2. Related works

2.1. CCA: canonical correlation analysis

Given n pairs of pairwise samples fðx1,y1Þ, . . ., ðxn,ynÞg centra-
lized by subtracting the total samples means from each sample.
Let X¼ ½x1, . . ., xn�ARp�n and Y¼ ½y1, . . ., yn�ARq�n. CCA [16–18]
attempts to find a set of projections (or directions) wx and wy for
each view such that the correlation between wT

x x and wT
y y is

maximized. The corresponding objective can be described as
follows:

max
wx ,wy

wT
x XYT wyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
x XXT wx

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

y YYT wy

q ð1Þ

Evidently, it can be expressed by the following equality
constrained optimization problem [18]:

max
wx, wy

wT
x XYT wy

s:t: wT
x XXT wx ¼ 1

wT
y YYT wy ¼ 1 ð2Þ

By the Lagrange technique [18], the optimization of (2) boils
down to solving a generalized eigenvalue problem

0 XYT

YXT 0

" #
wx

wy

" #
¼ l

XXT 0

0 YYT

" #
wx

wy

" #
ð3Þ

Further, we can jointly get two projection matrices Wx and Wy

consisting of the top r (rmin(p,q)) generalized eigenvectors of
(3). In this way, a common dimensionality reduced subspace
maximizing the between-view correlation is established.

In fact, CCA is difficult to work effectively for nonlinearly-
correlated data due to its linearity in nature. Consequently, kernel
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canonical correlation analysis (KCCA) [39] is developed by kerne-
lizing CCA to effectively compensate for this drawback.

2.2. SemiLRKCCA: semi-supervised Laplacian regularization of KCCA

Given a set of data fx1, . . ., xnp ,xnpþ1, . . ., xnx g from X-view and
the other set of data fy1,. . .,ynp

,ynpþ1,. . .,yny
g from Y-view, respec-

tively, where ðxi,yiÞ, i¼ 1,2, . . ., np are paired ones and the rest
are unknown whether to be paired. nxðnyÞ is the total number of
samples in X-view (Y-view). For X-view, we denote the paired
data matrix ~X ¼ ½x1, . . ., xnp �ARp�np and the matrix including
all data with and without correspondences X¼ ½x1, . . ., xnp ,xnpþ

1, . . ., xnx �ARp�nx . Similarly for Y and ~Y . According to its definition,
CCA (KCCA) is not suitable for such a semi-paired or partially-
paired scenario. In order to overcome this shortcoming, Blaschko
et al. [20] applied the manifold regularization technique [25] to
KCCA (CCA) and consequently developed a semi-supervised Lapla-
cian regularization of KCCA (SemiLRKCCA) to tackle such scenario.
SemiLRKCCA can be built by optimizing the following problem:

max
a,b

aT KX ~X K ~Y Ybffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT ðKX ~X K ~X XþRXÞabT

ðKY ~Y K ~Y YþRY Þb
q ð4Þ

where RX ¼ eXKXXþðgX=n2
x ÞKXXLXKXX , Lx is the empirical graph

Laplacian as defined in manifold learning [25], which is constructed
from the nx samples both of paired and unpaired. The involved
kernel matrices in (4) for X-view are defined as KXX ¼fxðXÞ

TfxðXÞ,
KX ~X ¼fxðXÞ

Tfxð
~XÞ, K ~X X ¼fxð

~XÞTfxðXÞ and K ~X ~X ¼fxð
~XÞTfxð

~XÞ,
where fxðUÞ : Rp-R is the kernel function especially defined for X-
view. Kernel matrices for Y-view are defined analogously.

It should be pointed that SemiLRKCCA invloves 13 parameters
in total to be tuned in the learning process, consequently,
resulting in high learning cost and even inapplicable in actual
applications. In order to keep the consistency with our proposal
later and discover the intrinsic characteristic of SemiLRKCCA, we
specially reduce nonlinear SemiLRKCCA to its linear version by
virtue of the following equations and rename it as SemiLRCCA

aT KX ~X K ~Y Yb¼ a
T XT ~X ~Y

T
Yb¼wT

x
~X ~Y

T
wy ð5Þ

aT KX ~X K ~X Xb¼ a
T XT ~X ~X

T
Xb¼wT

x
~X ~X

T
wx ð6Þ

aT RXa¼ aT eXKXXþ
gX

n2
x

KXXLXKXX

� �
a¼wT

x eXIþ
gX

n2
x

XLxXT

� �
wx ð7Þ

As a result, we get the following optimization problem
corresponding to (4):

max
wx ,wy

wT
x
~X ~Y

T
wyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wT
x ð
~X ~X

T
þeXIþðgX=n2

x ÞXLxXT
Þwx

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wT

y ð
~Y ~Y

T
þeY IþðgY=n2

y ÞYLyYT
Þwy

q
ð8Þ

From the denominator of (8), we can conveniently observe its
embedding way for the local structural information and reduce its
motivation of regularization clearer. Furthermore, SemiLRCCA
shows the conversion from the original CCA (paired correlation
analysis) to semi-paired correlation analysis. Likewise, through
introducing the equality constraint, above optimization problem
(8) can be reformulated as

max wT
x
~X ~Y

T
wy

s:t: wT
x

~X ~X
T
þeXIþ

gX

n2
x

XLxXT

� �
wx ¼ 1

wT
y

~Y ~Y
T
þeY Iþ

gY

n2
y

YLyYT

 !
wy ¼ 1 ð9Þ
Again with the Lagrange technique, we obtain the following
generalized eigenvalue problem

0 ~X ~Y
T

~Y ~X
T

0

" #
wx

wy

" #

¼ l

~X ~X
T
þeXIþ gX

n2
x

XLxXT 0

0 wT
y

~Y ~Y
T
þeY Iþ gY

n2
y

YLyYT

� �
wy

2
664

3
775 wx

wy

" #

ð10Þ

2.3. SemiCCA: semi-supervised learning of canonical correlation

analysis

With the aim to avoid overfitting resulted from CCA when
paired data is scarce, SemiCCA [15] gives the following direct
eigenvalue problem with no concrete optimization objective:

