
ORIGINAL ARTICLE

Plane-Gaussian artificial neural network

Xubing Yang • Songcan Chen • Bin Chen

Received: 16 January 2010 / Accepted: 31 January 2011 / Published online: 22 February 2011

� Springer-Verlag London Limited 2011

Abstract Multilayer perceptrons (MLPs) and radial basis

functions networks (RBFNs) have been widely concerned

in recent years. In this paper, based on k-plane clustering

(kPC) algorithm, we propose a novel artificial network

model termed as Plane-Gaussian network to enlarge the

arsenal of the neural networks. This network adopts a

so-called Plane-Gaussian activation function (PGF) in

hidden neurons. Replacing traditional central point of

Gaussian radial basis function (RBF) with central hyper-

plane, PGF forms a band-shaped rather than spheral-shaped

receptive field in RBF, which makes PGF able to express

its peculiar geometrical characteristics: locality and glob-

ality. Importantly, it is also proved that PGF network

(PGFN) having one hidden layer is capable of universal

approximation. As a universal approximator, PGFN gives

an informal way of bridging the gap between MLP and

RBFN. The experiments report comparison between

training time and classification accuracies on some artifi-

cial and UCI datasets and conclude that (1) PGFN runs

significantly faster than MLP and (2) PGFN has compa-

rable or better classification performance than MLP and

RBFN, especially in subspace-distributed datasets.

Keywords Multilayer perceptron (MLP) � Radial basis

function (RBF) network � Activation function �
Plane-Gaussian function (PGF)

1 Introduction

MLPs and RBFNs, two types of classical multilayer feed-

forward neural networks, have been widely studied and got

many successful applications such as in face recognition,

disease diagnosis, risk investment, and so on [1–5], here

just name a few. It had early been proved theoretically that

they both are capable of approximating any continuous

function or a mapping from an input space to an output

space to arbitrary precision only if provided with sufficient

hidden neurons [6–10]. However, in the real-world appli-

cation, the number of samples is limited, thus in this case,

any type of such networks with sufficiently large number of

hidden nodes will lead to a serious overfitting. A remedy is

to control the number. On the other hand, even such a

number is selectively controlled, MLPs and RBFNs still

result in different performances due to the adoption of their

different activation functions [11, 12], which characterize

different activating modes for the input space. In their

concrete descriptions, MLP realizes a mapping by linearly

combining a set of the sigmoidal functions that live on the

hidden layer and have global activation domain, and while

RBFN does likewise by linearly combining a set of the

exponential functions with local activation domain (gen-

erally, Gaussian function), as illustrated, respectively, in

Fig. 1a, b [13–17].

X. Yang

College of Information Science and Technology,

Nanjing Forestry University, 210037 Nanjing,

People’s Republic of China

e-mail: xbyang@nuaa.edu.cn

S. Chen (&) � B. Chen

Department of Computer Science and Engineering,

Nanjing University of Aeronautics & Astronautics,

210016 Nanjing, People’s Republic of China

e-mail: s.chen@nuaa.edu.cn

B. Chen

e-mail: b.chen@nuaa.edu.cn

B. Chen

Information Engineering College, Yangzhou University,

225009 Yangzhou, People’s Republic of China

123

Neural Comput & Applic (2012) 21:305–317

DOI 10.1007/s00521-011-0546-1

In order to implement such networks given a set of

limited training data, we can achieve this goal through a

learning algorithm in terms of one of supervised, semi-

supervised, and unsupervised-learning fashions. In this

paper, we just concern the supervised learning but extend

similar discussion to the other learnings. In such a scenario

given limited training data, according to No Free Lunch

(NFL) theorem [20], making sufficient use of prior infor-

mation in data is one of effective ways to promote classi-

fication performance, here by prior information. We expect

a so-constructed network having a good generalization, as

have been analyzed for RBF networks. That is, in many

given classification problems, the Gaussian activation

functions are appropriate if having prior information that

the distributions arise from a mixture of Gaussions. As for

an architecture of a network, we will examine how the

activating functions influence classification performance

for data distributions or different structures (or mode) in

data and then based on which develop a new type of

activating function able to cater for such network. Since a

hidden layer of activation function affords a distributed or

global representation of the input, as foresaid, MLPs and

RBFNs, respectively, take the sigmoidal functions and

radial basis functions as their activating functions. Basi-

cally, MLP is typically trained in a supervised manner with

a highly popular back-propagation (BP) algorithm and

commonly takes the sigmoidal nonlinearity as its activation

function to compute the local gradient in weight adjust-

ment. Figure 1a seemingly shows that the sigmoidal

function has global activating range and geometrically

describes the globality of MLP without incorporating prior

knowledge. Different from MLP, RBFN adopts the local

activation function such as Gaussian function to accom-

plish such approximation. Concretely, the learning of

RBFN usually depends on the following two steps [18]: the

first is to compute the parameters i.e. the centers and widths

of their activation functions (see Fig. 2).

For RBFN, k-means and FCM (fuzzy c-means) are the

most typical methods to estimate cluster parameters in an

unsupervised manner. Then, since the class label is available

in a given classification problem, many supervised methods

could be used to construct foresaid sample-label mapping

between the hidden and the output layers by the weighted

linear combination of those Gaussian functions. Due to

considering prior information, many researchers report that

Gaussian RBF networks are appropriate if we have prior

information that the distributions arise from a mixture of

Gaussians (Fig. 3). That is, RBFNs achieve better overall

performance than MLPs for the given spherical-/Gaussian-

distributed data [19]. This is well consistent with NFL [20]

which states that, for good generalization, there are no

context-independent or usage-independent reasons to favor

one classification method over another, unless appropriate

prior information is incorporated in model selection.

But it has to be pointed out that for a real-world points

from unknown distribution, how to select a suitable type of

network to attain better generalization? Furthermore, the

real-world data are complicated and may be from multi-

farious distributions, for instance, subspace distributions

(two typical subspace-shaped distributions as illustrated in

Fig. 4). To our knowledge, k-means and FCM are

impressive for spherical distribution data, but powerless for

such subspace-distributed data. Could we construct a net-

work to meet such distribution? From the relationship

between RBFN and k-means (or FCM), we know that there

-10

-10

0

-5 0 5 10

0

0.2

0.4

0.6

0.8

1

-10 -5 0 5 10
0

10
0

0.2

0.4

0.6

0.8

1

(a) Logistic (sigmoidal) function (b) Gaussian radial-basis function

Fig. 1 3D visualization of MLP

and RBFN’s activation

functions. a Logistic

(sigmoidal) function,

b Gaussian radial basis function

•

•
•

•

•

•

•

•

••

•

•

•

•

••
•

•

•

•

• •

• •

•
•

•

•

•

•

•
iv

iσ

Fig. 2 Spheral-shaped field of Gaussian activation functions

306 Neural Comput & Applic (2012) 21:305–317

123

exist two major challenges. One is how to select an

appropriate cluster algorithm to cater such distribution, and

the other is network approximation, which is important for

characterizing unknown-distributed data.

