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Two main tasks in pattern recognition area are clustering and classification. Owing to their different

goals, traditionally these two tasks are treated separately. However, when label information is

available, such separate treatment can not fully explore data information. First, classification is not

favored by the data cluster structure. Second, clustering is not guided by valuable label information.

Third, the relationship of clusters and classes is not revealed. Contrary to this separate learning

treatment, simultaneous learning clustering and classification could benefit each other and overcomes

these problems.

Recently, a simultaneous learning framework SCC was proposed. Through modeling pðclass9clusterÞ

classification and clustering mechanism in SCC depend only on cluster centroids. However, it produces

severely nonlinear objective, thus has to use a heuristic searching method, modified Particle Swarm

Optimization, to find the optimal solution. But it is very slow. Further, modeling pðclass9clusterÞ makes

SCC hard to incorporate semi-supervised settings.

In this paper, we propose an alternative framework SC3SR for simultaneous learning. Besides a

classifier derived on the original data, another classifier on the newly-formed cluster structure

representation is derived as well. Through this classifier, the clustering learning is guided by the label

and classification learning is also favored by cluster structure of data. The final objective is continuously

differentiable for which some principled optimization algorithms with convergence guaranteed exist.

As a result, our algorithm is much faster than SCC. Further, we generalize this framework to

semisupervised situation with the idea of manifold regularization and propose SemiSC3SR algorithm.

Our experiments demonstrate the effectiveness of both SC3SR and SemiSC3SR.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In traditional pattern recognition area, two main tasks are
clustering and classification [11]. Clustering task is unsupervised
in general. It groups similar instances into several meaningful
clusters, and is usually used to find out data intrinsic structure.
Classification task is usually supervised. It first learns a classifier
from training data with labels, and uses the learned classifier to
attach suitable labels to testing data. These two tasks are usually
treated separately, because both goals are quite different. How-
ever, when label information is available, simultaneous learning
clustering and classification tasks will benefit from each other [5].

First, classification task will be favored when data intrinsic
structure is considered. In pattern recognition area, well-known No
ll rights reserved.
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Free Lunch theorem tells that no classifier is innately superior to any
other classifier unless it incorporates the prior knowledge [9].
For classification, two kinds of prior knowledge are usually consid-
ered. One is on classification function, for example, the function is
usually assumed to be smooth to avoid overfitting [10,24]. The other
is on data distribution, of which there are two types of popular
assumptions, cluster and manifold assumptions [7]. Cluster assump-
tion assumes that the points of each class tend to form clusters, and
manifold assumption assumes that data lie on a low dimension
manifold. This paper focuses on simultaneous learning clustering and
classification tasks, hence cluster assumption is used as data prior
knowledge. It suggests that when data intrinsic structure revealed by
some clustering algorithm is incorporated into the classification task,
better performance may be desired [5,13,25].

Second, clustering task will be guided by valuable label
information. For example, when clustering faces, the Euclidean
distance between the faces from the same person may be larger
than the Euclidean distance between the ones from the different
persons due to varying lighting [20]. However, one may want to
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Table 1
Difference between SCC and SC3SR.

Different points SCC SC3SR

Objective dependence Cluster centroid CSR

Objective function Hard to optimize Easy to optimize

Theoretical convergence guarantee No Yes

pðclass9clusterÞ Explicit Implicit

Semi-supervised situation No Yes

Dimension reduction No Yes

Fig. 1. Training of FRC and RFRC [22].
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put the faces from the same person into his(her) own clusters and
push the faces from the different persons away even they are
under similar lighting condition. When label information is
available, the faces from the different persons will be forcibly
pushed apart according to the guidance of label information,
consequently faces from the same persons and under the same
lighting condition will be grouped together.

Third, the relation between clusters and classes can be
revealed, so some meaningful insight between clusters and
classes could be caught. For example, we can know whether the
cluster contains single class data or not, and by which clusters the
class is formed.

Recently, a simultaneous learning framework for clustering
and classification SCC was proposed [5]. In order to bridge the
clustering and classification tasks, SCC proposed to model cluster

posterior probabilities of classes pðclass9clusterÞ. Then by assuming
that class is conditionally independent with data given cluster,
the classification mechanism was broken down to
pðclass9instanceÞ ¼

P
pðclass9clusterÞpðcluster9instanceÞ according

to Bayesian formula. As a result the classification and clustering
tasks are naturally and seamlessly fused together, and the relation
between class and cluster is revealed explicitly by pðclass9clusterÞ.
In its implementation, SCC estimates pðclass9clusterÞ and
pðcluster9instanceÞ only by cluster centroids and designs the
objective with cluster centroids be sole argument. However, it is
highly nonlinear [5] so hard to find the local optimal solution. In
fact, SCC has to resort to a heuristic searching method, modified
Particle Swarm Optimization method, to find the local optimal
solution. But it is slow, sensitive to initial settings and has no
guarantee of convergence. Furthermore, SCC is not capable of
semi-supervised situation, because for unlabeled data,
pðclass9clusterÞ cannot be estimated [5].

