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a b s t r a c t

Multi-view learning was supposed to process data with multiple information sources. Our previous

work extended multi-view learning and proposed one effective learning machine named MultiV-MHKS.

MultiV-MHKS firstly changed a base classifier into M different sub-classifiers, and then designed one

joint learning process for the generated M sub-ones. Each sub-classifier was taken as one view of

the ensemble. Thus the weight values rq, q¼ 1 . . .M for each sub-classifier were set to the equal value.

In practice, this hypothesis was neither flexible nor appropriate since rqs should reflect different effects

of their corresponding views. In order to make rqs flexible and appropriate, in this paper we propose a

regularized multi-view learning machine named RMultiV-MHKS with the optimized rqs. In this case, we

optimize rqs through using the Response Surface Technique (RST) on cross-validation data and thus can

obtain a regularized multi-view learning machine. Doing so can assign a certain view with zero weight

in the combination, which means that this specific view does not carry discriminative information for

the problem and hence can be pruned. The experimental results here validate the effectiveness of the

proposed RMultiV-MHKS and meanwhile explore the effect of some important parameters. The

characters of the RMultiV-MHKS are: (1) distributing more weight to the favorable views which can

reflect the property of the problem; (2) owning a tighter generalization risk bound than its

corresponding single-view learning machine in terms of the Rademacher complexity; (3) having a

statistically superior classification performance to the original MultiV-MHKS.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Multi-view learning is working with multi-view data repre-
sented by multiple information sources. Each information source
can form one set of attributes and each attribute set is taken as
one view of the original data. Multi-view learning was first
proposed by de Sa [1]. De Sa [1] thought that when labels of the
data were not available, different sensory modalities could be used
to substitute for the labels. Here each sensory modality was taken
as one view of the given data. Then based on the collocation and
discourse senses, Yarowsky [2] applied the multi-view technique
into the word sense disambiguation. Blum and Mitchell [3] further
boosted the performance of learning algorithms by the co-training
style and took the web page classification as an instance. Dasgupta
et al. [4] gave an upper bound for the generalization error of multi-
view learning algorithms, which was based on maximizing the
agreement-based objective function suggested by Collins and
ll rights reserved.

.

Singer [5]. Moreover, Abney [6] showed the intuitive reason why
multi-view learning worked, which was first gave by Blum and
Mitchell [3]. The successful reason was that multi-view learning
could maximize the agreement on unlabeled data between classi-
fiers based on different views of the data [6].

In the literature [7], we generalized multi-view learning.
Specifically, the acquired data for an object could be sorted into
single-view data and multi-view data. Correspondingly, learning
machine could also be sorted into single-view learning machine
with only one architecture and multi-view learning machine with
multiple architectures. Thus it gave four combinations, i.e. single-
view learning machine on single-view data, single-view learning
machine on multi-view data, multi-view learning machine on
single-view data, and multi-view learning machine on multi-view
data. Our work mainly focused on multi-view learning on single-
view data due to the advantages of single-view data in terms of
the acquisition cost and storage compared with multi-view data.
Following this research line [7], we further changed the original
architecture of a given base classifier into different matrixized
sub-classifiers. Each matrixized sub-one could be taken as one
view of the original base classifier. Consequently, we developed
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one joint rather than separable learning process for different sub-
classifiers, which was named as MultiV-MHKS [8].

MultiV-MHKS [8] was supposed to introduce the creation of
multiple views from one single view and meanwhile mitigate the
model selection problem of our another algorithm MatMHKS [9].
Moreover, MultiV-MHKS adopted the data representation in terms
of multiple views and thus was different from some other learning
strategies for creating good ensembles of classifiers such as
sampling pattern sets or feature sets [10–12]. Finally, the techni-
que behind MultiV-MHKS was a wrapper way and could act like
the state-of-the-art kernelization technique [13] applied to linear
algorithms. The experiments in the literature [8] also convincingly
validated the feasibility and effectiveness of MultiV-MHKS.

On the other hand, it could be found that MultiV-MHKS took
each matrixized sub-classifier in an equal way. Each sub-classifier
played an equal important role in the final classification. Suppose
that there were M views in MultiV-MHKS and the regularized
parameters rq, q¼ 1 . . .M denoted the weights of their corre-
sponding views. It was known that the bigger the rq was, the more
important its corresponding view was. However, MultiV-MHKS
set rq with 1=M for simplicity, which meant that all the views
were given an equal value in advance. Such a simple setting for rq

was not fit for the real-world case since different views would
exhibit different information. It could not be thought that differ-
ent information should play an equal role in classification.

In order to solve this problem, in this paper we introduce the
Response Surface Technique (RST) [14] into MultiV-MHKS and
develop a regularized and flexible multi-view learning machine
named RMultiV-MHKS. It is known that RST is a statistical and
mathematical technique for processing optimization and can improve
the regularization of the model [14]. To be more exact, the proposed
RMultiV-MHKS utilizes RST to distribute the heavier weights to the
favorable views which can more likely reflect the properties of the
problem. In contrast, it can also distribute the lighter, even zero,
weights to the unfavorable views with no sufficient discriminative
information. In other words, introducing RST into MultiV-MHKS
amounts to assigning a certain matrix representation with zero
weight(s) in the ensemble. As a result, a matrix associating with zero
weight can be pruned due to its insufficient discriminative informa-
tion. In practice, we realize RST through implementing MultiV-MHKS
on the validation sets of the given datasets. Then we can optimize the
weight parameters rq based on the got validation errors. By compar-
ing RMultiV-MHKS with MultiV-MHKS, it can be found that the
former has a superior classification performance to the latter. More
importantly, the designed algorithm is demonstrated to own a tighter
generalization risk bound than its corresponding single-view learning
machine in terms of the Rademacher complexity. The experimental
results here further validate the effectiveness of the proposed algo-
rithm and give the discussion for RMultiV-MHKS in terms of: (1) the
initialized weight r0

q; (2) the length of the searching step D; (3) the
number of the matrixized views M.

The rest of this paper is organized as follows. Section 2 reviews
the work including the optimization methods for the weights in
multi-view learning and the family of different improved Ho-
Kashyap (HK) [15] algorithms. Then we show the introduction of
RST and describe the architecture of the proposed RMultiV-MHKS
in Section 3. Section 4 demonstrates the feasibility and effective-
ness of RMultiV-MHKS through different experimental strategies.
Following that, we discuss the Rademacher complexity of RMul-
tiV-MHKS in terms of theory and experiments. Finally, we con-
clude and give the future work in Section 6.

2. Related work

This section first reviews the related optimization method for
the weight rq in the multi-view learning. Then since the proposed
algorithm is based on our previous work MultiV-MHKS [8] that is
an improved HK algorithm, we also review the series of the
related HK algorithms including the Modification of HK algorithm
with Squared approximation of the misclassification errors
(MHKS) [16], the matrixized MHKS (MatMHKS) [9], and the
multi-view learning machine MultiV-MHKS.

2.1. The optimization for the weight of the multi-view learning

One typical example of multi-view learning worked for web-
page classification [3], where each web page could be represented
by the words on itself (view one) and the words contained in
anchor texts of inbound hyperlinks (view two). In the literature
[3], Blum and Mitchell designed a co-training algorithm for
labeled and unlabeled web pattern sets composed of the two
naturally split views. On the labeled web set, the two sub-
classifiers of the co-training algorithm were incrementally built
with their corresponding views. On each cycle, each sub-classifier
labeled the unlabeled webs and picked the unlabeled webs with
the highest confidence into the labeled set. Such a learning
process was repeated until the terminated condition was satis-
fied. The final decision function was constructed through the
average combination of the two sub-classifier. In this case, the
weight value rq for each view was set to 1

2, q¼ 1;2. Further, Collins
and Singer [5], Dasgupta et al. [4], and Abney [6] developed multi-
view learning, respectively. The workshop at International Con-
ference on Machine Learning (2005) gave a special discussion for
multi-view learning including unsupervised learning [17], semi-
supervised learning [18], and supervised learning [19]. But in the
above work, it could be found that the weigh value rqs for all
the views were all simply set to 1=M, where M was the size of
the views.