ð1�mÞCxx m ~Cxy

m ~Cyx ð1�mÞCyy

" #
wx

wy

" #

¼ l
m ~Cxxþð1�mÞIp 0

0 m ~Cyyþð1�mÞIq

" #
wx

wy

" #
ð11Þ

Likewise, for consistency and contrast with our work later, from
(11), we also deduce its corresponding objective function as follows:

max
wx, wy

2mwT
x
~C xywyþð1�mÞðwT

x CxxwxþwT
y CyywyÞ

s:t: mðwT
x
~C xxwxþwT

y
~C yywyÞþð1�mÞðwT

x wxþwT
y wyÞ ¼ 1 ð12Þ

where Cxx ¼ ð1=nxÞXXT , Cyy ¼ ð1=nyÞYYT , ~Cxx ¼ ð1=npÞ
~X ~X

T
, ~Cyy ¼

ð1=npÞ
~Y ~Y

T
and ~Cxy ¼ ð1=npÞ

~X ~Y
T
. The first term of (12) ensures the

correlation between the paired data to be maximized and the
second term ensures the covariances of X and Y to be maximized,
respectively. Evidently, SemiCCA combines CCA just applicable in
the paired data and PCA [26,27] of all the data with a tradeoff
parameter m. Incorporating the global structure of the data into CCA
has been shown better than just relying on the paired information
provided by a small amount of paired samples [15].

2.4. DCCA: discriminative canonical correlation analysis

Given n pairs of mean-normalized paired samples fðx1,y1Þ, . . .,
ðxn,ynÞg coming from c classes, DCCA [8] aims to seek a set of
projection vectors wx and wy such that the within-class correlation
is maximized and the between-class correlation is minimized. It has
been formulated as the following optimization problem:

max
wx ,wy

wT
x ðCw�ZCbÞwy

s:t: wT
x XXT wx ¼wT

y YYT wy ¼ 1 ð13Þ

where Cw ¼
Pc

i ¼ 1

Pni

k ¼ 1

Pni

l ¼ 1 xðiÞk yðiÞTl is the within-class correla-

tion matrix and Cb ¼
Pc

i ¼ 1

Pc
j ¼ 1
ja i

Pni

k ¼ 1

Pnj

l ¼ 1 xðiÞk yðjÞTl is the

between-class correlation matrix, Z is a balance factor which
trades-off Cw and Cb. Due to the fact that Cb ¼�Cw in supervised
case, DCCA can be shortly expressed as

max
wx ,wy

wT
x Cwwy

s:t: wT
x XXT wx ¼wT

y YYT wy ¼ 1 ð14Þ

Using the Lagrange multiplier technique, (14) is easily turned
into the following generalized eigenvalue problem:

0 Cw

CT
w 0

" #
wx

wy

" #
¼ l

XXT 0

0 YYT

" #
wx

wy

" #
ð15Þ

As a result, DCCA can be established by solving (15).
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2.5. SCCA: semi-supervised canonical correlation analysis

Given a fully paired two-view dataset fðx1,y1Þ, . . ., ðxnp ,ynp
Þg.

Each view contains both labeled and unlabeled samples. For
realizing its semi-supervised DR, SCCA [32] pre-processes the
dataset according to class information partially available: for
either view, it keeps the samples without class-label of the other
view unchanged and otherwise replaces them by the correspond-
ing class centers, then performs CCA on the pre-processed dataset.
Similar procedure is repeated for the second view. SCCA is finally
devised by such two CCAs together.
3. Semi-paired and semi-supervised dimensionality reduction
(S2DR): a general dimensionality reduction framework for
multi-view data

Up to date, a number of DR approaches for multi-view data
have been proposed. Although with different motivations and
different objectives, all these approaches adopt the between-view
correlation as a common measure and seek the low-dimensional
representations for original high-dimensional data by optimizing
the measure with aiming to preserve the maximal between -view
correlation along with other prior knowledge. So, in this section,
we attempt to establish a unified DR framework for semi-paired
and semi-supervised multi-view data and thus provide a common
perspective in understanding the relationship between these
algorithms and in the next section, further develop a new DR
method from the framework.

Given semi-paired and semi-supervised multi-view data, in
addition to the paired information and the discriminant informa-
tion, the (local and global) structural information implicitly in
each view is also important for DR. For semi-supervised multi-
view data, existing DR methods [14,32] make use of the discrimi-
nant information (class label or pairwise constraints) to improve
between-class separability in the low-dimensional space. For
semi-paired multi-view data, existing DR methods [7,15,19,20]
usually embed the latent structural information of data in the
form of regularization into the classical CCA’s objective function.
Their experimental results showed that both discriminant infor-
mation and structural information are quite important for DR.
Encouraged by their successes, we develop a unified DR frame-
work in the form of a common objective function for such a semi-
paired and semi-supervised scenario and term it as semi-paired
and semi-supervised dimensionality reduction(S2DR). Specifically,
we define the following objective Jðwx,wyÞ

max Jðwx,wyÞ ¼ Jpairedðwx,wyÞ

þZ1Jsupervisedðwx,wyÞþZ2Jstructuredðwx,wyÞ ð16Þ

Then we can characterize all of the above correlation-based
methods in a unified form. In (16), Jpairedðwx,wyÞ, Jsupervisedðwx,wyÞ

and Jstructuredðwx,wyÞmeasure individual gains, respectively, for the
between-view paired information, the within-view discriminant
information and the within-view structural information and Z1,Z2

are parameters to tune the balance among the three kinds of prior
knowledge. In fact, both Jsupervisedðwx,wyÞ and Jstructured ðwx,wyÞ can
be treated as regularized terms and represent different prior
information.