In this paper, we propose a network model under the

guidance of NFL theorem. As foresaid, firstly an appro-

priate clustering algorithm must be selected to meet

subspace distributions. Fortunately, there exactly exist

two available subspace clustering algorithms such as FCV

(Fuzzy c-Varieties) [21] and kPC (k-Plane Clustering)

[22]. Both algorithms are effective for clustering sub-

space-distributed data though there exist differences

between them in aspects such as initialization, type of

prototypes, and computational complexity. In consider-

ation of simplicity and efficiency, in this paper, we use

kPC to directly generate corresponding hyperplane pro-

totypes (similar to point prototypes in k-means). Through

replacing the point prototypes (cluster centers) of

Gaussian RBFN with those plane prototypes, we define a

new activation function coined as Plane-Gaussian func-

tion (for short, PGF, see Fig. 5) and further develop a

corresponding PGF network (PGFN). From Fig. 5, the

activating range (belt-shaped field) of PGF presents two

aspects: locality and globality. Geometrically, such

locality is manifested in the limited bandwidth direction,

and the globality is manifested in the unlimited spread

along the orthogonal width direction.

The rest of this paper is organized as follows: Sect. 2

briefly introduces kPC algorithm. In Sect. 3, we describe the

details of PGFN including network architecture, universal

approximation, and, especially, relationship between PGFN

and other networks. Section 4 reports our experimental

results. Finally, we conclude the whole paper in Sect. 5.

2 kPC algorithm

This section presents a brief introduction for k-plane

clustering algorithm.

Given a set of n points xj ðj ¼ 1; 2; . . .; nÞ in the

d-dimensional real space R
d represented by the matrix

X 2 R
d�n. The goal of kPC algorithm is to cluster n points

into c clusters corresponding to their nearest prototypes (hy-

perplanes) P ¼ fp1; p2; . . .; pcg. Based on this intuition, the

objective function of kPC algorithm can be mathematically

described as a nonconvex minimization problem as follows:

minJkPC ¼
Xc

i¼1

X

xj2ci

wT
i xj � ci

�� ��2

s:t:jjwijj ¼ 1; i ¼ 1; 2; . . .; c

ð1Þ

where ci is the ith cluster composed by those points closest

to the ith plane pi, wi and ci are the unit normal vector and

threshold of the pi, respectively. Throughout this paper, the

superscript ‘‘T’’ denotes the transpose and e denotes a

vector of ones of appropriate dimension.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

z1

z2

class1

class2

class3

Fig. 3 Three-class data points sampled from Gaussian distributions

(NormalData)

-10 -8 -6 -4 -2 0 2 4 6
2

2.5

3

3.5

4

4.5

5

z1

z2

class1
class2
class3

0246

0
2

4 6

0

1

2

3

4

5

6

z1

z3

class1
class2
class3

(a) Line subspace (Line3) (b) Plane subspce (Plane3)

Fig. 4 Original subspace

distributions. a Line subspace

(Line3), b Plane subspce

(Plane3)

Neural Comput & Applic (2012) 21:305–317 307

123

By solving the above problem, kPC finds a set of hy-

perplanes fW; cg ¼ fðw1; c1Þ; ðw2; c2Þ; . . .; ðwc; ccÞg. Thus,

the hyperplanes P ¼ fp1; p2; . . .; pcg, i.e. c cluster proto-

types can be determined. Then, each point can be assigned

to its corresponding cluster set.

This algorithm alternates between assigning points to its

nearest cluster hyperplane (shortly, Cluster Assignment)

and for a given cluster, re-computing a cluster hyperplane

under the objective function (1) (Cluster Update). Table 1

describes the kPC algorithm as below.

Next, based on the kPC algorithm, we come to construct

so-called PGF network.

3 Plane-Gaussian network

In this section, we describe PGF network in the following

parts: definition of PGF, network architecture, universal

approximation, and relations with other networks.

3.1 Definition of Plane-Gaussian function

First, let us review something about activation functions. Note

that general properties of activation functions are nonlinearity,

continuity, boundness, and smoothness, but in real applica-

tions, some additional properties (such as monotonicity) are

added to further promote the network performance [23]. One

class of functions that has all the above properties is the sig-

moid such as logistic function, which is defined below

hðxÞ ¼ 1

1þ expð�aTx� bÞ ð2Þ

where a and b denote the weight and bias of the neuron x,

respectively. Once the initial structure of MLP is determined

and one learning round finished, the response of hidden

neuron can be analyzed by this activation function [24].

If the distributions arise from a mixture of Gaussians, an

appropriate function for RBFN is the multivariate Gaussian

activation functions defined as follows:

UGðx; viÞ ¼ exp �jjx� vijj2

2r2
i

 !
ð3Þ

where vi is the center position of the Gaussian function, ri

is the width of the ith center associated with the ith cluster.

-10

-10
-5 0 5

0
10

0

0.2

0.4

0.6

0.8

1

Fig. 5 The 3D visualization of the Plane-Gaussian function

Table 1 k-Plane Clustering algorithm (kPC)

308 Neural Comput & Applic (2012) 21:305–317

123

Ref. [18] says that the performance of RBFN highly

depends on the selections of the centers and widths, and

current methods (such as gradient descent [25] and singular

value decomposition [26]) of tuning these parameters

cannot guarantee good classification results.

In this section, combining (2) and (3), we define a dif-

ferentiable nonlinear function as follows:

Definition 1 A function with the following form is called

Plane-Gaussian function (PGF),

UPGðxÞ ¼ exp � wT x� cj j2

2r2

 !
ð4Þ

where ðw; cÞ denotes a hyperplane wT x� c ¼ 0 with an

unit normal vector w and a threshold c, and r is a width

corresponding to the plane ðw; cÞ.

Figure 5 illustrates the PGF, and wT x� cjj is the dis-

tance of the point x to the plane ðw; cÞ. Assume x is an

element of the ith cluster associated with the plane ðwi; ciÞ,
ri denotes a semi-bandwidth (see Fig. 6), then the function

UPGðxÞ ¼ exp � wT
i x�cijj 2

2r2
i

� �
can be taken as the activation

function of our proposed PGF network.

Intuitively, the so-constructed function UPGðxÞ is similar

to that of logistic function (the weighted sum of all inputs

plus the bias). Meanwhile, both PGF and RBF adopt the

Euclidean distance to measure similarity and then accord-

ingly assign the given points into their corresponding

clusters. In Sect. 3.4, we will detail more about geometri-

cal interpretation and their relations to both MLP and

RBFNs.