Multiple Kernel Discriminant Analysis (MKDA) [20–22] could
be viewed as one kind of multi-view learning [7]. MKDA tried to
introduce the advantage of multiple kernels into the discriminant
analysis learning, where each kernel was used to generate one
view of the original data [23,24]. MKDA transformed the original
criterion of minimizing the within-class distance and meanwhile
maximizing the between-class distance into a convex optimiza-
tion problem, which could be solved by different methods. Firstly,
Kim et al. [20] calculated the MKDA problem as a trackable Semi-
Definite Programming (SDP), which could be efficiently solved
through the interior-point technique. Secondly, MKDA focused on
the norm of multi-kernel combination coefficients [21,22,25,26].
The ‘1 norm was the most commonly used regularization since it
could bring the sparsity. However, the ‘1 norm regularization
might lose some potential kernel information [21]. In order to
overcome the problem caused by the ‘1 norm, Fei et al. [21] used
‘2 instead which was only fit for binary-class problem. For the
multi-class problem, Fei et al. [22] constructed a general ‘p, pZ1
norm regularized MKDA for the combination coefficients of
multiple kernels. In this case, the MKDA with ‘p could achieve a
superior performance through the Semi-Infinite Programming
(SIP) [22]. It was also supposed that MKDA tried to learn the
optimal scaling of the feature space so as to maximize the
separation of different classes in the transformed feature space.
Thirdly, Gaı̈ffas and Lecué [26] developed a hyper-sparse aggrega-
tion for the ensemble problem f ¼

PM
i ¼ 1 yif i. Letting F ¼ ff 1, . . . ,

f Mg, Gaı̈ffas and Lecué demonstrated that when the F contained
the irrelevant functions which should not appear in the f , the
aggregation should maintain only two function fi. In this case,
there were only two coefficients with non-zero. It meant that the
two was the minimal number of the elements in the F and their
corresponding coefficients were exactly required for the construc-
tion of an optimal aggregation procedure. Moreover, Zhang and
Yeung [25] applied the multi-view viewpoint into multi-task
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learning. Thus they proposed a regularized convex formulation to
learn the relationships between different tasks, where the pro-
posed formulation was viewed as one novel generalization for
single-task learning.

2.2. The family of HK algorithms

2.2.1. MHKS

The original HK algorithm was expected to obtain a good
classification performance. But HK was sensitive to outliers [16].
In order to solve this problem, Leski proposed a modified HK
algorithm named MHKS [16]. MHKS bases on the regularized least
squares and tries to maximize the separating margin [27–29]. To
be more specific, MHKS gives its separating hyperplane as
follows:

YwZ1N�1: ð1Þ

Consequently, the criterion function of MHKS is changed as

min
oARdþ 1 ,bZ0

Lðw,bÞ ¼ ðYw�1N�1�bÞT ðYw�1N�1�bÞþc ~wT ~w, ð2Þ

where cZ0 is the regularized hyper-parameter that adjusts the
tradeoff between the model complexity and the training error.
The procedure of MHKS is almost the same as that of the original
HK classifier. The difference between MHKS and HK is that the
argument weight vector wk in MHKS becomes

wk ¼ ðY
T Yþc~IÞ�1YT

ðbkþ1N�1Þ, ð3Þ

where ~I is an identity matrix with the last element on the main
diagonal set to zero.

2.2.2. MatMHKS

Since vector representation for patterns fails in some image-
based learning, some matrix-based algorithms were proposed in
terms of both feature extraction [30–32] and classifier design [9].
MatMHKS was a typical matrixized classifier and could directly
classify patterns represented with matrix. As a consequence,
MatMHKS was viewed as a matrixized improvement of MHKS.
In the matrix case, suppose that there is a binary-class classifica-
tion problem with N matrix samples ðAi,jiÞ, i¼ 1 . . .N, where
AiARm�n and its corresponding class label jiAfþ1,�1g. The
decision function of MatMHKS for the binary problem is given as

gðAiÞ ¼ uT Ai ~v
40, if ji ¼ þ1

o0, if ji ¼�1

(
, ð4Þ

where both uARm and ~vARn are the weight vectors. The
corresponding optimization function of MatMHKS is defined as
follows:

min
uARm , ~v ARn ,v0 ,bZ0

Jðu, ~v,v0,bÞ ¼
XN

i ¼ 1

ðjiðu
T Ai ~vþv0Þ�1�biÞ

2

þcðuT S1uþ ~vT S2 ~vÞ, ð5Þ

where S1 ¼mIm�m, S2 ¼ nIn�n are the two regularized matrices
corresponding to the weight vectors u and ~v respectively, and the
regularized parameter c (cAR,cZ0) controls the generalization
ability of the classifier through making a tradeoff between the
classifier complexity and the training error. The vectors u, ~v, and the
bias v0 can be obtained by the gradient optimization of the
formulation (5) with respect to u, ~v, and v0 respectively. The detailed
processing optimization can be referred in the literature [9].

2.2.3. MultiV-MHKS

In the literature [8], MHKS was supposed to be a single-view
classifier and could be multiviewized into multiple matrixized
MatMHKS. Then we adopted a joint learning for different
MatMHKSs and proposed a multi-view learning machine Mul-
tiV-MHKS. In mathematics, suppose that there is an original
vector pattern xiARd. The xi can be represented by different
matrices Aq

i ARmq�nq ,q¼ 1 . . .M, where d is equal to mq � nq.

In MultiV-MHKS, we set Yq
¼ ½yq

1, . . . ,yq
N�

T , yq
i ¼ji½u

qT Aq
i ,1�T ,

i¼ 1 . . .N, bq
¼ ½bq

1, . . . bq
N�

T , vq ¼ ½ ~vqT ,vq
0�

T , where the q denotes

the index number of the view in MultiV-MHKS. Then the criterion
function of MultiV-MHKS is given as follows:

min
uq ARmq

,vq ARnq þ 1

q ¼ 1,...,M

J0 ¼
XM
q ¼ 1

ððYqvq�1N�1�bq
Þ
T
ðYqvq�1N�1�bq

Þ

þcqðuqT
S1uqþvqT ~S2 vqÞÞ

þg
XM
q ¼ 1

Yqvq�
1

M

XM
p ¼ 1

ðYpvpÞ

 !T

� Yqvq�
1

M

XM
p ¼ 1

ðYpvpÞ

 !
, ð6Þ

where S1 ¼mqImq�mq , S2 ¼ nqInq�nq , ~S2 ¼ ð
S2
0

0
0Þ is a matrix with a

dimensionality of ðnqþ1Þ � ðnqþ1Þ, cq is the regularized para-
meter for each view, and the g is the coupling parameter. In the
formulation (6), the weight value of each view is simply set to
1=M. In this case, each MatMHKS plays an equal role in the whole
classification. Then for optimizing the criterion function (6), we
make the gradient of J0 with respect to both uq and vq be zero.
Therefore we can get the following optimal results:

uq ¼ 1þg M�1

M

� �2
 !XN

i ¼ 1

Aq
i
~vq
ðAq

i
~vq
Þ
T
þcqS1

 !�1

�
XN

i ¼ 1

Aq
i
~vq jiðb

q
i þ1Þ

  

� 1þg M�1

M

� �2
 !

vq
0þg

M�1

M2

XN�1

p ¼ 1,paq

ðupTAp
i
~vp
þvp

0Þ

!!
, ð7Þ

vq ¼ 1þg M�1

M

� �2
 !