From (16), we can find that all the above algorithms can be
subsumed in S2DR framework. Concretely,
(1)
 SemiCCA, SemiLRCCA and PPLCA share a common objective
consisting of the first and third terms of (16), however, their
major difference lies in that SemiCCA focuses more on global
structure of each view, while SemiLRCCA and PPLCA empha-
size more local structure of each view.
(2)
 For DCCA, DCCAM, LDCCA, MVSSDR and SCCA, though their
objective functions are respectively formulated as a single
term, in fact, the term can accordingly be decomposed into
the first and the second terms of (16). It needs to mention that
the first three methods deal with fully supervised and fully
paired multi-view data while the last two methods cope with
semi-supervised and fully paired scenario.
4. Semi-paired and semi-supervised generalized correlation
analysis (S2GCA)

Based on the S2DR framework, we further develop a new
algorithm, which incorporates both the discriminative informa-
tion and the structural information into CCA (objective function),
to cater for such a new semi-paired and semi-supervised case,
called semi-paired and semi-supervised generalized correlation
analysis (S2GCA).

4.1. Motivation

For given semi-paired and semi-supervised multi-view data
fx1, . . ., xnp ,xnpþ1, . . ., xnx g and fy1,. . .,ynp

,ynpþ1,. . .,yny
g, as in Semi-

LRCCA. Each view only contains a few labeled samples coming
from c classes and abundant unlabeled samples, as in semi-
supervised learning. Our goal is to seek projection vectors wx

and wy which make not only the between-view correlation as
maximal as possible but also the within-view separability among
different classes as maximal as possible. Towards this end, we
manage to mine the prior knowledge hidden in the data to obtain
relatively reasonable projections by introducing the idea of semi-
supervised LFDA (SELF) [34] to the correlation analysis. SELF is the
semi-supervised extension of LFDA [35] by adding the PCA
objective into the objective of LFDA. It constructs several crucial
Laplacian matrices to reflect both the structural information and
the discriminative information according to k-nearest neighbors.
We first perform similar semi-supervised learning on X-view and
Y-view, as in SELF, then embed the Laplicians matrices con-
structed from each view to CCA’s objective as the regularization
terms, and finally form an optimization problem subject to
certain specific constraints. In the following subsection, we detail
S2GCA in the following problem formulation and its solving.

4.2. Formulation

Owing to the formulation involves several crucial matrices
describing structural and discriminant information of given data,
we will construct and introduce them in the next subsections by
virtue of the idea of SELF [34].

4.2.1. Construct local within-class matrix and local between-class

matrix

For avoiding notational confusion, we denote Xl ¼ ½x1, . . ., xl� to
be the labeled data coming from c different classes. By the graph
embedding [40], we define the local within-class matrix SX

lw and
the local between-class matrix SX

lb to reflect the local discrimina-
tive information

SX
lw ¼

1

2

Xl

i,j ¼ 1

ðSX
wÞijðxi�xjÞðxi�xjÞ

T
ð17Þ

SX
lb ¼

1

2

Xl

i,j ¼ 1

ðSX
b Þijðxi�xjÞðxi�xjÞ

T
ð18Þ
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where SX
w and SX

b are matrices respectively having the (i,j)th
element defined by

ðSX
wÞij ¼

Aij=nt if xi, xj belong to the class t

0 otherwise

�
ð19Þ

ðSX
b Þij ¼

Aijð1=l�1=ntÞ if xi, xj belong to the class t

1=l otherwise

(
ð20Þ

Here nt is the number of labeled samples in class t(
Pc

t ¼ 1 nt ¼ l)
and Aij is the affinity between xi and xj based on local scaling
heuristic [41] and defined as

Aij ¼
expð�:xj�xi:

2
=sisjÞ if xi, xj belong to the same class

0 otherwise

(

ð21Þ

Evidently, Aij is large if xi and xj are ‘‘close’’ and small if ‘‘far
apart’’. The parameter si ¼ :xðkÞi �xi: represents the local scaling
around xi, where xðkÞi is the kth nearest neighbor of the labeled
sample xi among all the samples of X-view.
4.2.2. Construct regularized local within-class matrix and

regularized local between-class matrix

One the one hand, considering the likely instability of SX
lb in

case of a few labeled data, we introduce the total scatter matrix SX
T

to stabilize SX
lb as a regularization term, thus forming regularized

local between-class scatter matrix SX
rlb (22) as defined in SELF

SX
rlb ¼ ð1�dÞS

X
lbþdSX

T ð22Þ

where SX
T ¼XXT

�nxxxT and the sample mean x¼ ð1=nxÞ
Pnx

i ¼ 1 xi

are, calculated from both label and unlabeled data of X-view, and
dA ½0,1� is a trading-off parameter between the local discriminant
structure and the global structure. Now maximizing SX

rlb implies
that unlabeled data separate from each other to preserve the
global structure, and meanwhile the sample pairs in different
classes farther apart.

On the other hand, the identity matrix Ip is added to SX
lw as a

regularization term for avoiding its instability which may suffer
from ill-conditioned, as a result, forming regularized local within-
class scatter matrix SX

rlw

SX
rlw ¼ ð1�dÞS

X
lwþdIp ð23Þ

For Y-view, the regularized local between-class scatter matrix
SY

rlb and regularized local within-class scatter matrix SY
rlw can be

defined analogously.
4.2.3. Embed into CCA’s objective

Now we attempt to introduce an objective for inventing our
new algorithm. Specifically, we give the optimization problem
(24) by defining the following objective function, which embodies
our intuition:

max
wx ,wy

wT
x
~C xywyþ

Z
2

wT
x ðS

X
rlb�SX

rlwÞwxþwT
y ðS

Y
rlb�SY

rlwÞwy

h i
s:t: wT

x
~C xxwxþwT

y
~C yywy ¼ 1 ð24Þ

where ~Cxx ¼ ð1=npÞ
~X ~X

T
, ~Cyy ¼ ð1=npÞ

~Y ~Y
T

and ~Cxy ¼ ð1=npÞ
~X ~Y

T
, Z is

the regularization parameter which controls the balance between
the between-view correlation and the within-view semi-super-
vised DR objectives. From problem (24), we can find that the first
term ensures as maximal correlation between the paired data as
possible and the second term tries to maximally separate samples
from different classes and maximally preserve the global struc-
ture for X-view and Y-view respectively. In fact, our embedding
manner is flexible since any existing similar definitions [40,42]
can be used to substitute those corresponding matrices. More
importantly, formulation (24) suits for almost all semi-paired and
semi-supervised scenario. Thus we term such a DR method as
semi-paired and semi-supervised generalized correlation analysis
(S2GCA).