In this paper, we propose an alternative framework called
SC3SR (Simultaneous Clustering and Classification over Cluster
Structure Representation) for simultaneous learning. The key
point connecting clustering and classification tasks is classifier
designed on cluster structure representation (CSR) rather than
cluster posterior probabilities of classes pðclass9clusterÞ. Actually,
besides the classifier designed on the original data, another
classifier on its CSR is also jointly designed. For their consistence,
their disagreement is minimized. Consequently, the classifier
designed on the original data is influenced by the data cluster
structure, while data clustering procedure is also guided by label
information. The final objective is continuously differentiable
with blockwise arguments, thus can be optimized through block
coordinate descent algorithm which guarantees that the iteration
procedure converges to a stationary point [2]. Experiments
demonstrate that our algorithm is much faster than SCC. The
difference with SCC is that our algorithm can implicitly rather
than explicitly give out the relation between cluster and class
pðclass9clusterÞ. But our framework is more flexible. Since SC3SR
derives two classifiers from both the original data and the CSR, it
could be easily generalized to deal with semi-supervised situation
with the idea of manifold regularization [1]. Consequently we also
develop incidentally SemiSC3SR algorithm in this paper and
preliminarily examine its effectiveness by comparing with some
popular semi-supervised algorithms. Furthermore, our framework
can also be viewed as a dimension reduction method since the
learned CSR can be also taken as a reduced-dimensionality
representation of the original data. Finally, we enumerate the
differences between SCC and SC3SR in Table 1 and give out our
contributions as follows:
�
 Propose a new simultaneously learning classification and
clustering algorithm SC3SR which is much faster and more
flexible than SCC.
�
 Generalize SC3SR to semi-supervised situation and develop
SemiSC3SR algorithm.

�
 Examine their effectiveness and efficiency through experiments.

The rest of paper is organized as follows: in Section 2, some
related works are reviewed. In Section 3, Both SC3SR and
SemiSC3SR are proposed. Experimental results are presented in
Section 4. And Section 5 concludes this paper.
2. Related work

Much effort has been devoted to connecting clustering and
classification tasks together, most of which treat clustering and
classification in a sequential manner.

In popular 3-layer radial basis function neural networks (RBFNN)
[18,25], clustering algorithms like k-means and fuzzy c-means (FCM)
are first performed to help to determine the parameters of hidden
layer, next the connection weights between the hidden layer and
output layer are optimized by minimizing the mean square error
between the target and actual outputs. Better generalization is
obtained through incorporating clustering information [5]. However,
clustering task does not benefit from label information [5].

In fuzzy relational classifier (FRC) algorithm proposed by
Setnes et al. [22], the training data are first clustered by FCM,
then a fuzzy relation between clusters and given classes is
artificially established explicitly by means of a fuzzy composite
operator. The whole procedure is illustrated in Fig. 1 [22]. Lately,
Cai et al. [4] presented robust FRC(RFRC) algorithm to enhance the
robustness of FRC from two aspects. First, the authors used the
robust kernel FCM [8] as the clustering tool; second motivated by
fuzzy k-nearest-neighbor algorithm [12], they replaced hard class
label with the soft class label to construct their fuzzy relation, as a
result significantly boosting the robustness and accuracy of FRC.
However, a common disadvantage in FRC and RFRC is that the
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fuzzy relation between clusters and classes is hard to optimize
due to the indifferentiability and complexity of the composite
operators and lacks the probabilistic interpretation thus fails to
reveal the reliable relation between clusters and classes.

Unlike the RBFNN, FRC and RFRC algorithms which conduct
clustering task in unsupervised manner, some algorithms take
supervised clustering algorithm to aid the classification tasks.
VQþLVQ3 algorithm proposed by Kim et al. [13] utilizes cluster-
ing method to reduce the computation burden in nearest neigh-
bor classifier while without sacrificing the classification
performance. In the clustering procedure, LVQ3 algorithm which
employs the label information is used to determine the cluster
center and cluster labels. Similar to VQþLVQ3, CCAS [26,14] and
its extension ECCAS [15] also employ a supervised clustering
procedure to find out a set of prototypes. Both VQþLVQ3 and
(E)CCAS algorithms use nearest neighbor classifier in classifica-
tion phrase, they actually do not have training phrases. The
common idea is to find out the best prototypes as the class
representatives for the subsequent nearest neighbor classifier.

Recently, Cai et al. [5] proposed a simultaneous learning
clustering and classification algorithm named SCC. In SCC, the
clustering and classification tasks are learned simultaneously in
one framework. Through modeling cluster posterior probabilities of

classes pðclass9clusterÞ, SCC succeeds in acquiring robust classifica-
tion and clustering simultaneously and in revealing the under-
lying relation between clusters and classes. However, the
objective of SCC is hard to optimize, thus SCC has to resort to a
heuristic searching method, modified Particle Swarm Optimiza-
tion method, to find the local optimal solution. Further, SCC
cannot deal with semi-supervised situation because pðclass9
clusterÞ could not be estimated without labels.

The formulation of SCC combines the classification and clus-
tering criteria into a single objective with a trade-off parameter,
thus will make compromise between the clustering performance
for the classification performance. Later Cai et al. [6] remedied
this problem by optimizing the classification and clustering
criteria together through multi-objective optimization method
rather than the combined single one. However the algorithm,
called MSCC, still inherits some flaws of SCC, despite achieving
better performance. For example, it is hard to optimize thus has to
resort to multi-objective particle swarm optimization method,
and can not deal with semi-supervised situation. In this paper, we
propose a new formulation to overcome these flaws. Our frame-
work takes the single objective like SCC, thus comparing with
MSCC is unfair to our framework because our framework does not
take the more effective multi-objective framework. Yet, it can also
be generalized into the multi-objective one, but this work is out of
our paper’s scope.
3. SC3SR: simultaneous clustering and classification over
cluster structure representation

In this section, we present our SC3SR algorithm. First, we
introduce some notations. Then we explain what we called CSR in
this paper. Next, we introduce the mathematical formulation of
SC3SR algorithm and its optimization methods. Finally we intro-
duce the kernel version of SC3SR.