YqT Yq
þcq ~S2

 !�1

YqT

� 1N�1þbq
þgM�1

M2

XM
p ¼ 1,paq

Ypvp

 !
: ð8Þ

The iteration for both uq and vq is the same as that in MatMHKS.
Since MultiV-MHKS is a joint learning for multiple views, its
decision function integrates multiple MatMHKSs and is given as
follows:

gðzÞ ¼
1

M

XM
q ¼ 1

ðuqTZq ~vq
þvq

0Þ
40 then zAclassþ1

o0 then zAclass�1

(
, ð9Þ

where z is the test sample and Zq is the qth matrix representation
for the z.
3. Proposed regularized multi-view learning machine
(RMultiV-MHKS)

MultiV-MHKS was expected to make a full use of the advan-
tage of different matrix representations. But the equal value with
1=M was a simple setting for the weight of each MatMHKS in
MultiV-MHKS, which might be not sensible in some real-world
cases. For example, one certain matrix representation supplied
less even no useful information for discrimination, while the
decision function (9) still took the less useful matrix representa-
tion into the final classification like the other useful ones. It urges
us to assign different weights to the matrix representation with
different matrix representations. In order to realize such an



Fig. 1. The flowchart of the two-cycle procedure in RMultiV-MHKS.
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assignment, in this paper we introduce RST into MultiV-MHKS
and thus develop a regularized multi-view learning machine
named RMultiV-MHKS. RMultiV-MHKS is supposed to optimize
the weight of each matrix representation through RST. In doing
so, RMultiV-MHKS can distribute the heavier weight to the
favorable view which owns more discriminative information
and the lighter even zero weight to the unfavorable view which
might not carry discriminative information, which is expected to
lead to a superior classification performance.

RST is supposed to take the advantage of both mathematics
and statistics and to make the variable called response optimized
through updating the variable called corresponding. RST has been
proven an effective optimization technique in terms of model
selection. Chapelle et al. [33] adopted RST to give a parameter
selection for kernel-base methods. In their work, they achieved
the selection through minimizing the estimated test error bound
and updating the parameter with a gradient-descent step calcu-
lated from the error bound. Momma and Bennett [34] used RST to
select the parameters of support vector regression. Rather than
fitting a response surface, they performed a moving grid search
strategy through changing the center point of the grid. Gönen and
Alpaydın [35] applied RST into the ensemble of kernels. They
firstly fitted an approximate response surface based on the
validation error and then searched the minimal point of the fitted
response. Blum et al. [36] introduced RST into the protein
structure prediction and optimized the parameters of a specific
function called Rosetta energy function. In detail, they first
formulated a feature function and eliminated some of the fea-
tures. Further, they calculated the response surface using the
remaining features.

These RST-based work [33–36] showed that using RST on
validation error to optimize parameters or models could obtain
more regularized solutions and meanwhile illustrated that opti-
mizing the regularization parameters using the RST-based
approach could lead to more sparse ensembles, where some
sub-models would be given zero weight without the loss of
discriminant information. In this paper, we introduce the advan-
tage of RST into MultiV-MHKS. Doing so can assign one certain
matrix representation with zero weight in the combination (9). In
this case, it means that this specific matrix representation or the
data represented with this matrix size does not carry discrimi-
native information for the problem and hence can be pruned. In
practice, we use RST to construct a response surface from some
known points. Then we can get the extreme point of the surface
through some optimization methods. It should be stated that
both the proposed work here and the work in [35] adopt RST since
RST is a general statistical and mathematical technique for
processing optimization. But differently from the work in [35],
our work applies RST into a generalized multi-view learning
that is especially designed for multiple matrix representations.
Meanwhile the proposed algorithm falls into a linear learning
framework.

In the proposed method, the form of the response surface can
be represented by a quadratic equation or the other equation with
higher degrees. Here, we adopt a quadratic equation to fit the
response surface with rationality and simplicity. For the quadratic
equation, we give its general form as follows:

R¼ b0þ
XM
i ¼ 1

biXiþ
XM
i ¼ 1

biiX
2
i þ

XM
i ¼ 1

XM
j ¼ iþ1

bijXiXj, ð10Þ

where the R is named as the response variable, the Xi is named as
the corresponding variable, and the b0, bi, bii, and bijAR are the
model parameters. For fitting the quadratic equation R, we need
ðMþ1ÞðMþ2Þ=2 groups of points (Xi,i¼ 1 . . .M) so as to estimate
the model parameters. Through the optimized model parameters,
we can get the response surface. In practice, we use the Newton
optimization method [15] to get the minimal value of the R.

We firstly assign the response and corresponding variables of
Eq. (10) with the parameters of the proposed RMultiV-MHKS. We
define the variable rq as the weight of the qth view in the whole
model. The rq can reflect the corresponding role of the qth view.
Here, we take the rq as the corresponding variable and the
validation classification error of the whole RMultiV-MHKS as
the response variable R. The aim of RMultiV-MHKS is to get the
lowest validation error through optimizing the weight rq. In
processing, we give the natural logarithm scale of rq so as to keep
rq40. As a consequence, we can introduce the rq and the
validation classification error into the quadratic response surface
(10) as follows:

R¼ b0þ
XM
q ¼ 1

bqlnðrqÞþ
XM
q ¼ 1

bqqln2
ðrqÞþ

XM
q ¼ 1

XM
p ¼ qþ1

bqplnðrqÞlnðrpÞ:

ð11Þ

At first, RMultiV-MHKS solves the model parameters b0, bi, bii,
and bij of Eq. (11) through a group of initialized frqg

M
q ¼ 1. Then

according to the got response surface (11), RMultiV-MHKS adopts
the Newton optimization to get the optimal rqs. Therefore
RMultiV-MHKS is supposed to consist of the two-cycle procedure
which is described in Fig. 1.

In the first cycle of Fig. 1 with the purpose of estimating the
response surface (11), we create a matrix HARðMþ1Þ�N with each
zero element. The H is used to store the ðMþ1ÞðMþ2Þ=2 groups of
the got flnðrqÞg

M
q ¼ 1 and the R. We initialize the r0

q , q¼ 1 . . .M with
the value 1=M and set the k as the index number of the first cycle.
Further, we can obtain the following corresponding variables
frk

qg
M
q ¼ 1 through moving them towards positive or negative

direction from the original corresponding variables fr0
qg

M
q ¼ 1,

where the length of the searching step is set to D. At each
iteration, we introduce the got frk

qg
M
q ¼ 1 into the original Multi-

V-MHKS that is named the base classifier here. Then we can get
the corresponding validation error crk that is viewed as the
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response variable R. Each column of the matrix H here can be set
to ½lnðrk

1Þ, . . . ,lnðr
k
MÞ,crk�T .

Through the second cycle of Fig. 1, RMultiV-MHKS can obtain
the optimal rnq, q¼ 1 . . .M according to the matrix H. Here we
firstly give a variable j¼1 that denotes the index number of the
second cycle. Then we solve the model parameters b0, bi, bii, and
bij through the got response and corresponding variables which
are stored in some columns of the H and denoted as the
Hð: ,1 : ðMþ1ÞðMþ2Þ=2þ j�1Þ. Further we set the symbol W1 with
the Hð1 : M,ðMþ1ÞðMþ2Þ=2Þ. Secondly, we use the Newton opti-
mization for the surface (11) so as to obtain the current optimal
corresponding variables flnðrj

qÞg
M
q ¼ 1. Then we utilize the current

optimal weights frj
qg

M
q ¼ 1 to train the base classifier MultiV-MHKS

and thus can get its corresponding validation error crj. Thirdly, we
set the Hð1 : M,ðMþ1ÞðMþ2Þ=2þ jÞ with ½lnðrj

1Þ, . . . ,lnðr
j
MÞ�

T and
HðMþ1,ðMþ1ÞðMþ2Þ=2þ jÞ with crj. Fourthly, through letting
j¼ jþ1 and Wj

¼Hð1 : M,ðMþ1ÞðMþ2Þ=2þ j�1Þ, we give the
terminating condition 99Wj

�Wj�1992oy, where the threshold
yAR is a small positive value. If the terminating condition is
not satisfied, the second cycle goes on. If the terminating condi-
tion is satisfied, we return the optimal weight frnqg

M
q ¼ 1 through

setting ½lnðrn1Þ, . . . ,lnðr
n
MÞ�

T with Hð1 : M,ðMþ1ÞðMþ2Þ=2þ j�1Þ.
In the above processing, we adopt MultiV-MHKS as the base

classifier. Differently from the original MultiV-MHKS, the weight
rq of each sub-classifier is changed from 1=M to an optimized
value. Thus the criterion function (6) is rewritten as

min
uq ARmq

, ~vq ARnq þ 1

v
q
0
AR,p ¼ 1,...,M

L¼
XM
q ¼ 1

XN

i ¼ 1

ðjig
qðAq

i Þ�1�bq
i Þ

2
þcqðuqT

S1uqþ ~vqT S2 ~v
q
Þ

 !