3.2 Network architecture and training method

Without loss of generality, we merely discuss three-layer

network architecture (one hidden layer) as illustrated in

Fig. 7. In this graph, the input layer contains d neurons,

each of which receives a d-dimensional sample attribute

value, respectively. The second layer is a hidden layer,

composed of nonlinear units that are connected directly to

all of the nodes in the input layer. For PGFN, the activation

function of the ith individual hidden unit is a PGF function

described as UPG
i . The output layer consists of simple linear

units that are fully connected to the hidden layer. Similar to

RBF, the weights of PGFN linking the input and the hidden

layer are set all ones. When parameters wi; ci and ri (i = 1,

2, …, c) of PGFs are determined at the training phase, the

weight matrix U (Fig. 7) between the hidden and output

layer can be computed. Thus, the internal relationship

between the input and output can also be viewed as a

input–output-mapping f ðxÞ : Rd ! R
m,

y ¼ f ðxÞ ¼ UTU ¼ UTðUPG
1 ðxÞ;UPG

2 ðxÞ; . . .;UPG
c ðxÞÞ

T

ð5Þ

where

UPG
i ðxÞ � UPG

i ðx;wi; ci; riÞ ¼ exp �
wT

i x� ci

���� 2

2r2
i

 !
;

i ¼ 1; 2; . . .; c

ð6Þ

As mentioned before, the parameters wi and ci in (6) can

be obtained by the kPC algorithm. The next issue is how to

determine the unknown weight matrix U. From the RBFN,

we know that the linking weight matrix between the hidden

and the output layer can be computed by the pseudo-

inverse method [1]. This trick is also useful for training

PGFN. Concretely, we divide the training phase into three

steps as below.

Step 1: compute the outputs of the hidden layer.

Once the parameters of PGFs are determined, the out-

puts of the hidden layer can be computed and described in

matrix form ~U ¼ ðU1;U2; . . .;UnÞ, where

•

•
•• •

•

•

•

•

•

••

•

•

•

•

••
•

•

•

•

• •

•
•

•

•

•

•

iσ (,)i iγw

Fig. 6 Band-shaped field of Plane-Gaussian functions

dx

1y my

2
PG

1
PG PG

c

11U
1mU21U

2mU
1cU cmU

1x

Fig. 7 Three-layer PGF neural network

Neural Comput & Applic (2012) 21:305–317 309

123

Uj ¼ ðUPG
1 ðxjÞ; UPG

2 ðxjÞ; . . .;UPG
c ðxjÞÞT ; ðj ¼ 1; . . .; nÞ

ð7Þ

Step 2: set the target output matrix Y using 0–1

encoding method.

If a sample xi belongs to the lth class, we define its

corresponding 0–1 output code as a column vector

yi ¼ ð0; . . .; 0; 1; 0; . . .; 0ÞT , where only the lth component

is set to 1. Accordingly, the 0–1 output matrix is termed as

Y ¼ ðy1; y2; . . .; ynÞ.
Step 3: calculate the weight matrix U.

In this step, the foresaid pseudo-inverse trick is used to

generate the linking weight matrix as

U ¼ ðY eUþÞT ð8Þ

where Aþ indicates the pseudo inverse of matrix A.

Generally, we set [1]

Aþ ¼ ðAT AÞ�1AT ð9Þ

We rewrite foresaid training process in Table 2.

As a whole, training a PGFN is a process of determining

the activation functions and the weight matrix U. Thus, the

aforementioned nonlinear input–output mapping can be

constructed.

MLPs and RBFNs are typical examples of nonlinear

layered feedforward networks. They are both universal

approximators. That is, there always exists an RBF network

capable of accurately mimicking a specified MLP or vice

versa. Next, we theoretically analyze the approximation of

our PGFN.

3.3 Universal approximation

From the theoretical point of view, the first thing we need

to consider might be universal approximation theories.

Weierstrass theorem [27] states function approximation

on a 1-dimensional (real-valued) case described as

Lemma 1.

Lemma 1 If f is a continuous real-valued function on a

closed interval [a, b], and if any e [0 is given, then there

exists a polynomial p on [a, b] such that

jf ðxÞ � pðxÞj\e ð10Þ

for all x 2 ½a; b�.

Lemma 1 states that any continuous function over a

closed interval on the real axis can be expressed in that

interval as an absolutely and uniformly convergent series

of polynomials to any degree of accuracy. Universal

approximation theorem is based on Lemma 1, which can be

viewed as a natural extension of Weierstrass theorem. We

state it as below.

Lemma 2 Let u be a nonconstant, bounded, and

monotone-increasing continuous function. Let Id denote the

d-dimensional unit hypercube ½0; 1�d. The space of contin-

uous functions on Id is denoted by CðIdÞ. Then, given any

function f 2 CðIdÞ and e [0, there exist an integer n and a

set of real constant ai; bi and vector ai, where i ¼
1; 2; . . .; n such that a function F can be defined

FðxÞ ¼
Xn

i¼1

aiuðaT
i xþ biÞ ð11Þ

as an approximate realization of the function f ; that is,

jFðxÞ � f ðxÞj\e ð12Þ

for all x that lie in the d-dimensional input space.

From the Lemma 2, we know that Weierstrass theorem

can be naturally extended from 1-dimensional to d-dimen-

sional case. Moreover, the function u in Lemma 2 can be

viewed as a nonlinear input–output mapping. We note that

the logistic function (Eq. 2) used as the nonlinearity in a

neuronal model for the construction of a MLP is indeed a

nonconstant, bounded, and monotone-increasing function,

therefore it satisfies the conditions imposed on the function u
in Lemma 2. That is, the universal approximation theorem

can be directly applied to MLP.

Another famous network model is the RBFN, which is

also capable of forming an arbitrarily close approximation

to any continuous functions. This approximation theorem is

firstly proposed by Park and Sandberg [9] and stated in

Lemma 3 [28].

Lemma 3 Let f : Rd ! R be a radial symmetric, inte-

grable, bounded function such that f is continuous almost

everywhere and
R
R

d f ðxÞdx 6¼ 0, then the family

Xc

i¼1

aig
jjx� vijjdR

2r2

 !
ð13Þ

is dense in LpðRdÞ for every p 2 ½1;þ1Þ, where

f ðxÞ ¼ gðjjxjj
R
Þ. Here LpðRdÞ denotes the usual space of

Table 2 Training algorithm of PGFN

Input: compute plane parameters with kPC algorithm;

compute target output matrix with 0-1 code.

Training:

Step 1 determine the belt-width parameters ris by the Euclidean

distances between the points of each cluster and their

corresponding planes;

Step 2 compute output matrix of hidden layer ~U with (6) and (7);

Step 3 compute linking weight matrix U with (8) and (9)

Output: weighted matrix U

310 Neural Comput & Applic (2012) 21:305–317

123

real-valued maps f defined on R
d such that f is pth power

integrable, and jj:jj
R

d denotes a distance metric in the space

R
d. With the help of Lemma 3, a slight modified version of

Lemma 3 addresses that the function f can be locally

approximated by an RBFN. We state it in Lemma 4

Lemma 4 Let f : Rd ! R be a integrable bounded

function such that f is continuous almost everywhere andR
R

d f ðxÞdx 6¼ 0, then the family (Eq. 13) is dense in

Lp
locðRdÞ for every p 2 ½1;þ1Þ.