3.1. Notations

In this paper, e is the column vectors with all entries being 1.
J � J is 2-norm.

Let data set be X ¼ ½x1, . . . ,xN�ARD�N and its corresponding
label set be Y ¼ fy1, . . . ,yNg. For each yiAY , yiAf1;2, . . . ,Cgwhere C

is the number of classes.
K is the number of clusters. In Fuzzy c-means algorithm,
cluster centroid of kth cluster is denoted by vk. Matrix
V ¼ ½v1, . . . ,vK � contains all the cluster centroids. The cluster
indicator vector of ith instance is denoted by hi with each entry
being non-negative and eT hi ¼ 1. Cluster indicator matrix
H¼ ½h1, . . . ,hN� contains all the cluster indicator vectors.

3.2. CSR

A representation of data is a way describing the data. For
example, web pages in the Internet can be represented by the
contained words; also they can be represented by the hyperlink
graph. CSR is a representation which describes data from cluster
perspective and reveals the data cluster structure. Actually, the
results of any clustering algorithms could be considered as a CSR
since the cluster indicator vectors reveal the data cluster struc-
ture. But they are not all. For example, in spectral clustering
algorithm, data are first embedded into an Euclidean space
according their pairwise similarity relation. Distances between
coordinates in the new Euclidean space reflect their similarity
relation. Similar instances gather together and dissimilar
instances separate. So these coordinates also reveal the data
cluster structure and can be considered as a CSR. Here we list
some CSRs yielded from some common clustering algorithm.
1.
 In FCM (k-means), the cluster indicator vectors can be con-
sidered as CSR.
2.
 In spectral clustering, the coordinates in the embedded Eucli-
dean space can be considered a CSR.
3.
 In pLSA, pðtopic9documentÞ can be considered as CSR.

3.3. SC3SR

In simultaneous learning clustering and classification framework,
the clustering and classification tasks should be optimized together to
benefit from each other. So the key point is how to bridge the
clustering and classification tasks. SCC proposed to model cluster

posterior probabilities of classes pðclass9clusterÞ, and bridge the cluster-
ing and classification tasks through Bayesian formula. However, it
leads to a severely nonlinear optimization problem. In our framework,
we bridge the clustering and classification tasks through designing a
classifier on the CSR. Actually we design two classifiers. One is on the
original data, and the other is on CSR. Since the label is the same, their
prediction should be consensus and their disagreement should be
minimized.

Based on the above description, the framework is formulated
as follows:

min J¼ CðX,HÞþl1

X
i

ðlorigðyi,f origðxiÞÞþ lcsrðyi,f csrðxiÞÞÞ

þl2

X
i

Dðf origðxiÞ,f csrðxiÞÞ ð1Þ

The first term measures the cluster cost. X is data matrix and H

is the cluster indicator matrix which here is also CSR derived from
the clustering algorithm. The smaller the cluster cost is, the better
the cluster result is. The second term measures the classification
loss of two classifiers, where forig and fcsr are the classifiers
designed on original data and the CSR respectively. lorig and lcsr

are the loss functions measuring the loss of classifier forig and fcsr

respectively. The third term Dð�,�Þ measures the output disagree-
ment between classifier forig and fcsr.

This is a general framework. Many clustering algorithms and
classification algorithms could be incorporated into this framework.
Without loss of generality, we choose FCM as our clustering algorithm
and multi-class logistic regression as our classification algorithm.



Q. Qian et al. / Pattern Recognition 45 (2012) 2227–22362230
Since the prediction of multi-class logistic regression is probabilistic,
we choose Jensen–Shannon divergence (a Symmetrised divergence of
Kullback-Leibler divergence) to measure the output disagreement
between forig and fcsr. So the framework is rewritten as follows:

min JðV ,H,Wx,Wh
Þ ¼
X

i

X
k

h2
ikJxi�vkJ

2

�l1

X
i

ðlog pðyi9xiÞþ log pðyi9hiÞÞ

þl2

X
i

1

2
KLðpðc9xiÞJpðc9hiÞÞþ

1

2
KLðpðc9hiÞJpðc9xiÞÞ

� �

s:t: eT hi ¼ 1 for each iAf1, . . . ,Ng

hikZ0 for each iAf1, . . . ,Ng, and kAf1, . . . ,Kg ð2Þ

where

pðc¼ 19xiÞ ¼
expðxT

i wx
1Þ

1þexpðxT
i wx

1Þþ � � � þexpðxT
i wx

C�1Þ

pðc¼ 29xiÞ ¼
expðxT

i wx
2Þ

1þexpðxT
i wx

1Þþ � � � þexpðxT
i wx

C�1Þ

^

pðc¼ C9xiÞ ¼
1

1þexpðxT
i wx

1Þþ � � � þexpðxT
i wx

C�1Þ
ð3Þ

and

pðc¼ 19hiÞ ¼
expðhT

i wh
1Þ

1þexpðhT
i wh

1Þþ � � � þexpðhT
i wh

C�1Þ

pðc¼ 29hiÞ ¼
expðhT

i wh
2Þ

1þexpðhT
i wÞ1þ � � � þexpðhT

i wh
C�1Þ

^

pðc¼ C9hiÞ ¼
1

1þexpðhT
i wh

1Þþ � � � þexpðhT
i wh

C�1Þ
ð4Þ

The two constrains over cluster indicator matrix H come from FCM
algorithm where the cluster indicator vector in H should be non-
negative and sum to one. The arguments are obviously blockwise
thus can be optimized with block coordinate descent algorithm
which guarantees that the iteration procedure converges to a
stationary point of objective function [2].