þg
XN

i ¼ 1

XM
q ¼ 1

jig
qðAq

i Þ�
XM
p ¼ 1

rpjig
pðAp

i Þ

 !2

, ð12Þ

where rpZ0 shows the weight of the pth matrix representation
and the bigger rp means that the corresponding matrix represen-
tation plays a more important role for classification. We make the
gradient of L in the (12) with respect to uq and vq be zero
Table 1
Algorithm: RMultiV-MHKS.

Input: The sample set fðxi ,jiÞg
N
i ¼ 1;

The initialized parameters: bq
1, S1, S2, g, cq, r, x, e0,

OutPut: The optimal weight frnqg
M
q ¼ 1, and the solution

1. Reshape xi to fAq
i g

M
q ¼ 1 with the defined M ways, wh

Set Yq
1 ¼ ½y

q
1 , . . . ,yq

N �
T , yq

i ¼ji½u
qT
1 Aq

i ,1�T , q¼ 1, . . . ,M;

2. Create the matrix HARðMþ1Þ�N with each zero ele

define Lr0
q ¼ lnðr0

q Þ, q¼ 1 . . .M;

3. Let k¼1, do

(a). Add or decrease one D for Lr0
q and form a new

(b). Set Hð1 : M,kÞ ¼ ½Lrk
1 , . . . ,Lrk

M �
T ;

(c). Train the base classifier MultiV-MHKS (Ai
q, rq) a

(d). Set HðMþ1,kÞ ¼ crk , k¼ kþ1;

until k4ðMþ1ÞðMþ2Þ=2;

4. Define Wj ARM and set Wj
¼Hð1 : M,ðMþ1ÞðMþ2Þ

5. Do

(a). Solve the b0 ,bi ,bii ,bij in the (11) according to H

(b). Get the current optimal Lrj
q ,q¼ 1 . . .M in the su

(c). Train MultiV-MHKS (Ai
q, rq

j ) and get the crj;

(d). Set Hð1 : M,ðMþ1ÞðMþ2Þ=2þ jÞ ¼ ½Lrj
1 , . . . ,Lrj

M �
T

(e). Set j¼ jþ1 and Wj
¼Hð1 : M,ðMþ1ÞðMþ2Þ=2þ

until 99Wj
�Wj�1992 oy;

6. Get the optimal weight lnðrnqÞ ¼Hð1 : M,ðMþ1ÞðMþ

7. Train MultiV-MHKS (Ai
q, rnq) and get the solution fu
respectively and thus get the following results:

uq ¼ ð1þgð1�rqÞ
2
Þ
XN

i ¼ 1

Aq
i
~vq
ðAq

i
~vq
Þ
T
þcqS1

 !�1XN

i ¼ 1

Aq
i
~vq jiðb

q
i þ1Þ

��

�ð1þgð1�rqÞ
2
Þvq

0þgð1�rqÞ
XN�1

p ¼ 1,paq

rpðu
pT Ap

i
~vp
þvp

0Þ

!!
, ð13Þ

vq ¼ ðð1þgð1�rqÞ
2
ÞYqT Yq

þcq ~S2 Þ
�1YqT

� 1N�1þbq; þgð1�rqÞ
XM

p ¼ 1,paq

rpYpvp

 !
: ð14Þ

Further, the gradient of the improved criterion function L in the
(12) with respect to bq is given as follows:

@L

@bq ¼�2ðYqvq�1N�1�bq
Þ: ð15Þ

Based on Eq. (15), we denote the vector b of the qth view at the
kth iteration by bq

k and thus obtain

bq
1Z0

bq
kþ1 ¼ bq

kþr
qðeq

kþ9e
q
k9Þ

(
, ð16Þ

where at the kth iteration, the vector of the qth view ek
q is set with

Yq
kvq

k�1N�1�bq
k , and the learning rate of the qth view 0orqo1.

The termination criterion for the base classifier is designed as

JLkþ1�LkJ2

JLkJ2
rx, ð17Þ

where the xAR is a small positive value. Finally, the whole
decision function for the proposed RMultiV-MHKS is defined as

gðzÞ ¼
XM
q ¼ 1

rqðu
qT Zq ~vq

þvq
0Þ

40 then zAclassþ1

o0 then zAclass�1

(
, ð18Þ

where z is the test sample and Zq is the qth matrix representation
of the z. The whole procedure of the proposed method is
summarized in Table 1.
r0
q ¼

1
M, uq

1, vq
1, q¼ 1 . . .M.

to RMultiV-MHKS fuq , ~vq ,vq
0g

M
q ¼ 1.

ere mn¼d,

ment so as to store the lnðrqÞ and R,

known corresponding variables Lrk
q , q¼ 1 . . .M;

nd get the response variable crk;

=2Þ,j¼ 1;

ð: ,1 : ðMþ1ÞðMþ2Þ=2þ j�1Þ.

rface (11) through the Newton optimization;

and HðMþ1,ðMþ1ÞðMþ2Þ=2þ jÞ ¼ crj;

j�1Þ;

2Þ=2þ j�1Þ;
q , ~vq ,vq

0g
M
q ¼ 1.



Table 2
The description for the used datasets.

Datasets # of variables # of class # of instances

Breast-Cancer-Wisconsin (BCW) 10 2 699

Iris 4 3 150

Hill-Valley 100 2 1212

Pima 8 2 768

Water 38 2 116

Musk 166 2 476

Sonar 60 2 208

Letter 432 10 500

Semeion 256 10 1593

Lenses 4 3 24

Contraceptive-Method-Choice

(CMC)

9 3 1473

Secom 590 2 1567

Dermatology 34 6 366

Glass 10 6 214

House-votes 16 2 435

Arrhythmia 279 16 452

Balance 4 3 625

Housing 13 2 506

Ionosphere 34 2 351

Wine 12 3 178
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4. Experiments

In order to validate the feasibility and effectiveness of the
proposed RMultiV-MHKS, we compare RMultiV-MHKS with Mul-
tiV-MHKS in terms of classification and computational cost.
Meanwhile, we carry out the MKDA with SDP [20] and the
‘p-MKDA with SIP [22] for comparison. In addition, the other
two state-of-the-art multiple kernel algorithms denoted as SVM-
2K [37] and MKL [38] respectively, are both compared with our
method since multiple kernel learning is supposed to be an
effective non-linear learning and also be one kind of multi-view
learning machines. Further, we give the discussion for RMultiV-
MHKS in terms of: (1) the initialized weight r0

q; (2) the length of
the searching step D; (3) the size of the matrixized views M.