Here, Lp
locðRdÞ is a locally-Lpspace and is defined as the

set of all measurable functions f such that f � 1½�N;N�r 2
LpðRdÞ for every N 2 N. 1½�N;N�d denotes the characteristic

function of a Lebesgue measurable hypertube (subset)

½�N;N�dof R
d and N denotes the set of natural numbers.

Lemma 3 and 4 describe the approximation of an RBFN

with respect to the Lp metric or a metric induced from Lp

metric. From the proof of Lemmas 3 and 4 [9], we

know that there is no requirement of radial symmetry

of the function f , that is, those theories are stronger

than necessary for RBF networks. Thus, the approximation

of RBFNs can be directly induced from the above lemmas.

The foresaid lemmas proof that both MLPs and RBFNs

are universal approximators. In the view of approximation,

MLPs construct global approximations to nonlinear input–

output mapping, while RBFNs construct local approxima-

tions to such mapping.

In this section, what we indeed concern is the approxi-

mation property of our proposed PGF networks. Some

proofs are described as follow.

In the following description, we still use the above nota-

tion and definitions. Let MðIdÞ denote the finite signed reg-

ular Lebesgue measures on Id. Similar to Ref. [6, 9], we

consider only 1-dimensional output space, and it is trivial to

extend 1-dimensional result to multidimensional output

space.

The family of PGF networks consists of the following

functions represented by

pðxÞ ¼
Xc

j¼1

ajU
PG
j ðxÞ ¼

Xc

j¼1

aj exp �
wT

j x� cj

� �2

2r2
j

0

B@

1

CA

ð14Þ

which are dense in CðIdÞ with respect to the supremum

norm (L1 metric), where c is the number of neurons in

hidden layer.

For simplicity, let all smoothing factors (widths) in (6)

be same, i.e. r1 ¼ � � � rc ¼ r and first review the following

definitions.

Definition 2 A function with the form /ðwTx� cÞ is

discriminatory if for a measure l 2 MðIdÞ satisfiesR
Id

/ðwT x� cÞdlðxÞ ¼ 0 for all w 2 R
d and c 2 R implies

that l ¼ 0.

Obviously, according to the above definition, the func-

tion exp � wT x�cð Þ2
r2

� �
is discriminatory, which is very useful

for describing the following approximation of pðxÞ.

Theorem 1 The function prðxÞ ¼
Pc

j¼1 aj exp

� wT
j x�cjð Þ2
2r2

� �
is dense in CðIdÞ. That is, for any f 2 CðIdÞ

and e [0, there is jpðxÞ � f ðxÞj\e, for all x 2 Id.

Proof Let the symbol S be the set of functions of the

form prðxÞ and S � CðInÞ. Clearly, S is a linear subspace

of CðIdÞ. What we want to claim is that the closure of S,

denoted by �S, satisfies �S ¼ CðIdÞ.

Assume �S 6¼ CðInÞ. Then �S � CðInÞ and �S is still a

subspace of CðIdÞ. By the Hahn–Banach theorem [29] and

Lemma 2, there exists a bounded linear function LðL 6¼ 0Þ
on CðIdÞ with the property that LðSÞ ¼ Lð�SÞ ¼ 0. From

Riesz representation theorem [29], we know that L can be

described as the form LðgÞ ¼
R

Id
gðxÞdlðxÞ for some l 2

MðIdÞ and for all g 2 CðIdÞ. Particularly, since prðxÞ 2
S � �S for all w 2 R

d and c 2 R, we have that
R

Id
exp �ðw

T x�cÞ2
2r2

� �
dlðxÞ ¼ 0 for all w and c. However, as

described before, the function exp �ðw
T x�cÞ2
2r2

� �
is discrimi-

natory, so it implies that l ¼ 0, which contradicts the

assume �S 6¼ CðInÞ. Therefore, the subspace must be dense

in CðIdÞ. The proof is complete. h

For pðxÞ defined as (14), the similar approximation can

be induced from Theorem 1. We describe this as the fol-

lowing corollary.

Corollary 1 The function pðxÞ ¼
Pc

j¼1 aj exp

�ðw
T
j x�cjÞ2

2r2
j

� �
is dense in CðInÞ. For any f 2 CðIdÞ and

e [0, there is pðxÞ � f ðxÞj j\e, for all x 2 Id.

Some remarks on Theorem 1 and Corollary 1:

Remark 1 The universal approximation can be easily

generalized to multiple hidden layers and output nodes

PGF networks as described in [6, 9].

Remark 2 For the aforementioned prðxÞ and pðxÞ, their

weighted vectors w has no any constraints except the

length.

On the other hand, we can rewrite the (14) as

Neural Comput & Applic (2012) 21:305–317 311

123

p
0 ðxÞ ¼

Xc

j¼1

aj exp �
wT

j x� cj

���
���

2r2

0
@

1
A ð15Þ

where jj:jj denotes a 2-norm distance metric.

Under the constraint wik k ¼ 1, wT
i x� ci

�� �� means the

distance between the given point x and the ith plane

ðwi; ciÞ. So, the similar local approximation can be directly

induced from Lemmas 3 and 4. we state it in the following

theorems.

Theorem 2 Let f : Rd ! R be a integrable bounded

function such that f is continuous almost everywhere andR
R

d f ðxÞdx 6¼ 0, then the family (Eq. 15) is dense in

Lp
locðRdÞ for every p 2 ½1;þ1Þ, where f ðxÞ ¼ gð xk k

R
d Þ ¼

exp � wT
i x�cik k
2r2

� �
.

The following is a direct corollary of Theorem 2.

Corollary 2 The function p
0 ðxÞ ¼

Pc
j¼1 aj exp

� wT
j x�cjk k
2r2

j

� �
is dense in Lp

locðRdÞ for every p 2 ½1;þ1Þ.

Theorems 1 and 2 describe the approximation of our

proposed PGFN with respect to L1 and Lp metric, respec-

tively. Especially, when p ¼ 1 in Theorem 2, the function

f 2 L1 over a Lebesgue measurable set A can be written asR
A f ðxÞdx. This is consistent with Theorem 1 when let the

set A to be a countable set.

Next we relate our PGFNs to MLPs and RBFNs.

3.4 Relation to other networks

Without loss of generality, the following discussions only

consider single-hidden-layer network architecture. In this

section, we compare our proposed PGF networks to the two

popular networks: MLPs and RBFNs. First of all, let us

concern the relation of MLPs and PGFNs.