Remark. Although the above derivation is just for linear case, but
in fact, it can be easily generalized to the nonlinear version via the
powerful kernel trick [43].

4.3. Solving

In order to design S2GCA technically, we need to solve problem
(24). By the Lagrangian technique, we define the following
function:

Lðwx,wy,lÞ ¼wT
x
~C xywyþ

Z
2

wT
x ðS

X
rlb�SX

rlwÞwxþwT
y ðS

Y
rlb�SY

rlwÞwy

h i

�
l
2

wT
x
~C xxwxþwT

y
~C yywy�1

h i
ð25Þ

where l is the Lagrangian multiplier. Differentiating (25) with
respect to wx, wy and zeroing their derivatives, we have

@L

@wx
¼ ~C xywyþZðSX

rlb�SX
rlwÞwx�l ~C xxwx ¼ 0 ð26Þ

@L

@wy
¼ ~C

T

xywxþZðSY
rlb�SY

rlwÞwy�l ~C yywy ¼ 0 ð27Þ

Then Eqs. (26) and (27) can be expressed, respectively

ZðSX
rlb�SX

rlwÞwxþ
~C xywy ¼ l ~C xxwx ð28Þ

~C
T

xywxþZðSY
rlb�SY

rlwÞwy ¼ l ~C yywy ð29Þ

With some algebraic operations, Eqs. (28) and (29) can be
boiled down to the following equation:

ZðSX
rlb�SX

rlwÞ
~C xy

~C
T

xy ZðSY
rlb�SY

rlwÞ

2
4

3
5 wx

wy

" #
¼

l ~C xxwx

l ~C yywy

" #
ð30Þ

Owing to the fact that

l ~C xxwx

l ~C yywy

" #
¼ l

~C xx 0

0 ~C yy

" #
wx

wy

" #
ð31Þ

So we get the following generalized eigenvalue equation:

ZðSX
rlb�SX

rlwÞ
~C xy

~C
T

xy ZðSY
rlb�SY

rlwÞ

2
4

3
5 wx

wy

" #
¼ l

~C xx 0

0 ~C yy

" #
wx

wy

" #
ð32Þ

Then we select a set of eigenvectors ðwxi,wyiÞs corresponding to
the top d largest non-negative eigenvalues of (32). Thus we obtain
two projection matrices Wx ¼ ½wx1,wx2, . . ., wxd� and Wy ¼ ½wy1,
wy2, . . ., wyd� for X-view and Y-view, respectively (the reason
refers to the Appendix). Then we in turn use these matrices to
project the high-dimensional data of each view and produce the
low-dimensional representations WT

xx and WT
y y for x and y. As a

result, S2GCA implements DR for semi-paired and semi-super-
vised multi-view data. The pseudo-code of S2GCA is summarized
in Table 2.

From (32), we can find that S2GCA will degenerate to (1) CCA
when Z¼ 0 and np¼nx¼ny; (2) SemiCCA when d¼ 1, Z¼ 2;
(3) similar to SemiLRCCA when d¼ 0, Z¼ 2. Therefore, DR algo-
rithm S2GCA based on the framework S2DR is general and flexible
in modeling multi-view data.



Table 2
Pseudo-code for S2GCA.

Input: Semi-paired and semi-supervised multi-view data:

X¼ ½x1 , . . ., xnp ,xnp þ1 , . . ., xnx �ARp�nx and Y¼ ½y1 , . . ., ynp
,ynp þ1 , . . ., yny

�ARq�nx

where ~X ¼ ½x1 , . . ., xnp � and ~Y ¼ ½y1 , . . ., ynp
� are paired data.

The number k of the nearest neighbors of labeled sample xi; the parameters d,Z
Output: Projection matrices: Wx ¼ ½wx1 ,wx2 , . . ., wxd�, Wy ¼ ½wy1 ,wy2 , . . ., wyd�

Step1: Compute corresponding matrices for paired data ~Cxx ¼ ð1=npÞ
~X ~X

T
, ~Cyy ¼ ð1=npÞ

~Y ~Y
T
, ~Cxy ¼ ð1=npÞ

~X ~Y
T

Step2: Compute local within-class and between-class scatter matrices: SX
lb , SX

lw , SY
lb and SY

lw

Step3: Compute regularized local within-class and between-class matrices: SX
rlb , SX

rlw , SY
rlb and SY

rlw

Step4: Solve problem (32) to obtain a set of projection vectors ðwxi ,wyiÞ i¼ 1,2, . . ., d.

Step5: Form projection matrices Wx ¼ ½wx1 ,wx2 , . . ., wxd� and Wy ¼ ½wy1 ,wy2 , . . ., wyd�
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5. Experiments and analyses

To evaluate the proposed DR algorithm S2GCA, we system-
atically compare it with the related algorithms,1 including CCA
[16], DCCA [8], SemiCCA [15], SemiLRCCA [20] and SCCA [32] on
both toy and real-world datasets. Firstly, we present an experi-
ment on a synthetic dataset for performance comparison by
illustrating their optimal directions in both correlation and
separability when the labeled data is scarce. Secondly, we per-
form DR on four standard benchmark datasets including SSL
database [34,35], MFD dataset [36], WebKB dataset [37] and
Ads dataset [38] and then using the nearest neighbor classifier
to perform classification.