4.1. Experimental setting

In the implementation of MultiV-MHKS, the vector bq
1 is

initialized to 10�6. The learning rate rq is set to 0.99. Both the
regularized parameter cq and the coupling parameter g are
selected from the set f2�4,2�2,20,22,24

g. The termination variable
x is fixed to 10�4. In the proposed RMultiV-MHKS, the initializa-
tions for the parameters bq, rq, cq, g, and x are given the same as
those in MultiV-MHKS. The termination threshold y is set with
0.02. In practice, we add another termination condition with the
maximal number of the iteration maxIter¼50 so as to avoid the
endless loop. The length of the searching step D is optimized from
the set f0:3,0:5,0:8,1:0,2:0g. For the compared MKDA with SDP
[20], ‘p-MKDA with SIP [22], SVM-2K [37], and MKL [38], the used
kernels are the polynomial kernel kerðxi,xjÞ ¼ ðxixjþ1Þd and the
Radial Basis Function (RBF) kernel kerðxi,xjÞ ¼ expð�Jxi�xjJ

2
2=s2Þ.

Here we classify the implemented experiments into the two cases
with different M. For M¼2, the corresponding kernel parameters
are set with d¼2 and s¼ s, where s is the average value of all
the l2-norm distances Jxi�xjJ2,i,j¼ 1 . . .N as used in [39]. For
M42, the corresponding kernel parameters are set with d¼2,
s¼ s=‘, where ‘ is selected from the set f0:1,0:01,0:001g. The
classification performance of all the algorithms implemented here
are reported by Monte Carlo Cross Validation (MCCV) [40]. MCCV
randomly splits the samples into the two parts including the
training and validation sets, and repeats the procedure N times. In
our experiments, N is set with 10. The benchmark datasets used
here are obtained from [41] and their detail and description are
shown in Table 2, where Breast-Cancer-Wisconsin and Contra-
ceptive-Method-Choice are denoted as BCW and CMC for short
respectively. The one-against-one classification strategy [42] is
adopted for the used multi-class datasets.

The way of generating the views for data is the same as that in
MultiV-MHKS [8]. For the single-view patterns fzig

N
i ¼ 1, ziARd, we

employ a simple reshaping way to create multiple views. The
reshaping way does not involve overlapping between the compo-
nents of pattern, i.e., the pattern zi is partitioned into many equal-
sized sub-vectors in non-overlapping way, and then reshaped
column-by-column as a corresponding matrix. In this way,
different sizes of the sub-vectors naturally lead to different matrix
representations for the zi. Therefore mathematically, each pattern
ziARd can have multiple different matrix representations
denoted as Aq

i ARmq�nq

,q¼ 1, . . . ,M, where the value of d is equal
to mq � nq. For the Wine used here, we remove the last one
attribute from the original Wine with 13 attributes so as to
produce more assembling matrix representations.

4.2. Classification performance comparison

In this section, we compare RMultiV-MHKS with MultiV-
MHKS, MKDA with SDP [20], ‘p-MKDA with SIP [22], SVM-2K
[37], and MKL [38]. Here we give the experiment for the case
M¼2, which means that the size of different matrix reshaping
ways is two for both RMultiV-MHKS and MultiV-MHKS. Corre-
spondingly, the size of the kernels is also two for both the other
four implemented multiple kernel algorithms. The weight value
for the rq, q¼ 1;2 is set with 1=2 in MultiV-MHKS, which means
that each matrix representation for the original pattern would
play the same role into the final classification. It should be stated
that since there would be more than two different matrix
representations for some used datasets such as Hill-Valley with
2�50, 4�25, 5�20, and 10�10, we choose the matrix repre-
sentations which would give the first and second best classifica-
tion accuracies in MatMHKS. Table 3 gives the averaged accuracy
and the corresponding standard deviation of all the compared
methods on the validation sets generated by the 10-folds MCCV.
Table 4 shows the weight values comparison between RMultiV-
MHKS and MultiV-MHKS. From Table 3, it can be found that:
(1) the classification accuracy of RMultiV-MHKS is better than
that of MultiV-MHKS on almost all the used datasets, especially
for the datasets Hill-Valley, Pima, Letter, Lenses. The improving
performance is attributed to that RMultiV-MHKS can give a more
reasonable weight values rq than MultiV-MHKS, which is clearly
shown in Table 4. Taking the dataset Pima for example, RMultiV-
MHKS assigns r1 with 15.45 for the view with the matrix
representation 2�4 and r2 with 2:58� 10�5 for the view with
the 4�2. Consequently, the performance of the RMultiV-MHKS
increases by around 10% over MultiV-MHKS with the equal
weights r1 ¼ r2 ¼ 1=2. In this situation, the weight r2 of RMul-
tiV-MHKS is very small and thus its corresponding matrix view is
supposed to supply less discriminative information than the other
view. The results validate that RMultiV-MHKS can assign a
heavier weight to the favorable view and a lighter even zero
weight to the unfavorable view that does not carry discriminative
information. In practice, we can remove the useless view.
(2) Compared with the MKDA used here, RMultiV-MHKS achieves
a better accuracy on more than half of the used datasets though it
is just a linear algorithm. Especially for Breast-Cancer-Wisconsin,
the accuracy of RMultiV-MHKS has an increasing value with
about 37.1% over MKDA with SDP and 40.5% over ‘p-MKDA with
SIP. (3) Compared with SVM-2K and MKL used here, the proposed
algorithm also shows a competitive even better classification
accuracy.



Table 3

Classification accuracy (%) and t-test comparison between RMultiV-MHKS, MultiV-MHKS, MKDA (SDP) [20], ‘p-MKDA (SIP) [22], SVM-2K [37], and MKL [38]. (The best

accuracy of each dataset is in bold. The p-values are from the t-test comparing each classifier to RMultiV-MHKS. The asterisk n denotes that the difference from RMultiV-

MHKS is significant at 5% significance level, i.e. p-value less than 0.05.)

Datasets RMultiV-MHKS MultiV-MHKS SDP SIP SVM-2K MKL

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

p-value p-value p-value p-value p-value

BCW 98.4971.03 97:3270:78n 61:3870:00n 57:9971:91n 65:6270:00n 59:82713:13n

8:46� 10�4 1:95� 10�28 1:50� 10�21 2:01� 10�33 2:59� 10�8

Iris 98.6670.17 97:7371:09n 96:9371:78n 94:8073:11n 97:6771:30n 96:8071:43n

0.0109 0.0014 3:76� 10�4 1:79� 10�54 6:33� 10�4

Hill-Valley 81.3272.78 75:7470:94n 49:5070:00n 63:2079:15n 50:4970:00n 50:6171:06n

5:70� 10�5 3:23� 10�20 1:76� 10�5 6:62� 10�21 1:35� 10�14

Pima 80.7671.56 71:1470:27n 65:1070:00n 71:0772:00n 73:6571:75 75:4171:94n

4:21� 10�15 1:20� 10�17 8:36� 10�12 1:41� 10�9 1:88� 10�6

Water 98.9970.45 96:9772:71n 56:1470:00n 92:6373:86n 84:5676:76n 88:5975:18n

0.0490 1:33� 10�38 1:54� 10�6 3:80� 10�39 5:53� 10�6

Musk 81.4371.01 78:5170:94n 56:5470:00n 84:7772:66n 78:6171:84n 88:2373:09n

9:64� 10�6 4:87� 10�28 0.0288 1:81� 10�32 4:59� 10�6

Sonar 79.7373.33 76:6773:23n 46:6070:00n 80.0074.02 71:0774:26n 74:0875:77n

0.0065 6:26� 10�18 0:6565 7:76� 10�24 0.0271

Letter 89:6071:07 83:2070:56n 91:5670:89n 91:5670:93n 91:4071:38n 92:7270:96n

4:24� 10�6 4:04� 10�5 2:39� 10�4 0.0013 8:47� 10�7

Semeion 90:1671:71 87:6471:02n 94:0071:05n 93:3971:09n 78:3473:59n 93:3670:00n

3:46� 10�6 7:52� 10�7 4:08� 10�5 5:98� 10�9 0.0237

Lenses 72:7379:08 53:85710:90n 71:8276:71n 75:4579:63 63:07774:86n 71:5376:33

0.012 0.0246 0.4085 0.0075 0.2928

CMC 51.6672.94 50:0171:41 46:5471:61n 45:7071:74n 42:6870:00n 46:7977:87

0.1742 1:58� 10�4 3:25� 10�5 3:58� 10�6 0.0618

Secom 93.3771.82 92:9572:17 93:3670:00 88:3070:67n 6:6370:00n 93:3670:00n

0.9635 0.8561 2:43� 10�7 1:36� 10�35 0.0237

Dermatology 97.7570.76 97:1770:96 94:5171:58n 96:6571:38n 44:18710:84n 94:3471:87n