3.4.1 Relation to MLPs

We discuss their properties mainly including activation

function, learning time, and geometrical interpretation.

From the viewpoint of constructing activation functions,

MLPs usually take the sigmoidal functions as their acti-

vation functions (e.g. logistic function, Eq. 2). We rewrite

(2) as

US
i ðxÞ ¼

1

1þ expð�wT
i x� aiÞ

ð16Þ

where US
i ðxÞ is a output of the ith hidden neuron, wi means

the ith column of linking weight vector between the input and

the hidden layer, and ai is a threshold corresponding to wi.

For the expression UPG
i ðxÞ ¼ exp �ðw

T
i x�ciÞ2

2r2
i

� �
of the PGF,

the parameter pair wi and ci induced from kPC algorithm can

also be viewed as the weight and threshold between the input

and the hidden layers, respectively. Furthermore, the hidden

and output layers of both MLP and PGFN used as a pattern

classifier are usually all nonlinear. With the help of definition

2, we know that both activation functions are all discrimi-

natory with the same form /ðwT x� cÞ.
From the viewpoint of learning time, however, the

PGFNs and MLPs are quite different. Commonly, MLPs

adopt BP algorithm to iteratively compute the linking

weights between neighboring layers backwards. While

for the PGFNs, the weights between the input and the

hidden layer are obtained by the kPC algorithm and the

weights linking the hidden and output layers can be

directly determined by pseudo-inverse method. There-

fore, learning time of the PGFNs is far less than that of

MLPs.

From the viewpoint of geometrical meaning, to the best

of our knowledge, it still unclear how to interpret the

geometrical principle of MLP networks. But for the

PGFNs, they have clear geometrical interpretation that will

be shown in next subsection.

3.4.2 Relation to RBFNs

For PGFNs and RBFNs, although they adopt different

activation functions, they have many similar characteristics

in both network architecture and weight computation

between the hidden and output layers. Detailedly, the

activation function of the ith hidden neuron of RBFN is

usually presented as UG
i ðxÞ ¼ exp � x�vik k2

2r2
i

� �
. The value of

UG
i ðxÞ corresponds to the output of the ith hidden neuron,

vi is the center position of the function UG
i ðxÞ and ri is

width of the ith center which affects the generalization

capability of that neuron. The c centers, corresponding to

c activation functions, usually are computed by FCM

algorithm. Figure 2 illustrates a spheral-region (called the

receptive field of the Gaussian RBF) determined by the

center vi and width ri (radius). The receptive field of RBF

is that particular subset of the domain of the input vector x

for which UG
i ðxÞ takes sufficiently large values.

While for the PGFNs, they take the PGF as activation

function with the expression UPG
i ðxÞ ¼ exp � wT

i x�cijj 2

2r2
i

� �
,

where ri denotes a bandwidth. Particularly, the ‘‘centers’’

of PGF have been changed into central planes, rather than

central points of RBF. The tuples (wi, ci) are prototypes of

a series of plane clusters generating from kPC algorithm.

Similarly, from Fig. 6, the band-shaped region can be

viewed as the PGF receptive field, where the ith central

312 Neural Comput & Applic (2012) 21:305–317

123

plane can be represented as a tuple of ðwi; ciÞ and ri is a

semi-bandwidth.

Summarily, in the aspect of constructing activation

function, the PGF is similar to the MLP. But in the aspect

of learning method, the PGFN is similar to the RBFN i.e.

both are trained by an unsupervised manner. In term of

geometrical meaning, both PGFN and RBFN have clear

interpretation (Figs. 2, 6). In addition, the PGF forms a

semi-closed band-shaped receptive field, which leads

PGFN to be capable of showing two-side characteristics:

locality and globality. That is, in the direction orthogonal

to the central plane ðwi; ciÞ, the PGF is bounded with the

spread ri, while in the direction parallel to the ðwi; ciÞ, it is

free. The experimental performances of the classifiers

trained by PGFN will be analyzed and discussed in Sect. 4.

4 Experiments

In this section, the performance of the PGFN will be ana-

lyzed and compared with the two popular neural networks

with one hidden layer: MLPs and RBFNs. All experiments

are carried out on three synthetic toy problems and some

UCI [30] real-world datasets. In this paper, each toy dataset

was equally divided into two parts randomly: training set

and test set, while for UCI dataset, tenfold cross-validation

was adopted to determine network parameters and test

accuracies. To avoid the difference of value, the inputs of

all samples are normalized to [0,1]. Computational time

was obtained on a machine running Matlab 7.0 on Win-

dows xp with a Pertium IV 2.5 GHz processor and 2G

memory.

For classification tasks, many researchers [24, 31–35]

concluded that the number of hidden neurons is related to

the number of classes, the scale of weights, the number of

input samples, the region of the distribution, and so on.

However, it is very hard to determine the sample distri-

bution regions, and shapes [24, 31, 32]. Ref. [24] gave us

an empirical initial number of hidden nodes as formula

2 log2ðd þ c� 1Þb c (where d denotes the dimension of

input samples, c denotes the number of classes, and �b c
denotes a floor operation). However, it is loose in many

applications as described in [24]. Teoh et al. [35] said that

‘‘for an MLP with one hidden layer, if at least

N þ d
d

� �

dþ2

hidden units are used, a smooth activation function can

only achieve approximation order N 2 N for all functions

f 2 CN’’, where d denotes the dimension of input samples.

Moreover, the author also concluded that only one hidden

layer is needed for linear or quadratic approximation. That

is, a three-layer MLP needs at least d þ 1 hidden neurons

to achieve second-order approximation and at least one

hidden unit to achieve linear approximation. So, consid-

ering the foresaid suggestions, we take two initial hidden

nodes in our comparisons [1, 36]. Another difficult problem

is how to determine the optimal number of hidden nodes.

Huang and Babri [33] told us that the number of inputs n

must be an upper bound for any bounded nonlinear acti-

vation function. Gao and Ji [24], and Huang and Babri [34]

adopted singular value decomposition to estimate an

appropriate number of hidden nodes for MLPs. Bartlett

[37] suggested that we should pay more attention to net-

work weights rather than network size. Due to comparing

the three networks and avoiding too much computation, we

take the maximum number of hidden nodes as
ffiffiffiffiffiffiffiffi
n=2

p	

with a compromise way, where �d e means a ceiling oper-

ation. Thus, the number of hidden neurons c varies from 2

to
ffiffiffiffiffiffiffiffi
n=2

p	

and for each c, we report average percentage of

classification accuracies and learning time on 20 indepen-

dent runs across the tenfolds. In order to clearly report the

comparisons, we performed paired t tests comparing MLP

to PGFN and RBFN to PGFN. The p-value for each test is

the probability of the observed or a greater difference

assumption of the null hypothesis that there is no difference

between test set correctness distributions. Thus, the smaller

the p-value, the less likely that the observed difference

resulted from identical test set correctness distributions.

