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a b s t r a c t

The spatially enhanced local binary pattern (LBP) histogram (eLBPH) methodology has attained an
established position in the field of face recognition (FR) and derived many face analysis approaches. Their
implementations follow a similar procedure: first divide a full facial image into some regions (subimages)
and individually extract LBP histogram for each region, then concatenate all these regional histograms
into a single (global) histogram for final recognition. It has been reported that eLBPH is more effective
than the naïve holistic LBP histogram (hLBPH), while the adoption of holistic LBP image (hLBPI) in FR is
relatively few. So, this paper aims to systematically empirically address these issues: (1) Why the simple
hLBPH is hardly adopted in FR? (2) Why eLBPH is more effective than hLBPH for FR? (3) hLBPI enjoys
what kind of properties for FR. Concretely, we (1) compare the hLBPHs for large-variational facial images
with those for standard texture images, and suggest that the LBP histogram feature generally needs
certain preprocessing or post-processing for good FR performances; (2) illuminate the reason that eLBPH
is more effective than hLBPH for FR, i.e., the enhanced histogram tends to be uniform (more stable than
the holistic histogram) and relatively preserve spatial relations of faces, and show the sensitivity of
eLBPH to the division region parameter; (3) we study the properties of hLBPI for FR, i.e., hLBPI faithfully
preserves the both spatial structure and intrinsic appearance details of a facial image, inherits the
attractive properties of the LBP operator and does not require the calculation of histogram for FR;
(4) comprehensively evaluate and compare hLBPI, hLBPH, eLBPH and some subspace algorithms on the
benchmark face datasets (FERET, Extended YaleB, CMU PIE, AR); (5) conclude that hLBPI, hLBPH and eLBPH
respectively are suitable for face representation under what conditions, and expect providing practi-
tioners with guidance in selecting appropriate approaches for real tasks.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The nonparametric local binary pattern (LBP) operator was first
mentioned by Harwood et al. [1] and then introduced to image
texture description by Ojala et al. [2] for texture analysis. With the
LBP operator, the occurrences of the LBP code for an image are
collected into a histogram, which is used in texture classifications
by histogram matching methods such as histogram intersection,
Chi-square [3,4], etc. The operator enjoys some attractive proper-
ties such as tolerance to monotonic gray-scale, illumination varia-
tions, and computational simplicity, and has been demonstrated to
be highly discriminative [3]. Due to these properties, it consider-
ably successfully is used to textures analysis [5–12]. In order to
rather serve to real tasks, the original LBP operator [1,2] with the
3�3 neighborhood is extended to different-size of neighborhoods
and uniform pattern versions [3,13].
ll rights reserved.

: +86 25 84892400.
The LBP operator has recently been used to face description
[14–24] by adopting the region-division and concatenation histo-
gram strategy. The spatially enhanced LBP histogram (eLBPH) is
the first LBP-based face recognition (FR) approach (eLBPH for short
hereafter) [14,15], which divides1 a full facial image into some
regions (subimages), then extracts a regional LBP histogram from
each region and finally concatenates all regional histograms into a
single global histogram as a face representation for recognition.
The eLBPH methodology has permeated into many face analysis
domains including face recognition [17–22], facial expression
recognition [23,24], gender recognition [25], face detection [26],
face authentication [27–29], shape location [30] and so on. More-
over, the boosting extension of eLBPH has also been utilized in the
Beijing Olympics 2008 for identifying visitors [31,32]. It has been
reported that eLBPH is more effective than the naïve holistic LBP
1 The division may be a overlapping (or not) way, the latter is adopted in
this paper.
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Fig. 1. An example of the original LBP operator.
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histogram (hLBPH), while the adoption of holistic LBP image
(hLBPI) in FR is relatively few.

Motivated from different developments and utilizations of the
LBP histogram and LBP image features in face recognition, the
comparative work systematically empirically addresses these issues:
(1)
 Why the simple hLBPH is hardly adopted in FR?

(2)
 Why eLBPH is more effective than hLBPH for FR?