In all experiments, the regularization factor Z of S2GCA is
selected from f2�5,2�4, . . ., 24,25

g, the balance parameter d from
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Fig. 1. The distributions of training samples.
f0:1,0:2, . . ., 1g. In addition, the number k, of the nearest neighbors
of each labeled data is taken in fðcþ1Þ,2ðcþ1Þ, . . ., mðcþ1Þg with
mðcþ1Þr l where c is the class number, l is the number of labeled
samples of training dataset. We carry out three-fold cross-valida-
tion for each dataset to select the appropriate parameters with
optimal test performances.
5.1. Toy problem

Here we directly use the two-view toy dataset with two
classes [8] in which each class consists of 100 two-dimensional
samples. Let X¼ ½X1,X2� and Y¼ ½Y1,Y2�, where Xi, i¼1,2, denotes
a matrix composed by the ith class data. They are randomly

generated from the Gaussian distributions Nðli,RiÞ, i¼ 1,2, where

l1 ¼
10:18

0:66

� �
, R1 ¼

15 3:75

3:75 15

� �
, l2 ¼

5

�5

� �
, R2 ¼

1 0

0 1

� �
.

1 We do not compare MVSSDR due to that its discriminative information is

given in the form of the pairwise cannot-link and must-link constraints.
Furthermore, we define yi ¼WT xiþei, where ei follows

the Gaussian noise with mean l¼
1

1

� �
and variance R¼

0:01 0

0 0:01

� �
. Consequently, xi and yi satisfy linear correlation

relation to a certain degree. Then we randomly select half of
samples per class for training and the rest for testing. For the
training set, half samples of each class are paired while randomly-
selected three samples of each class are labeled and respectively
illustrated as the filled circle ‘‘K’’ and diamond ‘‘~’’ in Fig. 1,
which shows the distribution of X-view and Y-view training data,
respectively. And the testing samples are shown in Fig. 3.

In this toy experiment, we do not perform SCCA owing to the
fact unsuitful for visualization.
Fig. 2(a), (b), (c), (d) and (e) shows all the first pair of features
ðwT

x x,wT
y yÞ for training samples extracted, respectively, by CCA,

DCCA, SemiCCA, SemiLRCCA and S2GCA and Fig. 4 (a), (b), (c), (d)
and (e) shows the first pair of extracted features for testing
samples. And the horizontal and vertical coordinates correspond
to x and y components. Jointly from Figs. 2 and 4, we can observe
that
(1)
 Though indeed well discovering linear correlation between
the first pair of canonical components, CCA results in rela-
tively large overlapping between classes both for training and
testing sets, meaning poor separability, due to its unsuper-
vised nature. Although incorporating the class label informa-
tion, DCCA still yields the overlapping between classes for
both training samples and testing samples due to the scarcity
of labeled samples, the classification accuracies of CCA and
DCCA in two-dimensional projected space are both 0.95.
(2)
 Compared to CCA and DCCA, SemiLRCCA produces relatively
less overlapping as shown in Figs. 2d and 4d, and achieves the
classification accuracy of 0.98 in the two-dimensional
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Fig. 2. The illustration of the first pair of features extracted by compared methods for training samples.
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projected sapce, superior to both CCA and DCCA. SemiCCA
outperforms SemiLRCCA on both training and testing sets.
Although having comparable training performance to S2GCA,
SemiCCA still performs relatively poorly compared to S2GCA
on testing set by 2% as shown in Fig. 4e and Table 3.
(3)
 Compared with all the other methods, S2GCA not only inherits
the merits of preserving correlation, but also well separates
different classes, thus performs better for both training and
testing sets, and achieves accuracies of 0.99 in two-dimen-
sional projected space. Moreover, by comparing Fig. 2 with
Fig. 4, we can also find that S2GCA has better generalization
ability for unseen samples.
e 3
racies of CCA, DCCA, SemiCCA, SemiLRCCA and S2GCA for testing samples.

CCA DCCA SemiCCA SemiLRCCA S2GCA

0.95 0.95 0.97 0.98 0.99

0.95 0.95 0.97 0.98 0.99
5.2. Experiments on semi-supervised learning database

To further investigate the effectiveness of S2GCA, we also perform
experiments in benchmark SSL datasets [34,35]. SSL datasets2 consist
of nine semi-supervised learning datasets. Here, we just select six
binary class datasets from them, i.e., SSL1, SSL2, SSL3, SSL4, SSL5 and
SSL7. Tables 4 and 5 give their detailed descriptions.

In this paper, experimental settings such as training and
testing samples, as well as the labeled and unlabeled data follow
[34,35]. In addition, for creating two-view data for single view
data which acts as one view, the PCA-reduced data are used as the
other view. Then we perform the experimental comparison
among CCA, DCCA, SCCA, SemiCCA, SemiLRCCA and S2GCA on
original data and PCA-reduced data with 95% energy preservation.
We randomly select 10%, 20%, 30%, 40% and 50% samples from
training sets as the paired data and the rest as the unpaired data.
The average recognition accuracies of the five methods over 12
The data sets are available from ‘http://www.kyb.tuebingen.mpg.de/

ook/’.
repetitions are shown in Fig. 5 for 10 labeled case and Fig. 6 for
100 labeled cases, respectively.