SC3SR does not produce the probabilistic relation of classes
and clusters pðclassi9clusterjÞ explicitly in Eq. (2), but by referring
to Cai et al. [5], it could be given out after the class labels and
cluster labels of data are known. Through Bayesian formula
pðclass9clusterÞ can be rewritten as follows:

pðclassi9clusterjÞ ¼
pðclassi,clusterjÞ

pðclusterjÞ

¼
#fxAclassi,xAclusterjg

#fxAclusterjg
ð5Þ

Clearly this relation is probabilistic because
P

i pðclassi9clusterjÞ ¼ 1.

3.4. Optimization

The arguments of SC3SR’s objective JðV ,H,Wx,Wh
Þ are block-

wise, thus the objective could be optimized by classic block
coordinate descent method. The total arguments in J consists of
four blocks V ,H,Wx,Wh. Given H,Wx,Wh fixed, V could be opti-
mized by analytically finding out its stationary point. H could be
optimized by gradient projection methods since it is constrained.
For both Wx and Wh, we use Newton–Raphson method which is
commonly used in optimizing logistic regression classifier [3]. The
whole algorithm is listed in Algorithm 1.

Algorithm 1. SC3SR.
Input: data matrix X, label vector Y, number of cluster K,
maximum iteration number MaxIter
initialize Wh,V,H

while iteroMaxIter do
step 1: update Wx by Wx ¼Wx�aWx

HWx
\gWx

step 2: update Wh by Wh ¼Wh�aWh
HWh

\gWh

step 3: update each vk by vk ¼

P
i
h2

ikxiP
i
h2

ik

step 4: update each hi by hi ¼ Projðhi�ahghi
Þ

end while

calculate pðclass9clusterÞ by Eq. (5).
where gWx
,gWh

,ghi
are the gradients and HWx

,HWh
are Hessian

matrices, and the formula of them are given in the Appendix. Proj

is an operation that projects a vector to the probabilistic simplex.
According to [2], for continuously differentiable objective func-
tions, the sequence generated by the block coordinate descent
method converges to a stationary point.

3.4.1. Projection onto probability simplex

Each column vector of H is constrained in a probability
simplex, so after updating hi by the gradient descent, the newly-
updated point should be projected onto its feasible region, which
can be cast as a quadratic programming(QP) problem as follows:

min 1
2Jz�hiJ

2

s:t: eT z¼ 1

zkZ0 for each kAf1, . . . ,Kg ð6Þ

It is time-consuming to solve the problem by some standard QP
packages. Luckily, for such probability simplex constraints, this
QP problem can be easily solved [17]. For this problem, we define
its Lagrangian problem as follows:

min
mZ0

Lðl,mÞ ¼ 1

2
Jz�hiJ

2
þlðeT z�1Þ�

X
k

mkzk

where l,m are the Lagrangian multipliers of corresponding con-
straints. Through its KKT system, we obtain Eq. (7) with respect to
the l, and finally obtain its solution l% by the bisection method.
Next, the projection z% of hi could be recovered from the l% by
Eq. (8) which is also derived from KKT system. For detailed
information, please refer to Liu et al.’s paper [17].

The whole procedure consists of two steps:
1.
 solving the equationX
k

maxðhik�l,0Þ�1¼ 0 ð7Þ

and finding the root ln by the bisection method.

2.
 recovering the projection zn from ln by formula

znk ¼maxðhik�l
n,0Þ ð8Þ

The time complexity is only O(K).

3.4.2. Time complexity of SC3SR

Here we consider the time complexity of Algorithm 1. In step 1,
optimizing Wx consists of calculating gradient gWx and Hessian matrix
HWx of Wx and updating Wx by Newton–Raphson method. The time
complexities of calculating gWx and HWx are OðN � D� CÞ and



Table 2
Distribution of synthetic dataset.

Group Label Mean Covariance

1st Gaussian component 1 [�5 �5] diag([1 1])

2nd Gaussian component 1 [�1 5] diag([.1 1.5])

3rd Gaussian component 2 [5 �5] diag([1 1])

4th Gaussian component 2 [1 5] diag([.1 1.5])
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OðN � D2
� C2
Þ respectively. Since updating Wx involves solving the

linear system HWx \gWx (Matlab notation), it costs OðD3
� C3
Þ. Conse-

quently step 1 totally costs OðN � D2
� C2
ÞþOðD3

� C3
Þ. Consider

the similar role of Wh with Wx in Eq. (2), the time complexity of step
2 is similar with the one of step 1, only replacing data dimension D

with number of clusters K, so it is OðN � K2
� C2
ÞþOðK3

� C3
Þ. Step

3 takes OðN � K � DÞ. Step 4 virtually consists of updating H and
projection which take OðN � K � CÞ and O(K) respectively. Thus step
4 costs OðN � K � CÞ. In summary, the time complexity of algorithm
1
is OðN � D2

� C2
� IÞþOðD3

� C3
� IÞþOðN � K2

� C2
� IÞþOðK3

�

C3
� IÞþðOðN � K � D� IÞ where I is the iteration number. Despite

the lengthy formula, the complexity is much smaller than SCC’s. SCC
costs OðP � N � C � K � D� IÞ where P is the particle number.
According to Cai et al. [5], P and I are set to quite large numbers,
1000 and 500 respectively, to assure finding good solution. In our
experiments, the maximum iteration number is set to 100, and it
converges typically within 50. So SC3SR is more efficient than SCC.