0.3168 3:74� 10�7 0.0017 7:03� 10�12 2:68� 10�5

Glass 99.3570.21 99:2470:60 94:6772:92n 98:1071:42n 97:9071:33n 96:9571:94n

0.7065 2:89� 10�4 0.0188 2:18� 10�47 0.0013

House-votes 94.7772.86 92:8171:69 38:7170:00n 93:0472:34 91:7171:83n 93:7371:95n

0.1211 6:26� 10�20 0.2351 5:93� 10�28 0.0013

Arrhythmia 60.5271.43 59:9271:21 61:8973:34 67:7571:61n 63:5671:07n 68:0372:49n

0.0706 0.0782 5:79� 10�10 1:00� 10�4 1:24� 10�7

Balance 89:2372:21 88:8571:02 93:4372:14n 93:7871:64n 88:0871:60n 89:9071:15n

0.1310 4:13� 10�4 4:91� 10�6 0.0155 0.0400

Housing 92:9170:61 92:9170:00 93:2570:00n 88:4571:59n 93:2570:00n 92:2570:00

0.3074 2:70� 10�4 4:02� 10�9 0.0167 0.2595

Ionosphere 90.0372.24 8 9:3371:50 64:0070:00n 89:0971:22 87:0372:26n 85:66716:29

0.3335 1:13� 10�16 0.1674 0.0194 0.4078

Wine 95:5471:49 94:4371:74 93:8672:69 95:9171:22 80:0074:05n 92:4571:75n

0.2892 0.1172 0:7091 3:45� 10�30 9:29� 10�4
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In order to further discuss the implemented algorithms, we
perform the paired t-test [43] by comparing RMultiV-MHKS with
the other five algorithms. Doing so can test how significant the
classification accuracy changes. The t-test is a statistical test for a
null hypothesis H0. If the null hypothesis H0 is correct, it would
demonstrate that there is no significant difference between the
mean number of samples correctly classified by RMultiV-MHKS
and the MultiV-MHKS, MKDA with SDP, ‘p-MKDA with SIP, SVM-
2K, and MKL. Under this assumption, the p-value of each test is
the probability of a significant difference in correctness values
occurring between the two validation sets. Therefore, the smaller
the p-value, the less likely that the observed difference results
from the identical validation set correctness distributions. The
threshold for the p-value is set to 0.05 in our experiments.
Table 3 also shows the p-value. From this table, it can be found
that the average classification accuracy of RMultiV-MHKS is
superior to that of MultiV-MHKS on more than half of the used
datasets.



Table 4
The weight r1 and r2 of RMultiV-MHKS and MultiV-MHKS in their two corresponding views.

Datasets BCW Iris Hill-Valley Pima Water

View1–View2 2�5–5�2 2�2–4�1 5�20–10�10 2�4–4�2 2�19–19�2

RMultiV-MHKS 1.05–0.55 0.29–7.24�10�5 0.52–0.16 15.45–2.58�10�5 2.13–2.11

MultiV-MHKS 0.5–0.5 0.5–0.5 0.5–0.5 0.5–0.5 0.5–0.5

Musk Sonar Letter Semeion Lenses

166�1–83�2 5�12–6�10 6�72–12�36 4�64–16�16 2�2–4�1

RMultiV-MHKS 0.01–2.43�10�5 0.02–2.43 0.13–2.52 0.41–3.48�10�5 2.06�10�2–3.60

MultiV-MHKS 0.5–0.5 0.5–0.5 0.5–0.5 0.5–0.5 0.5–0.5

CMC Secom Dermatology Glass House-votes

3�3–9�1 10�59–59�10 2�17–17�2 2�5–5�2 2�8–4�4

RMultiV-MHKS 6.28�10�3–39.63 0.28–0.27 0.13–2.29�10�4 1.69–7.94 2.00�10�3–14.52

MultiV-MHKS 0.5–0.5 0.5–0.5 0.5–0.5 0.5–0.5 0.5–0.5

Arrhythmia Balance Housing Ionosphere Wine

3�93– 9�31 2�2–4�1 13�1–1�13 2�17–17�2 2�6–3�4

RMultiV-MHKS 0.51–1.58 1.10–0.49 1.0–1.0 0.48–1.01 0.005–0.5

MultiV-MHKS 0.5–0.5 0.5–0.5 0.5–0.5 0.5–0.5 0.5–0.5

Table 5
Training time (in seconds) comparison between RMultiV-MHKS, MultiV-MHKS,

MKDA (SDP) [20], ‘p-MKDA (SIP) [22], SVM-2K [37], and MKL [38].

Datasets RMultiV-

MHKS

MultiV-

MHKS

MKDA

(SDP)
‘p-MKDA

(SIP)

SVM-

2K

MKL

BCW 22.52 2.81 61.38 1.12 2.71 178.30

Iris 45.27 4.24 4.52 0.07 0.25 57.95

Hill-Valley 1021.29 126.58 225.58 3.48 1.03 430.08

Pima 5.24 0.83 74.68 1.21 5.22 178.30

Water 87.45 9.95 1.49 0.02 0.18 20.76

Musk 420.10 58.31 18.36 1.35 0.56 88.23

Sonar 3.08 0.22 3.41 0.11 0.41 24.91

Letter 1272.31 198.03 48.58 1.46 3.53 909.51

Semeion 1712.62 263.88 903.42 67.28 54.45 1974.44

Lenses 3.42 0.34 0.41 0.02 0.05 28.16

CMC 20.11 2.63 704.41 7.90 21.06 1014.72

Secom 38.93 5.60 469.60 22.30 1.97 830.33

Dermatology 181.01 26.47 27.63 0.49 13.47 623.68

Glass 669.27 99.48 3.93 0.08 1.46 238.89

House-votes 10.13 1.34 17.60 0.55 0.82 52.17

Arrhythmia 6537.40 914.12 52.34 0.70 4.11 1170.63

Balance 51.26 7.13 60.94 0.98 5.87 154.65

Housing 20.51 3.27 28.93 0.33 0.58 48.71

Ionosphere 10.27 1.87 10.84 0.33 0.61 47.77

Wine 34.97 4.33 5.84 0.06 0.64 64.65
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4.3. Computational cost comparison

In this section, we give a comparison between the training time
of RMultiV-MHKS, MultiV-MHKS, MKDA with SDP, ‘p-MKDA with
SIP, SVM-2K, and MKL in Table 5. All the computations are run in
the same condition that includes Intels Xeons 5520 Series
processors 2.26 GHz, 6 G RAM DDR3, Windows Server 2008 RC2
and MATLAB environment. It should be stated that for a fair
comparison, we report the average training time of the 10-folds
MCCV, where the parameters for the compared algorithms are set
with the same values as those reported in Table 3. From Table 5, it
can be found that: (1) both ‘p-MKDA and SVM-2K spend less time
than the other four algorithms on most of the used datasets.
(2) The training cost of RMultiV-MHKS takes a competitive time to
that of MKDA with SDP and MKL. (3) For most of the used datasets,
the training time of RMultiV-MHKS costs more than six times than
that of MultiV-MHKS, which can be explained through the analysis
for the internal structure of RMultiV-MHKS. According to Table 1,
the first cycle carries out the base classifier MultiV-MHKS for
ðMþ1ÞðMþ2Þ=2 times. When M¼2, the ðMþ1ÞðMþ2Þ=2¼ 6.
Moreover, RMultiV-MHKS still needs to carry out the second cycle.
Therefore the training cost for RMultiV-MHKS takes more than six
times of that of the original MultiV-MHKS, which accords with the
experimental results of the M¼2 shown in Table 5. It should be
stated that in the experimental processing, the computation of
RMultiV-MHKS takes a larger cost in terms of the first cycle as
shown in Fig. 1 while RMultiV-MHKS can get a fast convergence
for the second cycle. Therefore our future work aims to introduce a
more efficient technique into RMultiV-MHKS so as to decrease its
computational cost in terms of the first cycle.