From Figs. 5 and 6, we can obtain several insights as follows:
(1)
3

htm
S2GCA outperforms the other five methods on most cases,
especially on the ten-labeled data cases. For example, on
SSL1_10 and SSL4_10, the improvement of S2GCA is remark-
able. The experimental results show that preserving global
structure of unlabeled data as maximally as possible and
simultaneously separating labeled data in different classes as
maximally as possible is helpful for seeking projections
favorite subsequent classification.
(2)
 With the increase of paired data (proportion), DCCA keeps the
invariable recognition accuracy due to its irrelevance with the
paired information. The performance of other five methods all
get improvement to different extents on most cases, especially
CCA which just bases on paired data. S2GCA utilizes not
only paired information but also structural (global and local)
and discriminative information in data. Consequently, its perfor-
mance rises relatively smoothly as the number of paired data
increases. Similar results for SCCA, SemiCCA and SemiLRCCA.
(3)
 When the number of labeled data reaches 100, all the
methods achieve better recognition accuracy relative to the
case of the 10 labeled data on most datasets.
5.3. Experiments on multiple feature handwritten digit database (MFD)

The Multiple Feature (handwritten) digit data set (MFD)3 is
selected from UCI machine learning repository [36]. It involves six
sets of features of handwritten digits form 0 to 9. Each class
contains 200 samples and the total sample size is 2000. The six
feature sets are flourier coefficients (Fou,76), contour correlation
characteristics (Fac,216), Karhunen-Lo�eve expansion coefficients
(Kar,64), pixel average in 2�3 windows (Pix,240), morphological
characteristics (Mor,6) and Zernike moments (Zer,47). And the
dimension of each feature is listed after the feature abbreviation
in the bracket.
The data sets are from ‘http://www.ics.uci.edu/~mlearning/MLSummary.

l’.

http://www.kyb.tuebingen.mpg.de/ssl-book/
http://www.kyb.tuebingen.mpg.de/ssl-book/
http://www.ics.uci.edu/&sim;mlearning/MLSummary.html
http://www.ics.uci.edu/&sim;mlearning/MLSummary.html


Table 4
The attributes of the six datasets with 10 labeled samples in the SSL database.

Dataset SSL1_10 SSL2_10 SSL3_10 SSL4_10 SSL5_10 SSL7_10

Number of

dimension

241 241 241 117 241 241

Number of labeled

data

10 10 10 10 10 10

Number unlabeled

data

1490 1490 1490 390 1490 1490

Table 5
The attributes of the six datasets with 100 labeled samples in the SSL database.

Dataset SSL1_100 SSL2_100 SSL3_100 SSL4_100 SSL5_100 SSL7_100

Number of

dimension

241 241 241 117 241 241

Number of

labeled

data

100 100 100 100 100 100

Number

unlabeled

data

1400 1400 1400 300 1400 1400
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Fig. 4. The illustration of the first pair of features extracted by compared methods for testing samples.
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Firstly, we choose any two sets of features as X-view and Y-
view, thus there are 15 combinations of the six features in total.
Among 200 samples per-class, we randomly select half of each
class for training and the remaining for testing. Secondly, the
training portion is further split into paired and unpaired ones
where the ratio of the paired to the unpaired is 50:50 of the
training samples per-class. In addition, we randomly select 10% of
the training samples as labeled data used for semi-supervised
learning and the rest leaves unlabeled. Owing to lacking enough
paired information in the testing samples, we just give the
classification accuracies on the dimension-reduced data of indi-
vidual view. The parameters of S2GCA are searched by cross-
validation for optimizing performance. And the parameters cor-
responding to the best results in the validation is finally used in
testing. We repeat the experiments ten times and report their
average results in Table 6 for X-view and Table 7 for Y-view
where the best performances are highlighted in bold.

From Tables 6 and 7, we can obtain several attractive observa-
tions as follows:
(1)
 It is obvious that S2GCA prominently outperforms CCA on all
cases, both of WT

x X and WT
y Y. Although SCCA incorporates the

discriminative information into DR and is superior to CCA on
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Fig. 5. Comparisons of the performance of the six methods on six different SSL datasets with 10 labeled data.
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Fig. 6. Comparisons of the performance of the six methods on six different SSL datasets with 100 labeled data.

X. Chen et al. / Pattern Recognition 45 (2012) 2005–20182014
most case of WT
x X and WT

y Y, S2GCA still excels SCCA signifi-
cantly on all cases. The result validates that only emphasizing
on the paired information or class information is NOT enough
for DR, especially when paired data and labeled data are few.
(2)
 Compared with SemiCCA, S2GCA achieves better recognition
accuracy on 13 out of the 15 feature combinations for WT

x X,
especially achieving the maximum improvement of 29% on
Fac and Zer combination, of 24% on Fac and Mor combination,



Table 6
Classification accuracy of the six methods on MFD database (X-view).

X Y CCA DCCA SCCA SemiCCA SemiLRCCA S2GCA
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of 21% on Fac and Pix combination. S2GCA improves more
than 5% on the 8 cases, and obtains comparable results on the
other 4 cases. S2GCA achieves better recognition accuracy on
12 out of the 15 feature combinations for WT

y Y.
1 Fac Fou 0.4625 0.1088 0.5476 0.7238 0.8872 0.8527
(3)

2 Fac Kar 0.6179 0.1119 0.5431 0.7594 0.8831 0.8882
3 Fac Mor 0.5762 0.1037 0.3671 0.5928 0.8178 0.8368
4 Fac Pix 0.4433 0.0993 0.7599 0.5886 0.8948 0.7911

5 Fac Zer 0.5463 0.1026 0.5117 0.61 0.8844 0.9037
6 Fou Kar 0.5013 0.4721 0.6631 0.7727 0.6989 0.7848
7 Fou Mor 0.5405 0.4291 0.4423 0.7467 0.5636 0.784
8 Fou Pix 0.4891 0.4721 0.6755 0.7746 0.7199 0.7845
9 Fou Zer 0.528 0.4721 0.6387 0.7663 0.6875 0.7899

10 Kar Mor 0.5918 0.5859 0.5471 0.8422 0.7295 0.8186

11 Kar Pix 0.6683 0.7578 0.8575 0.8422 0.9031 0.8492

12 Kar Zer 0.6639 0.7578 0.8284 0.8422 0.7982 0.8946
13 Mor Pix 0.6544 0.6521 0.6773 0.6586 0.6381 0.7036
Compared with SemiLRCCA, S2GCA provides better results on
11 out of the 15 feature combinations for WT

x X. S2GCA
exceeds SemiLRCCA to different degrees from 2% to 22%.
Especially on the combination of cases 6,7,9,10,13,14, S2GCA
improves more than 7% in classification accuracies and still
obtains a small quantity of improvement on the other 2 cases.
S2GCA outperforms SemiLRCCA on 11 out of the 15 feature
combinations for WT

y Y, and its improvement is also promi-
nent. The superiority of S2GCA further validates the reason-
ability of the semi-supervised learning incorporated with
semi-paired correlation analysis.
14 Mor Zer 0.6544 0.6521 0.6773 0.6588 0.6384 0.7017
(4)