A typical threshold for p-value is 0.05. For example, the

p-value of the computational time test (Table 3) when

comparing PGFN and MLP on the Line3 dataset is 0.000

(\0.05), meaning that PGFN and MLP have different

training times on this dataset.

In our study, we use k-means to train RBFNs. Both

MLPs and RBFNs were implemented using the Netlab

neural network software [38]. The widths of Gaussian

RBFs were determined from the k-nearest neighbor

according to the following formula:

rj ¼
1

k

Xk

i¼1

x
ðjÞ
i � cj

���
���

2

 !1=2

ð17Þ

Table 3 Average training time (s) of three networks

Datasets MLP

p-value

RBFN

p-value

PGFN

Line3 0.0126*

0.000

0.0017*

0.012

0.0002

Plane3 0.0349*

0.002

0.0045*

0.035

0.0023

NormalData 0.0542

0.063

0.0250

0.038

0.0228

Least training time are in bold

* Significant difference from PGFN based on p-value less than 0.05

Neural Comput & Applic (2012) 21:305–317 313

123

where cjðj ¼ 1; 2; . . .; cÞ denotes the central vector of the

jth cluster, and x
ðjÞ
i denotes the ith nearest neighbor of cj.

For the same reason, we define the widths of PGFs as

follows under the constraints wj

�� �� ¼ 1.

rj ¼
1

k1

Xk1

i¼1

wT
j x
ðjÞ
i � cj

� �2

 !1=2

ð18Þ

where x
ðjÞ
i denotes the ith nearest sample to the jth plane

wT
j x� cj ¼ 0. Considering the previous suggestion [39] we

set k1 ¼ 3.1

Next, we first come to our toy problems.

4.1 Toy problems

Two toy problems were designed on the three-class data

(subspace distribution) termed as Line3 (Fig. 4a) and Plane3

(Fig. 4b), respectively. The other one is called NormalData

(Fig. 3). The datasets, Line3 (41 samples) and Plane3 (total

300 samples, each class consists of 100 points), were man-

ually generated to simulate three line-shaped and plane-

shaped distributions, respectively. The dataset NormalData

consists of 2-dimensional samples from three different

Gaussian distributions, each of which contains 100 points

sampled from its corresponding distribution (see Fig. 3).

Their means and covariance are, respectively, represented as

�0:3
0

� �
;

0:16

0:16

� �� �
,

1

0:7

� �
;

0:04

0:09

� �� �
and

0

2

� �
;

0:36

0:36

� �� �
.

Table 3 reports the average training time of three net-

works on toy problems. Compared to MLP and RBFN,

PGFN is significantly outperforming them on datasets

Line3 and Plane3. While on NormalData, the training time

of three networks is comparable. Figure 8 shows the test

accuracies on the training datasets (labeled as ‘‘test cor-

rectness’’ in the figures) of the three networks. On the

subspace-distributed datasets Line3 and Plane3, the per-

formance of PGFN significantly surpasses MLP and RBFN

(Fig. 8a, b). While on the sphere-distributed dataset Nor-

malData, RBFN obtains higher test accuracy than both

PGFN and MLP even if in the case of less hidden nodes

(Fig. 8c). Incidentally, in order to clearly compare three

networks on Line3, we set the upper bound of hidden

neurons 10 instead of
ffiffiffiffiffiffiffiffiffiffi
41=2

pl m
. On the other hand, Fig. 8

also reports that the test accuracy of PGFN is more stable

in tuning the number of the hidden nodes than that of

RBFN and MLP. For the reason, it may be that the

kPC incorporates the piecewise linear regression into

(a) Line3 (b) Plane3

2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

number of hidden nodes

te
st

 c
o

rr
ec

tn
es

s
(%

)

MLP

PGF
RBF

(c) NormalData

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

number of hidden nodes

te
st

 c
o

rr
ec

tn
es

s
(%

)

MLP

PGF
RBF

2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

number of hidden nodes

te
st

 c
o

rr
ec

tn
es

s
(%

)

MLP

PGF
RBF

Fig. 8 Tenfolds test accuracies

(%) on the three training

datasets. a Line3, b Plane3,

c NormalData

1 To distinguish with the foresaid parameter k such as kPC and

k-means, here let k1 denotes the number of nearest neighbors to a

given sample.

314 Neural Comput & Applic (2012) 21:305–317

123

constructing cluster algorithm under piecewise linear

function approximation principle [40]. When the number of

the hidden neurons increases, all three networks indicate

their favorable performance, which is quite consist with

their approximation theories. As described in NFL Theo-

rem, when combining prior knowledge of data distribution,

PGF and RBF networks are able to show their superiority

to MLP. Figure 4 says that PGFN is more suitable to

subspace-distributed datasets Line3 and Plane3, while RBF

is suitable to sphere-distributed NormalData.

Next, we validate the performance of three networks on

the public UCI datasets.

4.2 UCI datasets

In this section, the performance of three networks were

compared in both training time and test accuracies on 13

public UCI datasets. The main information about those

datasets is listed in Table 4. Similar to toy problems, we

also added p-value (set confidence level 95%) to show

statistical difference. In a RBFN, three types of parameters

need to be chosen to adapt the network for a given clas-

sification task: the central position vectors, the output

weights, and the RBF widths. Similarly, PGFNs also need

to choose such three types of parameters: central hyper-

plane, the semi-width, and output weights. As foresaid, the

centers of RBFN and PGFN are determined by kPC and

k-means algorithms, respectively, here k is a tuning

parameter (the number of hidden nodes) varying from 2 to
ffiffiffiffiffiffiffiffi
n=2

pl m
. Then, the widths can be determined by (17) and

(18). Since MLPs using a backpropagation are the standard

algorithm for any supervised-learning pattern recognition

processes and the subject of ongoing research in compu-

tational neuroscience; in this section, the learning of MLP

is also carried out through BP algorithm.

Table 5 lists our experimental results on average test

accuracies (TA) and training time over 20 independent

runs. We added a standard deviation (SD) term to TA to

measure scatter corresponding test accuracy. Moreover, for

each average value of test accuracy and training time, a

student’s paired t test was applied to examine statistical

significance of performance made by PGFN against both

MLP and RBFN. Table 5 shows that each dataset contains

4 rows. For example, the first row stands for the maximum

test accuracies (%) over tenfold with the appropriate

number of hidden nodes, and the second stands for showing

their corresponding p-values. When the p-values are less

than 0.05, it means that there exists statistical significance

between PGFN and the given networks in test accuracies.

Similarly, the third and fourth row show average training

time and their corresponding p-values, respectively. In 13

UCI datasets, four of them in Table 5 report that PGFNs

yield highest test accuracies, and the other five of them, i.e.