4.4. Further discussion

In the above experiments, we find that some parameters of
RMultiV-MHKS play an important role in the performance. Thus in
this section we give the further discussion in terms of: (1) the
initialized weight r0

q; (2) the length of the searching step D; (3) the
number of the matrixized views M. For the discussion about the r0

q

and the D, we select some representative datasets with the
maximal size of the instances or the minimal dimensionality. In
detail, Semeion is the dataset in which its instances are maximal in
all the used datasets. Secom is the dataset in which its dimension-
ality is maximal. Lenses is the dataset in which its instances are
minimal. Arrhythmia is the dataset in which its classes are
maximal. Balance is the dataset in which its dimensionality is
minimal. Sonar is just a normal dataset. For the discussion on the
M, we choose the six datasets including Hill-Valley, House-votes,
Letter, Semeion, Sonar, and Wine since the number of their matrix
reshaping ways is more than two, i.e. M42.
4.4.1. Analysis for the initialized weight r0
q

Here we explore how influence the initialized weight r0
q plays.

We set three different initialized weight r0
q with ½0:5,0:5�, ½1;1�,

and the random value ½0:3,0:7� as the original searching corre-
sponding variables. In order to keep the comparison fair, we
require the same experimental setting for the three initializations.
Fig. 2 shows the classification accuracy of RMultiV-MHKS com-
parison for different initialized weight r0

q on the six datasets (from
left to right): Arrhythmia, Balance, Lenses, Secom, Semeion, and
Sonar. From Fig. 2, it can be found that on the used datasets only
except Lenses, different initialized weight r0

q does not lead to a



Table 6

The optimal weight rnq comparison with different initialized r0
q .

Datasets r0
q ¼ ½0:5,0:5� r0

q ¼ ½1:0,1:0� r0
q ¼ ½0:3,0:7�

rn1�rn2 rn1�rn2 rn1�rn2

Arrhythmia 0.51–1.58 0.54–0.98 0.48–1.47

Balance 1.10–0.49 1.00–0.52 1.04–0.56

Lenses 0.02–3.60 0.02–3.78 4.28–8.95

Secom 0.28–0.27 0.29–0.26 0.24–0.21

Semeion 0.41–3.48�10�5 2.89–0.02 3.30–0.06

Sonar 0.02–2.43 0.01–0.98 0.32–3.66
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Fig. 3. Classification accuracy (%) of RMultiV-MHKS as a function of the length of
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significant influence for the classification accuracy. Especially on
the Secom, different initialized weight r0

q almost causes an equal
value 93.37%. In order to further analyze this phenomenon, we
also give the corresponding optimal weight rnq for the used
datasets in Table 6. From this table, we can find that although it
is different for the optimal rnq generated from different initialized
weight r0

q , it is similar for the relative relationship between rn1 and
rn2 on each used datasets, which might be the reason for the
similar performance induced from different r0

q on most of the
used datasets here.

4.4.2. Analysis for the step length D
Here we explore the role of the length of the searching step D

for RMultiV-MHKS. Fig. 3 shows the classification accuracy of
RMultiV-MHKS as a function of the D on the used datasets
including Arrhythmia, Balance, Lenses, Secom, Semeion, and
Sonar. The range of the D is from 0.3 to 2.0. From Fig. 3, we can
find that: (1) the different Ds almost lead to an unchanged
classification accuracy on half of the used datasets. Especially on
the Secom, we can obtain a flat classification accuracy line. (2) On
the Lenses and Sonar, different Ds have some impacts for the
performance. Taking Lenses for example, there is a flat change in
the range of the D from 0.3 to 0.8, but there is a decline in the
range from 0.8 to 1.0. For the Sonar, the performance is a
fluctuation between 0.3 and 2.0. It is known that the constructed
response surface is crucial with the got corresponding variables
generated through moving different Ds from the original r0

q .
Different Ds would lead to their corresponding characteristics in
terms of constructing the response surface, which means that the
D has an important impact on the final performance.

4.4.3. Analysis for the size of the views M

In this section, we discuss how role the size of the matrix
representations (views) M plays on the performance of RMultiV-
MHKS. For each dataset here, we add one matrix view every time
to increase the number of views while keeping the previous
matrix views unchanged. Specifically, we first arrange the matrix
representations in a descend order in terms of classification
accuracies of MatMHKS. For M¼2, we select the matrix repre-
sentations giving the first and second best classification accura-
cies of MatMHKS. For M¼3, we add the new matrix
representation corresponding to the third best accuracy of
MatMHKS to the previous two views. Taking Hill-Valley as an
example, we adopt the first two best matrix representations
5�20, 10�10 for M¼2, the first three best 5�20, 10�10,
4�25 for M¼3, and the first four best 5�20, 10�10, 4�25,
2�50 for M¼4. Fig. 4 gives the classification accuracies of
RMultiV-MHKS, MultiV-MHKS, MKDA with SDP, and ‘p-MKDA
with SIP as a function of the M on the given datasets Hill-Valley,
House-votes, Letter, Semeion, Sonar, and Wine.

From Fig. 4, it can be found that the size of the M has an impact
on the classification accuracy of all the compared algorithms. First,
RMultiV-MHKS always has a superior performance to the original
MultiV-MHKS whatever the M is. For the Letter and Hill-Valley,
RMultiV-MHKS has a significant improvement by about 6% and 5%
in terms of the recognition rate. Secondly, although RMultiV-
MHKS is one linear algorithm, it still has a competitive perfor-
mance to the kernel-based MKDA with SDP and ‘p-MKDA with
SIP. Thirdly, when the value of the M grows, RMultiV-MHKS can
induce a better combination for different views on some used
datasets. To be more exact, for the Wine and Semeion, RMultiV-
MHKS with M¼3 has a better performance than that with M¼2,
where RMultiV-MHKS can search and adjust the weight so as to
get a better rq. For the House-votes and Sonar, the performance
curve of RMultiV-MHKS changes flat while the M changes.
Fourthly, the performance curve of MultiV-MHKS shows that its
accuracy gives a downward trend when the M is over three. One
possible reason is that some useless views are merged into the
final classification when the number of the views increases.
Fortunately, the proposed RMultiV-MHKS is supposed to solve
this problem since it optimizes the weight rq, which is validated on
most of the used datasets. Moreover, we analyze the weight value
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rq between RMultiV-MHKS, MultiV-MHKS, MKDA with SDP and
‘p-MKDA with SIP, and find that RMultiV-MHKS can filtrate some
useless views through reducing their weights. Meanwhile, RMul-
tiV-MHKS can also increase the weights of those more informative
views so as to maintain the classification accuracy effectively.
5. Rademacher complexity analysis

In this section, we discuss the Rademacher complexity of the
proposed RMultiV-MHKS, MHKS, MatMHKS, and MultiV-MHKS.
Further we give their relationship in terms of theory and experi-
ments. It is known that the analysis of the generalization risk
bound is important for interpreting the performance behavior of
one learning algorithm [44–47]. The Rademacher complexity is
widely used for measuring the generalization risk bound. The
classical risk bound theory was proposed by Vapnik and Chervo-
nenkis [48] and can be described through Theorem 1.
Theorem 1. Let P be a probability distribution on w� f71g and

fxi,yig
n
i ¼ 1 be chosen independently according to P. Then for a

f71g-valued function class with the domain w, there is a constant

cZ0 such that for any integer n, with probability at least 1�d over

fxi,yig
n
i ¼ 1, every g in satisfies

PðyagðxÞÞr P̂n ðyagðxÞÞþc

ffiffiffiffiffiffiffiffiffiffiffiffi
VCð Þ

n

r
, ð19Þ

where VCð Þ denotes the Vapnik–Chervonekis dimension of and P̂n

denotes the empirical risk error of the function g on the sample set

fxi,yig
n
i ¼ 1.