3.5. SemiSC3SR

Although our major attention focuses on SC3SR, in this sub-
section, we give out the formulation of semi-supervised SC3SR.

One of the SCC’s defects is that it is hard to cope with partially
labeled data. The main reason lies in that both the classification
and clustering mechanisms depend on the crucial cluster poster-
ior probabilities of classes pðclass9clusterÞ. However for unlabeled
data, estimating pðclass9clusterÞ is quite difficult since it need
know labels of all instances (belonging to some clusters). As a
result, SCC cannot be generalized by some classical semi-super-
vised ideas like manifold regularization. At the same time, SC3SR
aims to overcome the difficulty and derives two classifiers
respectively on the original data and the CSR. The two classifiers
can then be easily generalized to semi-supervised situation with
the similar idea of manifold regularization [1]. To this end, we
append the Laplacian regularization to the SC3SR’s objective and
derive the semi-supervised SC3SR (SemiSC3SR) as follows:

min JðV ,H,Wx,Wh
Þ ¼

Xlþu

i

X
k

h2
ikJxi�vkJ

2

�l1

Xl

i

ðlog pðyi9xiÞþ log pðyi9hiÞÞ

þl2

Xlþu

i

1

2
KLðpðc9xiÞJpðc9hiÞÞþ

1

2
KLðpðc9hiÞJpðc9xiÞÞ

� �

þl3

Xlþu

ij

wijðJlogðpðc9xiÞÞ�logðpðc9xjÞÞJ
2

þJlogðpðc9hiÞÞ�logðpðc9hjÞÞJ
2
Þ

s:t: eT hi ¼ 1 for each iAf1, . . . ,Ng

hikZ0 for each iAf1, . . . ,Ng and kAf1, . . . ,Kg ð9Þ

where wij is the similarity weight between the ith and the jth
instances, logðpðc9xiÞÞ is a vector ½logðpðc¼ 19xiÞÞ, . . . ,logðpðc¼
C9xiÞÞ� and so is logðpðc9hiÞÞ, and l,u are the numbers of the labeled
and the unlabeled instances respectively. Here we follow the
custom of Laplacian regularization formulation and use the l2
norm rather than the Jensen–Shannon divergence to measure the
difference between the outputs of the ith and the jth instances.
For ease of calculation, we use logðpðc9xiÞÞ instead of pðc9xiÞ

directly, since logðpðc9xiÞÞ could be seen as an approximation of
pðc9xiÞ via logðxÞ � x�1 in the Laplacian regularization.

Like SC3SR, SemiSC3SR can also be optimized by block coordi-
nate descent method and follows the same procedure as Algo-
rithm 1. We only need to replace the corresponding gradients and
Hessian matrices with those of SemiSC3SR’s objective, and thus
omit the algorithm description here while defer the correspond-
ing formulae of gradients and Hessian matrices to Appendix.

3.6. Kernelized SC3SR and SemiSC3SR

In this section, the kernel versions of SC3SR and SemiSC3S are
introduced.

Kernel function kð�,�Þ implicitly induces a map fi : x-

fiðxÞ(subscript i of f stands for ‘‘implicit’’). However it changes
the number of logistic regression parameters Wx from (C�1)D to
(C�1)N for SC3SR algorithm. Using the Newton–Raphson method,
directly to optimize the logistic regression parameters will be
troublesome since the inverse of Hessian matrix needs computa-
tion when N is large.

Consequently, instead of using this implicit kernel mapping,
we here adopt the approximated empirical kernel mapping
[23,21]. Usually kernel algorithms perform only in the subspace
spanned by fiðx1Þ, . . . ,fiðxNÞ in RKHS. This subspace can be
embedded into an Euclidean space while all the geometrical
structure can still be preserved. Such embedding is called the
‘‘empirical kernel mapping’’ [21] and defined as follows (subscript
e of f stands for ‘‘empirical’’):

fe : x-L�
1
2UT
½kðx,x1Þ, . . . ,kðx,xNÞ�

T ð10Þ

where K ¼ULUT is the eigen-decomposition of kernel matrix K.
To reduce the parameter number, we truncate the small

eigenvalues in L and use the approximated empirical kernel
mapping

feðxiÞ ¼L1=2Udði, : Þ
T

ð11Þ

where d is the number of the remained eigenvalues. The number
of parameters is then reduced to (C�1)d. As a result,
feðx1Þ, . . . ,feðxNÞ can be directly fed into SC3SR and SemiSC3SR
algorithm without any modification.
4. Experiment

In this section, we examine the effectiveness of SC3SR on both
clustering and classification tasks to illustrate the merit of
simultaneous learning clustering and classification tasks.