(3)
 hLBPI enjoys what kind of properties for FR.
More concretely, our insights and contributions mainly involve
as follows:
(1)
 We compare the hLBPHs for large-variational facial images
with those for standard texture images (c.f. Figs. 4 and 5 in
Section 3), and suggest that the hLBPH is not quite appropriate
for facial image representation and the LBP histogram feature
generally needs certain preprocessing such as region division
for good FR performances.
(2)
 We illuminate the reason that eLBPH is more effective than
hLBPH for FR, i.e., the enhanced histogram tends to be uniform
(more stable than the holistic histogram) and preserves spatial
relations of faces. (c.f. Figs. 6–9 in Section 3). Specifically, we
illustrate in detail that the spatial relation of eLBPH is
relatively rather than absolutely preserved, and show the
sensitivity of eLBPH to the division region parameter.
(c.f. Fig. 6 in Section 3 and Fig. 14 in Section 4). Here it should
be pointed out that though the number of sub-blocks per
image is studied also in [33], different from it, our purpose is to
exhibit the properties of eLBPH as adequately and objectively
as possible.
(3)
 We study the properties of hLBPI for FR via Fig. 10, from which
we can observe that hLBPI inherits the attractive properties of
the LBP operator [2–4], does not need histogram calculation
and region division at all, and quite faithfully preserves both
the spatial structures and the intrinsic appearance details of a
facial image. Likewise, it should be pointed out that though a
few papers were previously proposed for utilization of the
hLBPI [34,35] and followed by other papers [16,29] reviewing
such utilizations especially for face authentication or verifica-
tion, relatively less work explores the hLBPI properties itself
and suitable tasks for it, let alone the comparative study
between the hLBPI and the LBPH (hLBPH and eLBPH) features
for the FR. In this paper, we compare the difference between
hLBPI and LBPH (hLBPH and eLBPH) features and finally
indicate their respective appropriate tasks, so as to provide
guides for practitioners. Concretely speaking, on one hand,
from (1) above we confirm that the holistic approach is simpler,
however, unfortunately, the hLBPH is quite unsatisfactory to
facial images and generally needs certain preprocessing such as
region division; from (2) above we know that both the locality
of region division and spatial preservation of regional histogram
concatenation play key roles in eLBPH for FR, however, the
eLBPH is more complex and only relatively rather than abso-
lutely preserves spatial relations for a face; from (3) above we
verify that the sensitivity for the region parameter is a limita-
tion of eLBPH for effective recognitions. On the other hand, the
hLBPI by its definition (in Section 3.3) is the image preprocessed
by the LBP operator for an input image, and thus inherits the
attractive properties of the LBP operator [2–4], dispenses with
histogram calculation and region division at all, and faithfully
preserves both the spatial structures and the intrinsic appear-
ance details of a facial image (c.f. Fig. 10 in Section 3 and Fig. 14
in Section 4).
(4)
 We comprehensively evaluate and compare hLBPI, hLBPH,
eLBPH and some typical FR approaches based on subspace
(Eigenface [36], Laplacianface [37] and Fisherface [38]), as
demonstrated in the challenging datasets (Section 4
experiment).
(5)
 We conclude in some depth the respective properties of hLBPI,
hLBPH and eLBPH as well as suitable FR tasks.
Rest of the parts of this paper is organized as follows: Section 2
briefly reviews the LBP operator, its popular extensions and the
eLBPH based FR approach. Section 3 addresses the so-raised issues.
Section 4 firstly experimentally evaluates and compares the hLBPI,
hLBPH, eLBPH and some subspace learning algorithms for FR, and
then hLBPI and hLBPH for texture images. Section 5 gives the
conclusion remarks to provide guides for practitioners.
2. Related approaches

2.1. Local binary pattern (LBP)

Ojala et al. [2] introduced the LBP texture operator, which
originally works with the 3�3 neighborhood. The pixel values of
eight neighbors are thresholded by the value of the center pixel,
then, the so-thresholded binary values are weighted by powers of
two and summed to obtain the LBP code of the center pixel. Fig. 1
shows an example of the LBP operator. In fact, let gc and g0,…, g7
denote respectively the gray values of the center and its eight-
neighbor pixels, then the LBP code for the center pixel with
coordinate (x, y) is calculated by