New_thyroid, Ionosphere, Glass, Cmc, and WDBC, report

that there exist statistical insignificance in test accuracies

among three networks. The rest datasets report that PGFNs

show their insignificances against RBFNs or MLPs. But for

training time, the UCI datasets all report that PGFNs are

significantly superior to MLPs, and only two of them report

that there exist statistical significance between PGFNs and

RBFNs.

In general, Tables 3 and 5 say that the training time of

PGFNs is significantly less than that of MLPs on both

synthetic and UCI benchmark datasets and is comparable

to that of RBFNs in the vast majority of datasets. As far as

classification performance is concerned, to three types of

artificial networks, each of them has its advantages in

classification performance. Table 5 also gives such con-

clusions. Table 3 says that PGFN is more suitable to

classify those subspace-distributed datasets, while RBFN is

suitable for sphere-distributed datasets.

5 Conclusion

In this paper, we propose a type of novel Plane-Gaussian

function networks to enlarge the arsenal of the neural

networks. Due to taking the Plane-Gaussian functions as

their activation functions, PGFN is capable of approximate

any continuous function to arbitrary precision, which is

proved in the case of one hidden layer network architec-

ture. Instead of central point in RBF with central plane

generated from kPC algorithm, PGF forms a band-shaped

receptive field that leads such activation function yield a

special geometrical interpretation: locality and globality.

Table 4 Main information about UCI datasets

Datasets Number of

samples

Dimension Number of classes

Water 116 38 2 [65, 51]*

Wine 178 13 3 [59, 71, 48]

Bupa 345 6 2 [145, 200]

Sonar 208 60 2 [97, 111]

Iris 150 4 3 [50, 50, 50]

New_thyroid 215 5 3 [150, 35, 30]

Balance_scale 625 4 3 [49, 288, 288]

Ionosphere 351 34 2 [255, 126]

Pima 768 8 2 [500, 268]

Glass 214 9 6 [70,76,17,29,13,9]

Cmc 1473 8 2 [109, 1364]

Waveform 5000 21 3 [1657, 1647, 1696]

WDBC 569 30 2 [212, 357]

* The number in the square brackets is the size of the corresponding

class

Neural Comput & Applic (2012) 21:305–317 315

123

Thus, PGFN plays an important role in bridging the gap

between the other two types of network: RBFN and MLP.

Experimentally, PGFN runs significantly faster than

MLP since PGFN combine the capability of RBF’s fast

learning property into constructing network. Moreover,

with help of k-plane clustering algorithm, PGF networks

are more suitable for classifying the data with subspace-

distributed characteristic.

Here, we should point out that this paper merely con-

centrates on the description of three basic kinds of net-

works. How to further optimize the central prototypes and

parameters of PGFNs and RBFNs was not concerned in

this paper. Intuitively, better classification results can more

likely be achieved if some already-improved training

algorithms for both RBFNs and MLPs are adopted.

Acknowledgments We thank the anonymous reviewers for their

valuable comments and suggestions. We are grateful to the Neural

Computing Research Group of Aston university for allowing us to

freely use Netlab software. This research was supported by Natural

Science Foundation of China (60773061, 60903130), the Jiangsu

Science Foundation BK2009393, and Science Foundation of Nanjing

Forestry University 163070053 and 163070657.

References

1. Haykin S (1999) Neural networks: a comprehensive foundation,

2nd edn. Prentice Hall, NJ

2. Bishop CM (1995) Neural networks and pattern recognition.

Oxford University Press, Oxford

3. Barreto AMS, Barbosa HJC, Ebecken NFF (2006) GOLS-Genetic

orthogonal least squares algorithm for training RBF networks.

Neurocomputing 69(16–18):2041–2064

4. Sarimveis H, Doganis P, Alexandridis A (2006) A classification

technique based on radial basis function neural networks. Adv

Eng Softw 37(4):218–221

Table 5 Tenfold test accuracies, standard deviation (TA ± SD),

average training time (second), and p-values corresponding to TA and

training time, respectively, over 20 independent runs

Datasets MLP RBFN PGFN

A ± SD (%)

p-value of TA

TA ± SD (%)

p-value of TA

TA ± SD (%)

–

Training time (s)

p-value of time

Training time (s)

p-value of time

Training time (s)