4.1. Clustering learning on toy problem

This experiment aims to show the clustering results of SC3SR.
As competitors, the results of SCC and FCM are also illustrated.
Both kernelized and unkernelized versions are examined. The
algorithm names appended by 1 or 2 denote the unkernelized or
kernelized versions respectively. RBF kernel is used here. A two-
class synthetic dataset which consists of four Gaussian compo-
nents is generated. The means, covariances and labels are listed in
Table 2. The clustering results are demonstrated in Fig. 2. Here as
demonstrated in Fig. 2(a), (b), (e), and (f), the simultaneous
learning algorithms SC3SR and SCC yield reasonable clustering
results respectively. The stretched upper two Gaussian compo-
nents are not mixed up thanks to the label information guidance.
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Fig. 2. Clustering results of SC3SR, FCM and SCC. (a) SC3SR1. (b) SC3SR2. (c) FCM1. (d) FCM2. (e) SCC1. (f) SCC2.

Table 3
Clustering result on CMU-PIE face dataset of SC3SR.
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And thanks to the suitable clustering results, both SC3SR and SCC
achieve the 100% classification accuracy in both kernelized or
unkernelized versions. By contrast, the clustering results of FCMs,
shown in Fig. 2(c) and (d), are not consistent with the class labels.
FCM1 groups the upper two Gaussian components into one
cluster, and FCM2 cuts the upper two Gaussian components apart
in the middle respectively. Both of them fail to reflect the true
underlying data structure.

4.2. Effectiveness of clustering learning

We show the clustering results on CMU PIE face database to
demonstrate the clustering effectiveness of SC3SR algorithm. The
original PIE database has 68 persons with 41,368 face images. Each
person is imaged under 13 different poses, 43 different illumination
conditions, and with 4 different expressions. Here we only choose a
subset (Pose C271) with frontal pose and varying illumination of two
persons. All images are down-sampled to 16�16 pixels. The
1 http://www.zjucadcg.cn/dengcai/Data/PIE/Pose27_64x64.mat
clustering results are shown in Tables 3–5. In the result of SC3SR,
the faces grouped into the same cluster are under the similar
illumination condition. Furthermore, each cluster only contains one
person’s faces thanks to the guidance of label. In the result of FCM, the
faces with similar illumination are grouped together, but due to the
absence of label guidance, FCM mixes up the faces of different
persons and groups them together in Cluster 1 and Cluster 2. We
circumscribe faces of different persons with different colors in
Table 4. In the result of SCC, the faces belonging to the same persons
are clustered into their respective clusters. In this situation, the

http://www.zjucadcg.cn/dengcai/Data/PIE/Pose27_64x64.mat
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objective of SCC reaches its minimum value zero. SCC traps into a bad
local minimum in this dataset which fails to reveal the cluster
structure within classes. Table 6 illustrates the probabilistic relation
of clusters and classes produced by SC3SR,FCM and SCC respectively.

4.3. Effectiveness of classification learning

We examine the accuracy of classifications of SC3SR algorithm
on the benchmark datasets. We use the same dataset with Cai
et al.’s paper and follow their experiment setting [5]. We copy
SCC’s experiment results from Cai’s paper into Table 7. In Cai
et al.’s paper, SCC algorithm is compared with classical algorithm
like SVM and the related algorithms (including RFRC, VQþLVQ3,
RBFNN, RBFNN_PSO) mentioned in the Review section, and
achieves better classification performance. We here omit the
experiment results of these algorithms due to table space limita-
tion. Please refer to Cai’s paper if the readers are interested.

For each type of algorithms, results of unkernelized and
kernelized versions are reported. The algorithm names appended
by 1 or 2 denote the unkernelized or kernelized versions respec-
tively. RBF kernel is used in the kernelized algorithms, and the
kernel parameter g is set to the mean of Euclidean distance
between each data point pairs. The kernelized SC3SR2 algorithm
employs the approximated empirical kernel mapping which maps
the data into an approximated low dimensional kernel space, here
the dimension is set to

ffiffiffiffi
N
p

. The parameters l1 and l2 are
determined by searching in {1e�3 1e�2 1e�1 1e0 1e1 1e2
1e3}, and the cluster number is determined by searching in {C 2C
3C}. 5-fold cross validation is used to choose the reasonable
parameters. To be fair, kernelized LR2 also uses the approximated
empirical kernel mapping with the same parameter setting as
SC3SR2. In all the experiments, each dataset is randomly parti-
tioned into two halves, one for training and the other for testing.
For each dataset, the algorithms are run repeatedly and indepen-
dently ten times, and the mean accuracy and standard deviation
is reported in Table 7. For SCC, we copy the results reported in [5].

First, we compare the performance of SC3SR and its base
logistic regression classifier. According to the second and sixth
columns of Table 7, the performance of SC3SR1 is better than LR1.
SC3SR1 yields higher accuracies than LR1 on 11 out of 19 datasets,
and comparable accuracies on 7 datasets, and only yields lower
accuracies on one dataset. According to the third and seventh
Table 4
Clustering result on CMU-PIE face dataset of FCM.

Table 5
Clustering result on CMU-PIE face data set of SCC.
columns of Table 7, SC3SR2 performs consistently better than LR2,
and achieves higher accuracies on 14 out of 19 datasets and
comparable accuracies on the rest datasets. The experiments
demonstrate that by adopting data cluster structure representa-
tion, the classification ability of SC3SR is highly enhanced com-
pared with LR algorithm which not adopt data cluster structures.