In this case, the VC( ) measures the complexity of the . The
Rademacher complexity was proposed as an alternative notion for
the complexity of a function class [45]. Here, the Rademacher
complexity is used to measure the complexity of the proposed
RMultiV-MHKS. Definition 1 gives the definition of the Radema-
cher complexity [45].
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Definition 1. Let m be a probability distribution on a set w and
suppose that fxig

n
i ¼ 1 are independent samples selected from w

according to m. Let be a class of functions mapping from w to R.
Let fsig

n
i ¼ 1 be independent uniform f71g-valued random vari-

ables and define the empirical Rademacher complexity of with
the random variable

R̂nð Þ ¼ E sup
gA

9
2

n

Xn

i ¼ 1

sigðxiÞJx1, . . . ,xn

2
4

3
5, ð20Þ

where E is the operator of the expected value of a random
variable. Then the Rademacher complexity of is

Rnð Þ ¼ ER̂nð Þ: ð21Þ

The following Theorem 2 [49] gives the generalization risk
bound of with the Rademacher complexity Rnð Þ.

Theorem 2. Let P be a probability distribution on w� f71g and

fxi,yig
n
i ¼ 1 be chosen independently according to P. Then for a

f71g-valued function class with the domain w, with probability

at least 1�d over fxi,yig
n
i ¼ 1, every g in satisfies

PðyagðxÞÞr P̂n ðyagðxÞÞþ
Rnð Þ

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=dÞ

2n

r
: ð22Þ

We adopt the RnðgRMMHKSÞ,RnðgMMHKSÞ,RnðgMatMHKSÞ, and RnðgMHKSÞ

to denote the Rademacher complexity of RMultiV-MHKS,
MultiV-MHKS, MatMHKS, and MHKS respectively. We firstly dis-
cuss the relationship between RnðgRMMHKSÞ,RnðgMMHKSÞ, and
RnðgMHKSÞ. Here we give a temp decision function as follows:

g0ðzÞ ¼
XM
q ¼ 1

rqðu
qTZq ~vq

þvq
0Þ

40 then zAclassþ1

o0 then zAclass�1

(
, ð23Þ

where rqZ0 without any other restriction. The decision functions
of RMultiV-MHKS and MultiV-MHKS are both the special cases of
the function g0, where rnq in RMultiV-MHKS is optimized through
RST and rq in MultiV-MHKS is set to 1=M. Therefore, the sets
fgRMMHKSg, fgMMHKSgDfg

0g. According to the definition of the Rade-
macher complexity, we can get

RnðgRMMHKSÞ,RnðgMMHKSÞrRnðg
0Þ: ð24Þ

On the other hand, rnq in RMultiV-MHKS might be optimized to 1=M

and in this case RnðgRMMHKSÞ is the same as RnðgMMHKSÞ. Otherwise, it is
uncertain for the relationship between RnðgRMMHKSÞ and RnðgMMHKSÞ.

Further, we give the relationship between Rnðg0Þ and
RnðgMatMHKSÞ. It is known that the generalization risk bound of
MHKS satisfies the inequality (22). According to the equations
(23) and (25)

gðAÞ ¼ uT A ~vþv0, ð25Þ

the temp decision function g0 is the convex combination of
different gMatMHKSs. It has be proven that for a class of functions

, if conv is the class of convex combinations of function from
and � ¼ f�g : gA g [49],

Rnðconv Þ ¼ Rnð Þ: ð26Þ

Concretely, for the sample set fxig
n
i ¼ 1 and fsig

n
i ¼ 1,

sup
gA conv

Xn

i ¼ 1

sigðxiÞ

�����
�����

¼max sup
gA conv

Xn

i ¼ 1

sigðxiÞ, sup
gAconv

�
Xn

i ¼ 1

sigðxiÞ

0
@

1
A

¼max sup
gA

Xn

i ¼ 1

sigðxiÞ,sup
gA

�
Xn

i ¼ 1

sigðxiÞ

0
@

1
A

¼ sup
gA

Xn

i ¼ 1

sigðxiÞ

�����
�����:

Based on the definition of the Rademacher complexity, the
following equation can be got:

Rnðg
0Þ ¼ RnðgMatMHKSÞ: ð27Þ

Finally, we analyze the relationship between RnðgMatMHKSÞ and
RnðgMHKSÞ. According to our previous work [9], it is known that the
solution space for the weight vectors of MatMHKS is contained in
that of MHKS. And MatMHKS can be viewed as the MHKS
imposed by Kronecker product decomposability constraint. As a
consequence, the set of functions fgMatMHKSgDfgMHKSg. According
to the definition of the Rademacher complexity, i.e. (20) and (21),
we can get

RnðgMatMHKSÞrRnðgMHKSÞ: ð28Þ

Based on the formulas (24), (27) and (28), we finally have the
relationship between RnðgRMMHKSÞ, RnðgMMHKSÞ, RnðgMatMHKSÞ, RnðgMHKSÞ

as follows:

RnðgRMMHKSÞ,RnðgMMHKSÞrRnðgMatMHKSÞrRnðgMHKSÞ: ð29Þ

In order to clearly show the relationship between RnðgRMMHKSÞ,
RnðgMMHKSÞ, RnðgMatMHKSÞ, RnðgMHKSÞ, we further give the empirical
Rademacher complexity values according to Eq. (20) with
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experiments. We use the 10 binary-class datasets shown in
Table 2. The parameters fsig

n
i ¼ 1 in the (20) are independent

uniform f71g-valued random variables based on Definition 1.
The in the (20) can correspond to the class of the decision
functions of RMultiV-MHKS, MultiV-MHKS, MatMHKS, and
MHKS. For each dataset, we compute the (20) for 10 times and
report the average values in Fig. 5. From this figure, it can be
found that both the R̂nð Þ of RMultiV-MHKS and MultiV-MHKS are
smaller than that of MatMHKS or MHKS. The R̂nð Þ of RMultiV-
MHKS gets the smallest values on most of the used datasets.
Although MatMHKS yields unstable capability and its R̂nð Þ even
achieves the largest ones on Sonar, BCW, Housing, and Iono-
sphere, it has a lower R̂nð Þ than MHKS on more than half of all
the used datasets. Therefore, these experimental results in Fig. 5
are consistent with the theoretical analysis above.
6. Conclusion and future work

In this paper, we change a base classifier into M different sub-
classifiers (views), and then implement one joint learning process
for the generated M sub-ones, which is named RMultiV-MHKS.
Differently from our previous work MultiV-MHKS [8] that treats
each view equally, the proposed RMultiV-MHKS adopts the RST to
optimize the weight of each view. In doing so, RMultiV-MHKS can
distribute the heavier weight to the favored view which can bring
more classification information. Simultaneously, it is theoretically
and experimentally demonstrated that RMultiV-MHKS has a
tighter generalization risk bound than its single-view learning
machine MHKS in terms of the Rademacher complexity. The
experimental results also validate that the proposed algorithm
owns a statistically superior classification accuracy to the original
MultiV-MHKS. But on the other hand, we find that RMultiV-MHKS
would take a bigger computational cost since it is made up of the
two cycles. Thus our future work is to design a more efficient
technique so as to decrease the computational cost.
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