LBPðx; yÞ ¼∑7
p ¼ 0sðgc−gpÞ2p ð1Þ

where s(z) is the threshold function

sðzÞ ¼
1; z≥0
0; zo0

(
ð2Þ

In traditional real tasks, the statistic representation of LBP
codes, LBP histogram (LBPH), usually is used. That is, the LBP
codes of all pixels for an input image are collected into a histogram
as a texture descriptor, i.e.,

LBPHðiÞ ¼∑
x;y
δfi; LBPðx; yÞg; i¼ 0;…; 27 ð3Þ

where δ( � ) is the Kroneck product function.
One extension of the LBP operator is to use neighborhoods of

different sizes [3]. The extension is able to take any radius and
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neighbors around a center pixel, denoted by LBPP,R, by using a
circular neighborhood and the bilinear interpolation whenever the
sampling point does not fall in the center of a pixel. For example,
LBP16,2 refers to 16 neighbors in a neighborhood of radius 2. Fig. 2
shows an example with different radii and neighbors.

Another extension is the so-called uniform patterns [3],
denoted by LBPP,R

u2. A LBP binary code is called uniform if it
contains at most two bitwise transitions from 0 to 1 or vice versa
when the binary string is considered as a circular. For example,
00000000, 00011110 and 10000011 are uniform patterns. For the
computation of LBPH, the uniform patterns are used such that
each uniform pattern has an individual bin and all non-uniform
patterns are assigned to a separate bin. So, with 8 neighbors, the
numbers of bins for standard LBPH are 256 and 59 for uniform
patterns LBPH, respectively; with 16 neighbors, the numbers of
bins are 65,536 and 243, respectively. Clearly, the uniform patterns
are able to reduce the length of histogram vectors.
2.2. Spatially enhanced local binary pattern histogram (eLBPH)
based face recognition (FR)

In LBP based FR approaches, the eLBPH presented by Ahonen
et al. [14,15] attains an established position because the following
approaches adopt the similar ideas [17–32]. To extract the eLBPH
feature of a face, first, a facial image is divided into d regions R0,
R1,…, Rd−1 and each regional LBPH is individually calculated, then
these resulting d regional LBPHs are concatenated into a spatially
enhanced LBPH (eLBPH) in the same order for all images. The
eLBPH feature vector has length of d� l where l is the length of a
regional LBPH. Fig. 3 shows an example of the eLBPH feature,
where d¼5�5¼25 and l¼256, i.e., the length of eLBPH feature
vector is 25�256¼6400.

After the eLBPH feature vector is extracted, the FR is performed
by resorting to the k-nearest-neighbor classifier based on the
histogram matching techniques such as the popularly used Chi-
Fig. 2. Circular neighborhoods of the center pixel ‘ ’ with different neighbors ‘ ’: (a)
sampling point is not in the center of a pixel.
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Fig. 3. An example of extract
square measure

dχ2 ðM; SÞ ¼ ∑
B

i ¼ 1

ðMi−SiÞ2
Mi þ Si

ð4Þ

where M and S are the gallery and probe histogram objects,
respectively; B is the number of bins in the histogram.
3. Answers on the so-raised issues

In this section, we detailedly address the so-raised issues.
The Brodatz texture [39] and Yale face [40] databases are adopted
for illustration. Adoption of Brodatz is attributed to its popularity
as a benchmark texture analysis database [1–8], particularly, its
texture images are all at the standard position without large
brightness changes and the hLBPH is successful on it; at the same
time, the facial images in Yale have large variations in expression,
illumination and occlusions, which often emerge in real world.
3.1. Why is hLBPH not directly adopted for FR?