–

Water 52.83 ± 1.22* 91.11 ± 4.58 92.41 – 3.45

0.0000 0.3204

0.0498* 0.0003 0.0003

0.0000 1.0000

Wine 95.01 – 2.69* 93.41 ± 3.44 91.61 ± 3.64

0.0001 0.0549 –

0.0625* 0.0004 0.0004

0.0000 1.0000 –

Bupa 70.38 ± 2.77* 73.06 ± 5.33 75.48 – 3.55

0.0004 0.1356

0.0793* 0.0014* 0.0023

0.0000 0.0027

Sonar 84.72 – 1.67* 74.83 ± 3.33 74.87 ± 2.59

0.0012 0.9821

0.0635* 0.0016 0.0021

0.0000 0.5681

Iris 97.50 – 1.25* 96.25 ± 1.69* 84.27 ± 12.12

0.0004 0.0001

0.0365* 0.0004 0.0002

0.0000 0.6036

New thyroid 93.84 ± 4.21 95.48 – 3.53 95.38 ± 2.82

0.1750 0.5596

0.0659* 0.0012 0.0011

0.0000 0.6727

Balance scale 86.98 ± 3.68* 90.93 – 2.96 90.26 ± 2.98

0.0022 0.3221

0.0795* 0.0033 0.0040

0.0000 0.0634

Ionosphere 87.33 – 1.64 84.55 ± 1.68 83.24 ± 4.99

0.2353 0.4644

0.0356* 0.0009* 0.0046

0.0001 0.0040

Pima 71.27 ± 1.89* 72.70 ± 3.27* 76.04 – 3.18

0.0001 0.0367

0.0782* 0.0303 0.0383

0.0388 0.2957

Glass 67.01 ± 9.72 69.01 – 4.10 68.84 ± 4.41

0.6697 0.8663

0.0752* 0.0004 0.0007

0.0000 0.3765

Cmc 43.49 ± 9.08* 56.49 – 3.28 55.47 ± 3.86

0.0000 0.1096

0.0898* 0.0066* 0.0023

0.0000 0.0475

Table 5 continued

Datasets MLP RBFN PGFN

A ± SD (%)p-

value of TA

TA ± SD (%)p-

value of TA

TA ± SD (%)–

Training time

(s)p-value of

time

Training time

(s)p-value of

time

Training time

(s)–

Waveform 78.91 ± 2.14* 84.08 ± 8.10 86.14 – 7.58

0.0025 0.0827

1.1360* 0.0538 0.0501

0.0000 0.8146

WDBC 97.25 – 1.15 95.46 ± 4.22 93.75 ± 6.60

0.1002 0.1474

0.0625* 0.0030 0.0028

0.0000 0.1432

Highest test accuracies and least training time are in bold

* Significant difference from PGFN based on a p-value less than 0.05

316 Neural Comput & Applic (2012) 21:305–317

123

5. Smyrnakis MG, Evans DJ (2007) Classifying Ischemic events

using a Bayesian inference multilayer percetron and input vari-

able evaluation using automatic relevance determination. Comput

Cardiol 34:305–308

6. Cybenko G (1989) Approximation by superpositions of a sig-

moidal function. Math Control Signals Syst 5(4):303–314

7. Funahashi K (1989) On the approximate realization of continuous

mappings by neural networks. Neural Netw 2(3):183–192

8. Hornik K, Stinchcombe M, White H (1990) Universal approxi-

mation of an unknown mapping and its derivatives using multi-

layer feedforward networks. Neural Networks 3(5):551–560

9. Park J, Sandberg IW (1991) Universal approximation using

radial-basis-function networks. Neural Comput 3(2):246–257

10. Nam MD, Thanh TC (2003) Approximation of function and its

derivatives using radial basis function networks. Appl Math

Modell 27(3):197–220

11. Lehtokangas M, Saarinen J (1998) Centroid based multilayer

perceptron networks. Neural Process Lett 7:101–106

12. Irigoyen E, Pinzolas M (in press) Numerical bounds to assure

initial local stability of NARX multilayer perceptrons and radial

basis functions. Neurocomputing
13. Oliveira ALI, Melo BJM, Meira SRL (2005) Improving con-

structive training of RBF networks through selective pruning and

model selection. Neurocomputing 64:537–541

14. Delogu R, Fanni A, Montisci A (2008) Geometrical synthesis of

MLP neural networks. Neurocomputing 71(4–6):919–930

15. De Silva CR, Ranganath S, De Silva LC (2008) Cloud basis

function neural network: a modified RBF network architecture for

holistic facial expression recognition. Pattern Recogn 41(4):

1241–1253

16. Qu N, Wang L, Zhu M et al (2008) Radial basis function net-

works combined with genetic algorithm applied to nondestructive

determination of compound erythromycin ethylsuccinate powder.

Chemom Intell Lab Syst 90(2):145–152

17. Huan HX, Hien DTT, Huynh HT (2007) A novel efficient two-

phase algorithm for training interpolation radial basis function

networks. Signal Process 87(11):2708–2717

18. Yeung DS, Chan PPK, Ng WWY (2009) Radial basis function

network learning using localized generalization error bound. Inf

Sci 179:3199–3217

19. Yeung DS, Wang D, Ng WWY, Tsang ECC, Wang X (2007)

Structured large margin machines: sensitive to data distributions.

Mach Learn 68(2):171–200

20. Duda RO, Hart RE, Stock DG (2001) Pattern classification, 2nd

edn. Wiley, New York

21. Bezdek JC (1981) Pattern recognition with fuzzy objective

function algorithms. Plenum Press, New York

22. Bradley PS, Mangasarian OL (2000) k-plane clustering. J Global

Optim 16(1):23–32

23. Castillo PA, Merelo JJ, Arenas MG, Romero G (2007) Com-

paring evolutionary hybrid systems for design and optimization

of multilayer perceptron structure along training parameters. Inf

Sci 177(14):2884–2905

24. Gao D, Ji Y (2005) Classification methodologies of multilayer

perceptrons with sigmoid activation functions. Pattern Recognit

38(10):1469–1482

25. Kiernan L, Mason JD, Warwick K (1996) Robust initialization of

Gaussian radial basis function networks using partitioned

k-means clustering. Electron Lett 32(7): 671–673

26. Bruzzone L, Prieto DF (1999) A technique for the selection of

kernel-function parameters in RBF neural networks for classifi-

cation of remote-sensing images. IEEE Trans Vol Geosci Remote

Sensing 37(2):1179–1184

27. Jeffreys H, Jeffreys BS (1988) Methods of mathematical physics,

3rd edn. Cambridge University Press, Cambridge

28. Chen TP, Chen H (1995) Approximation capability to functions

of several variables nonlinear functionals and operators by radial

basis function neural networks. IEEE Trans Neural Netw

6(4):904–910

29. Rudin W (1987) Real and complex analysis, 3rd edn. McGraw-

Hill, Inc., New York

30. Blake C, Keogh E, Merz CJ (1998) UCI repository of machine

learning databases [

http://www.ics.uci.edu/*mlearn/MLRepository.html]. Depart-

ment of Information and Computer Science, University of Cali-

fornia, Irvine

31. Draghici S (2002) On the capabilities of neural networks using

limited precision weights. Neural Netw 15:395–414

32. Mirchandani G, Cao W (1989) On hidden nodes for neural Nets.

IEEE Trans Circuits Syst 36(5):661–664

33. Huang GB, Babri HA (1998) Upper bounds on the number of

hidden neurons in feedforward networks with arbitrary bounded

nonlinear activation functions. IEEE Trans Neural Netw 9(1):

224–229

34. Teoh EJ, Xiang C, Tan KC (2006) Estimating the number of

hidden neurons in a feedforward network using the singular value

decomposition. LNCS 3971. Springer, Berlin, pp 858–865

35. Trenn S (2008) Multilayer perceptrons: approximation order and

necessary number o hidden units. IEEE Trans Neural Netw

19(5):836–844

36. Mehrabi S, Maghsoudloo M, Arabalibeik H et al (2009) Appli-

cation of multilayer perceptron and radial basis function neural

networks in differentiation between chronic obstructive pul-

monary and congestive heart failure diseases. Expert Syst Appl

36:6956–6959

37. Bartlett PL (1998) The sample complexity of pattern classifica-

tion with neural networks: the size of the weights is more

important than the size of the network. IEEE Trans Inf Theory

44(2):525–536

38. Bishop CM, Nabney I (2004) Netlab neural network software.

Neural computing research group, Information engineering,

Aston University

39. Moody TJ, Darken CJ (1988) Learning with localized receptive

fields. In: Hinton G, Sejnowski T, and Touretzsky D (eds) Pro-

ceedings of the 1988 connectionist models summer school.

Morgan Kaufmann, pp 133–143

40. Bellman RE, Roth RS (1969) Curve fitting by segmented straight

lines. Am Stat Assoc J 64:1079–1084

Neural Comput & Applic (2012) 21:305–317 317

123

http://www.ics.uci.edu/~mlearn/MLRepository.html

	Plane-Gaussian artificial neural network
	Abstract
	Introduction
	kPC algorithm
	Plane-Gaussian network
	Definition of Plane-Gaussian function
	Network architecture and training method
	Universal approximation
	Relation to other networks
	Relation to MLPs
	Relation to RBFNs

	Experiments
	Toy problems
	UCI datasets

	Conclusion
	Acknowledgments
	References