15 Pix Zer 0.3687 0.1038 0.3035 0.7308 0.8258 0.6728

Table 7
Classification accuracy of the six methods on MFD database (Y-view).
Although taking the class label into account in constructing
the between-class and within-class correlation matrices,
DCCA performs still poorly when the labeled samples are
scarce, which attributes to the fact that it just concerns
discriminant information rather than the intrinsic structural
information in data.
X Y CCA DCCA SCCA SemiCCA SemiLRCCA S2GCA

1 Fac Fou 0.4891 0.4212 0.6754 0.7736 0.739 0.784
2 Fac Kar 0.6683 0.7032 0.8575 0.8486 0.8903 0.9035
3 Fac Mor 0.6544 0.6521 0.6773 0.6561 0.6428 0.7068
4 Fac Pix 0.3309 0.1088 0.4987 0.7308 0.8886 0.586

5 Fac Zer 0.5772 0.5938 0.7300 0.6746 0.743 0.8173
6 Fou Kar 0.6683 0.7578 0.8575 0.8422 0.8149 0.8685
7 Fou Mor 0.6544 0.6521 0.6773 0.6583 0.6329 0.7021
8 Fou Pix 0.3101 0.1094 0.3169 0.7308 0.8235 0.573

9 Fou Zer 0.5772 0.6513 0.7300 0.6746 0.6382 0.8024
10 Kar Mor 0.6544 0.6521 0.6773 0.6585 0.6419 0.7008
11 Kar Pix 0.6171 0.1339 0.3110 0.7308 0.8906 0.7966

12 Kar Zer 0.5772 0.6513 0.7300 0.6746 0.6757 0.8037
13 Mor Pix 0.3881 0.1019 0.2761 0.7309 0.6902 0.5421

14 Mor Zer 0.5808 0.5896 0.4707 0.6746 0.5429 0.7466
15 Pix Zer 0.5772 0.5976 0.7300 0.6746 0.7094 0.8067
Secondly, for illustrating performance change of our method
with both the paired data ratio and the labeled data ratio, we
simultaneously vary the numbers of the labeled data and the
paired data in the training set to evaluate the contribution of the
different prior information. Here we select Far and Pix combina-
tion. Fig. 7 shows that the performance of S2GCA increases
monotonously with the increase of the paired ratio and the
labeled ratio of the training samples.

5.4. Experiments on WebKB

The WebKB dataset4 used in [37] consists of web pages
collected from web sites of computer science departments of
various universities. The dataset contains two descriptions: (1)
fulltext—description on the web pages. (2) inlinks—the hyperlinks
pointing to the page. It is natural to take these two descriptions as
The data sets are from ‘http://www.cs.cmu.edu/afs/cs/project/theo-11/

/wwkb/’.
two views, i.e., the fulltext view and the inlinks view. There are
1051 pages in total, which have been manually classified into two
classes: course (230) and non-course (821). The original fulltext

and inlinks documents are processed to 3000-dimensional and
1840-dimensional vectors, respectively. For our experiments, we

http://www.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb/
http://www.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb/


Table 8
Classification accuracy of the six methods on WebKB.

Supervised ratio (%) CCA DCCA SCCA SemiCCA SemiLRCCA S2GCA

Fullext

5 0.7411 0.9032 0.7135 0.9141 0.8821 0.9288
10 0.7857 0.8796 0.7670 0.9461 0.9408 0.9461
20 0.8170 0.8057 0.7735 0.9531 0.9146 0.9556

Inlinks

5 0.8109 0.9099 0.7800 0.9078 0.8585 0.9360
10 0.8091 0.8703 0.7914 0.9023 0.8558 0.9267
20 0.8347 0.8324 0.8827 0.9269 0.8758 0.9352

Table 9
Description of the five features of advertisement data.

Abbreviation Description of the feature Dimensions

Alt Information of the alt terms 111

Cap Information of the words occurring near the

anchor text

19

url Information of phrases occurring in the URL 457

Origurl Information of the image’s URL 495

Ancurl Information of the anchor text 472

Table 10
Classification accuracy of the six methods on Ads (X-view).

X Y CCA DCCA SCCA SemiCCA SemiLRCCA S2GCA

1 Alt Cap 0.3285 0.2749 0.3298 0.3333 0.3434 0.3772
2 Alt Ancurl 0.2921 0.2749 0.2564 0.3190 0.3428 0.3628
3 Alt Origurl 0.2813 0.2749 0.2564 0.3223 0.3348 0.3763
4 Alt url 0.2830 0.2749 0.2564 0.3264 0.3367 0.3771
5 Cap Ancurl 0.1557 0.1559 0.1534 0.1628 0.1647 0.1674
6 Cap Origurl 0.1565 0.1559 0.1534 0.1629 0.1648 0.1665
7 Cap url 0.1563 0.1559 0.1534 0.1641 0.1648 0.1669
8 Ancurl Origurl 0.5554 0.5601 0.4434 0.6189 0.6592 0.7243
9 Ancurl url 0.5553 0.5601 0.4388 0.6212 0.6672 0.7239

10 Origurl url 0.6206 0.5767 0.4995 0.6278 0.6910 0.7358

Table 11
Classification accuracy of the six methods on Ads (Y-view).