Second, we compare the performance of SC3SR2 and SC3SR1.
According to the sixth and seventh columns of Table 7, SC3SR2
obtains also slightly better performance than SC3SR1. Among all
19 datasets, the accuracies of SC3SR2 are higher than those of
SC3SR1 on 7 of them, and are comparable on 9 of them, and are
lower on the rest 3 datasets. We can see that kernel does bring
some merits on some datasets. However sometimes the perfor-
mance is not promoted obviously due to its heuristic setting
rather than exhaustive searching in some range for kernel para-
meter and due to the approximate empirical kernel mapping
which maybe lead to some information loss.

Third, we compare performances of SC3SR and SCC. For compar-
ison fairness, we compare SC3SR1,2 with SCC1,2 together rather than
SC3SR1 with SCC1 and SC3SR2 with SCC2 respectively because in fact
SCC1 is in nature a non-linear classifier while SC3SR1 is a linear one.
Over all the benchmark datasets, SC3SR achieves higher classification
accuracies on 8 datasets, comparable accuracies on 7 datasets and
lower accuracies on the rest 4 datasets. So overall SC3SR produces
better classification performance than SCC. Though SC3SR does not
significantly outperform SCC on some datasets, it still provides us a
new faster and more flexible way to conduct simultaneous learning
clustering and classification tasks.
4.4. Running time comparison between SC3SR and SCC

To exam the efficiency of SC3SR and SCC, we compare the
running times of SC3SR and SCC on some chosen datasets with the
scales range from small (less than 100) to large (more than 4000).
All the experiments are run in matlab environment on a PC with
Intel Core2 Duo E7500 2.93 GHz CPU and 2G memory. For each
dataset, the algorithms run 10 rounds and the average running
times are reported in Table 8. It is obvious that SC3SR is much
faster than SCC by almost an order of magnitude which verifies
the theoretical time complexity analysis in Section 3.4.2. SCC
clearly cannot efficiently handle large datasets.
Table 6
Relation between clusters and classes of SC3SR on CMU PIE face dataset.

Relation matrix of SC3SR
Person1

Person2

Cluster1 Cluster2 Cluster3 Cluster4

1 1 0 0

0 0 1 1

0
B@

1
CA

Relation matrix of FCM
Person1

Person2

Cluster1 Cluster2 Cluster3 Cluster4

0:5 0:3 1 0

0:5 0:7 0 1

0
B@

1
CA

Relation matrix of SCC
Person1

Person2

Cluster1 Cluster2 Cluster3 Cluster4

1 0 0 0

0 0 0 1

0
B@

1
CA



Table 8
Running time comparison between SC3SR and SCC. All the experiments are run in

matlab environment on a PC with Intel Core2 Duo E7500 2.93 GHz CPU and 2G

memory.

Dataset (#instances�#dim�#class) SC3SR(s) SCC(s)

Lenses (24�4�3) 0.72 16.64

Iris (150�4�3) 2.00 21.16

Sonar (208�60�2) 2.45 30.17

Bupa (345�6�2) 2.69 25.97

WDBC (569�30�2) 5.98 41.53

WBCD (683�9�2) 4.67 36.99

PID (768�8�2) 6.94 38.63

Spambase (4601�57�2) 52.93 454.75

Table 9
Accuracy comparison on UCI data sets. The highest accuracy is bolded.

Dataset SVM [16,19] lapSVM [16,19] lapRLS SemiSC3SR SC3SR

House 91.16 89.95 87.90 92.33 89.51

Heart 70.59 77.96 78.11 71.82 68.76

Vehicle 78.28 71.38 72.53 78.40 76.50

dbc 75.74 91.07 89.59 86.86 84.92

isolet 89.58 93.93 93.92 87.78 93.97

optdigits 90.31 98.34 98.75 96.90 96.32

ethn 67.04 74.60 73.51 75.36 67.53

Table 7
Classification performance of logistic regression, SCC and SC3SR. The best results are bolded. If there are more than one bold result in one dataset, it means that these

results are comparative and have no significant difference.

Dataset LR1 LR2 SCC1 [5] SCC2 [5] SC3SR1 SC3SR2

WBCD 95.770.6 94.671.4 96.870.6 97.070.4 97.070.8 96.871.2
Water 91.173.7 95.971.8 98.371.5 98.471.2 98.071.0 98.372.2
Thyroid 95.171.6 91.372.5 96.371.5 96.471.5 95.571.7 95.272.0

Lung cancer 43.5719.1 65.879.9 48.3713.3 48.3714.2 48.8710.0 75.875.8
PID 75.471.3 75.371.7 74.472.3 76.671.4 77.471.1 75.471.5

Soybean-small 97.172.0 99.171.7 96.573.3 99.671.3 97.572.1 100.070.0
WDBC 93.971.5 95.071.2 96.670.9 96.870.7 97.170.8 96.771.0
Ionosphere 85.371.2 91.772.6 92.171.5 93.271.4 85.773.2 93.271.3
Waveform 86.871.0 85.470.5 82.972.4 86.270.6 86.570.6 86.370.7
Balance scale 87.971.1 92.471.1 89.471.6 90.6 71.3 89.170.6 95.171.2
Heart disease 81.871.9 79.672.7 82.771.9 83.072.1 81.772.5 81.272.9