X Y CCA DCCA SCCA SemiCCA SemiLRCCA S2GCA

1 Alt Cap 0.1595 0.1559 0.1534 0.1640 0.1636 0.1688
2 Alt Ancurl 0.6037 0.5601 0.5511 0.6470 0.6639 0.7223
3 Alt Origurl 0.6579 0.5767 0.6278 0.6437 0.6921 0.7399
4 Alt url 0.7246 0.6651 0.7172 0.7167 0.7630 0.8148
5 Cap Ancurl 0.6195 0.5601 0.5549 0.6421 0.6612 0.7295
6 Cap Origurl 0.6647 0.5767 0.6663 0.6434 0.6937 0.7330
7 Cap url 0.7251 0.6651 0.6677 0.7092 0.7539 0.8056
8 Ancurl Origurl 0.6642 0.5767 0.4995 0.6415 0.6984 0.7404

9 Ancurl url 0.6739 0.6651 0.5148 0.7244 0.7667 0.8062
10 Origurl url 0.6391 0.6651 0.5477 0.7170 0.7559 0.8032
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first perform PCA to reduce the dimensionality to 100 both for
fulltext and inlinks. As usual, we randomly select half of each class
for training and the rest for testing. The training samples are
further split into paired and unpaired portions with the ratio of
1:1 per-class. We further randomly choose 5%, 10% and 20% of the
training samples as labeled samples and the rest as unlabeled
ones for semi-supervised learning. We report the 10-run average
results and highlight the best performances in bold in Table 8.

From Table 8, it is observed that:
(1)
5

Adve
S2GCA is overall better than or comparable to the other five
compared algorithms in recognition performance. More
importantly, S2GCA achieves satisfied accuracy both for the
fulltext view and the inlinks view, even with a small number of
labeled samples. Its superiority validates the reasonability of
appropriately fusing the class information and the structural
information in DR process, which accords with the well-
known ‘‘No Free Lunch’’ Theorem [44], i.e., making sufficient
use of prior knowledge can promote the leaning performance.
(2)
 With the increase of labeled data, the performance on the
fulltext view of all the compared methods except DCCA is
consistently improved to different extent, however, on the
inlinks view, consistently increased only for both SCCA and
SemiLRCCA, decreased for DCCA and fluctuated for the rest
three methods. Finally, it is worth to point out that as
validated in [28], the increase of labeled data is not always
beneficial to semi-supervised learning.
5.5. Experiments on advertisement data (Ads)

The internet advertisements data set5 is selected from UCI
machine learning repository. It contains 3279 samples among
which 458 (roughly 14%) are advertisements. Each sample is
treated as a binary vector with quite large sparsity. The task is to
predict whether the web page is an advertisement (‘‘ad’’) or not
The data sets are from ‘http://archive.ics.uci.edu/ml/datasets/Internetþ

rtisements’.
(‘‘non-ad’’). Details of data creation and the feature design are
described in Kushmerick [38]. Here like [14], we select five
feature sets listed in Table 9.

As usually, we choose any two sets of features as X-view and
Y-view respectively, thus there are 10 combinations of the five
features in total. Then we randomly select half of each class for
training and the rest for testing. The training samples are further
split in 1:1 manner into paired and unpaired portions for each
class. Further for semi-supervised learning, we randomly choose
10% of the training samples labeled and the rest unlabeled. The
classification accuracies averaged over 10 independent trials are
summarized in Tables 10 and 11, and the best performances are
highlighted in bold.

From Tables 10 and 11, we can make several interesting
observations:
(1)
 For X-view, S2GCA achieves the highest accuracies in all cases
and excels the best result among the other methods. Specifi-
cally, it improves more than 6% on case 8, 9 and10, 4% on case
3 and 4, 2% on case 1 and 2 and a slight progress on the last
three cases. For Y-view, S2GCA shows overall better perfor-
mance than all the other algorithms. Specifically, it achieves
improvements of 6% on the three combinations 2, 5 and 10,
4% on the two combinations 4, 7 and 8 and more than 4% on
the three cases. Totally, compared with the related works, the
low-dimensional features extracted by S2GCA can embody the
intrinsic discriminative structure to greater extent and thus
can be favorable for subsequent classification.
(2)
 For this dataset, the six methods including ours do not exhibit
sufficient prominent performance due to its sparsity of
features. To achieve better performance, we can adopt some
favorable preprocessing techniques for the dataset, such as
latent semantic analysis (LSA) [45].
In general, a series of experimental results show superiority of
S2GCA in almost all cases with different paired ratios and different
labeled ratios.

http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
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6. Conclusions and future works

Encouraged by the success of semi-paired correlation analysis
and semi-supervised learning, we present a unified DR framework
for semi-paired and semi-supervised multi-view data, which
appears more frequently in real world. Based on the framework,
we further propose a new linear DR algorithm, namely S2GCA.
Different from the existing correlation-based DR methods, S2GCA
can not only preserve the global structure of unlabeled data but
also achieve the maximal separability of different classes. Differ-
ent from the existing (semi-)supervised DR methods, S2GCA
relaxes the fully paired and fully labeled requirement for dataset.
Consequently, it is general and flexible. The experimental results
on both toy and benchmark datasets show its encouraging
performance.

There are several directions deserved future study:
(1)
 Modeling design: because the solving for both S2GCA and
SemiCCA is finally boiled down to solving a general eigenva-
lue problem, the decoupled property in the form of the Eqs.
(3), (10) and (15) is lost and thus makes the involved solving
relatively complicated. Therefore, exploring capably-
decoupled modeling is important for more efficient solving,
even performance improvement.
(2)
 Classifier design: due to the scarcity of labeled data, using the
nearest neighbor strategy to classify new data in reduced
space will not be quite reasonable, thus one more reasonable
strategy is to design a semi-supervised classifier directly,
which will facilitate performance improvement since in the
DRed space, the total number of the samples is now the sum
of the samples from two views and thus is enlarged to
relatively more sufficient extent.
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Consequently, in order to obtain the optimal value of (25), we
choose the d eigenvectors corresponding to the top d largest non-
negative eigenvalues to form our final projection matrices.
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