Glass 61.974.6 59.873.8 65.173.6 64.972.5 58.074.6 66.473.4
Sonar 69.273.9 77.173.0 81.774.5 80.875.1 74.573.4 78.075.0

Wine 95.371.5 91.873.1 96.971.5 97.171.8 97.171.5 95.172.3

Ecoli 71.375.1 69.174.9 82.973.7 83.771.8 71.273.0 71.272.1

Lenses 70.1718.4 71.5710.9 77.579.9 77.573.0 76.977.2 79.379.6
Iris 95.471.0 93.172.5 94.971.0 95.271.4 96.571.2 95.272.0

Bupa 66.973.8 68.772.4 64.273.0 67.575.8 68.572.5 69.272.3
Spambase 91.870.5 92.071.0 78.577.7 88.171.3 91.971.5 92.070.8
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4.5. Performance of SemiSC3SR

In this subsection, we preliminarily examine the perfor-
mance of SemiSC3SR on 7 UCI data sets in this experiment to
illustrate that our framework can be adapted to any semi-
supervised scenario. The experiment setup follows Li et al.
[16] and Mallapragada et al. [19]. Specifically, each data is split
into two halves, with one half for training and the other for
testing. For all the datasets, 10 random instances in the training
set are labeled and the rest are used as unlabeled instances. The
experiment is repeated 20 times and their average results are
reported. Throughout the experiment, linear kernel is used.
Parameters of SemiSC3SR are set as l1 ¼ 1e3,l2 ¼ 1e�1,l3 ¼

1e�1, and parameters of SC3SR are set as l1 ¼ 1e3,l2 ¼ 1e�1.
We compare with both SVM and lapSVM, and directly copy their
results in Li et al. and Mallapragada et al.’s papers into Table 9.
In addition we also add another semi-supervised lapRLS [1] as a
baseline.

According to Table 9, generally the semi-supervised algo-
rithms outperform the supervised algorithms learnt just from a
few given labeled instances. By comparison with SC3SR,
SemiSC3SR obtains six higher accuracies on seven data sets.
Unlabeled data as well as manifold regularization can indeed
help classification for these data sets. On 7 data sets, SemiSC3SR
wins on 3, and both lapSVM and lapRLS wins on 2 respectively.
Generally their performances are comparable, SemiSC3SR’s per-
formance is slightly better.
5. Conclusion

In this paper, a new simultaneous learning clustering and
classification framework SC3SR is presented. In this framework,
cluster structure representation is proposed to bridge the clustering
and classification tasks, so the performances of clustering and
classification tasks could benefit from each other. This is different
with the SCC framework proposed by Cai et al. [5] which models
cluster posterior probabilities of classes and bridges the clustering
and classification tasks by Bayesian formula. Comparing with SCC,
the formulation of SC3SR is easier to optimize. The block coordinate
descent method is used to optimize SC3SR under guaranteed
convergence. It is worth mentioning that extending SCC to semi-
supervised scenario is not straightforward [5] because for unlabeled
data, pðclass9clusterÞ cannot be estimated, however extending SC3SR
to semi-supervised scenario is relatively easier by the idea from
manifold regularization framework [1]. Furthermore, SC3SR can also
perform dimension reduction tasks. The learned low dimensional
cluster structure representation can naturally reflect the original
data structure. However, it is not so obvious for SCC to generate
dimension reduced data representation. In the next step, we want
to examine the influence of different CSRs on SC3SR framework.
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Appendix A

In this appendix, we give out the gradients and Hessian matrices
used in SC3SR and SemiSC3SR algorithm. In the following, the notation
� and { means elementwise product and divide. For notation
convenience, we let pðc¼m9x=hiÞ ¼ px=h

mi and px=h
m: ¼ ½p

x=h
m1 , . . . ,px=h

mN�.

A.1. Gradients and Hessian matrices used in SC3SR
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and the Hessian of Wx is
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Consider the symmetry of Wx and Wh in the objective, the
gradient and Hessian of Wh can be derived by simply exchanging x

with h in the Wx’s equations. We omit the lengthy mathematical
deduction here.

The gradient of hi for i¼1,y,N is defined as follows:
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A.2. Gradient and Hessian matrices used in SemiSC3SR

Comparing with SC3SR’s objective, the objective of SemiSC3SR
has one more l3 term. Thus by adding the gradients and Hessian
matrices of the l3 term to those of SC3SR, we get the correspond-
ing SemiSC3SR’s. We give out the gradients and Hessian matrices,
marked by tilde, of the l3 term here.

For notation convenience, we let logðpðc¼m9ðx=hÞiÞÞ ¼ qx=h
mi and

logðpx=h
m: Þ ¼ ½q

x=h
m1 , . . . ,qx=h

mN �. W is the graph weight matrix and
L¼ T�W is the Laplacian matrix where T is diagonal matrix with
Tii ¼

P
jWij. Let t¼ ½T11, � ,TNN �. Li is the ith column of Laplacian

matrix L and e¼ ½1, . . . ,1�.
The gradient of l3 term with respect to Wx is
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Consider the symmetry of Wx and Wh in l3 term, the gradient
and Hessian of Wh could be derived by simply exchange x with h

in the Wx’s equations. We also omit the lengthy mathematical
equations here.

The gradient of l3 term with respect to hi for i¼1,y,N defined
as follows:

~ghi
¼
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