As well-known, the simple hLBPH has widely been applied to
standard texture analysis [1–9], however, the current researchers
does not directly adopts it for FR but appeals to the complex
region-division based variant eLBPH [14,15], why is that? In order
to more clearly address this issue, we experimentally compare the
original input images and LBP histograms of standard textural and
facial images, where LBP8,1 is adopted. We respectively perform
two groups of experiments to show the differences of histogram
representation between such two categories of images. In group 1,
we compare the differences between different-class standard
textural and different-person facial images, as illustrated in
Fig. 4; in group 2, we compare the differences between the
same-class textural and the same-person facial images, as illu-
strated in Fig. 5.
LBP4,0.5, (b) LBP8,1, (c) LBP16,2. The pixel values are bilinearly interpolated when the
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Fig. 4. Input images and LBP histograms for the different-class textural and different-person facial images. (a) texture images, (b) LBP histogram for (a), (c) facial images and
(d) LBP histogram for (c).
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Fig. 5. Input images and LBP histograms for the same-class textural and the same-person facial images. (a) texture images, (b) LBP histogram for (a), (c) facial images and
(d) LBP histogram for (c).
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By the comparison Fig. 4(a) and (c), it can be clearly seen that
the facial appearances are entirely different from the standard
textural ones. Specifically, from Fig. 4(a), we can observe that the
texture appearances densely cover coarse textures. As defined in
[1] “essentially, textures are replications, symmetries, and combi-
nations of various basic patterns or local image functions, usually
with some random variation.”, and as suggested by Laws [41,42],
“many natural and artificial textures are measurably ‘loaded’ with
distributions of various specific local patterns of textures”. In other
words, the textures of such images are close to uniform or have
certain statistic property. By contrast, a face in Fig. 4(c) is a dynamic
and non-rigid object with various large variations such as illumi-
nations, occlusion, expressions, etc. [17].

Due to the differences between the two categories of images,
naturally, the respective LBP histograms are different to great
extent, as shown in Fig. 4(b) and (d), respectively. Comparing Fig. 4
(b) with (d), we can find that the LBP histograms for texture
images are relatively stable except for the two bins of 0 and 255
whereas very fluctuant for a face, which reflects that the variations
are relatively small for standard texture images and the ‘spot/flat’
texture patterns account for majority while the other texture
patterns approximately tend to uniformly distribute, yet consider-
ably large variations for face images and the histograms are very
diverse and almost out-of-order.

Figs. 5(a)–(d) shows 4 input images and their corresponding
LBP histograms of the same-class textures and the same-person
faces, respectively. We find that it is relatively difficult to distin-
guish the input images (in fact, the space is inserted between
texture images) and their corresponding histograms for the same-
class textures because the variations within the same-class texture
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images are relatively very small; on the contrary, such case does
not hold for the same-person face because the variations within
the same-person face are relatively very large.

From the above analysis, we have known: one reason behind
the success of hLBPH for standard texture images is that the
holistic images of standard textures are relatively small variational
and thus their corresponding LBP histograms are more stable;
whereas hLBPH is not quite favorable for facial images because
facial images are often large variational. In fact, the hLBPH is to
average overall LBP codes of holistic image area, and thus is a
statistic representation of LBP codes. So, if the underlying dis-
tributions of textures do not tend to uniform, then the correspond-
ing statistic representation hLBPH would be unreliable. In this
sense, it is clear that textures of facial images are not close to
uniform due to various variations and thus the hLBPH is not
favorable. At the same time, we also know that preprocessing such
as region division can mitigate large variations of an input image
to certain extent, hence, which indicates the rationality of the
eLBPH to certain degree.

It should be pointed out that the examinations on texture and
facial images in this subsection are limited to the standard texture
and large-variational facial ones. In fact, for non-standard or large-
variational texture images, the hLBPH based texture analysis
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regions, (d)–(f) the first 4 regional histograms of concatenated histogram for 16 (¼4�
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performance often deteriorates dramatically if no preprocessing
is made [5,7,43], which supports the undesirability of hLBPH for
large-variational images including facial ones; whereas facial
images in real-world generally are large variational, even if the
standard facial images exist, the variations of their appearances
generally are larger than the standard texture ones. Hence, we
suggest that the hLBPH is not quite favorable for facial image
representations, and the adoption of LBP histogram feature gen-
erally needs appeal certain preprocessing such as region division
for good FR performances since the variations within subimages
are relatively less than the whole facial images.
3.2. Why is eLBPH more effective for FR than hLBPH?

The references [14,15] claimed that the eLBPH approach was
motivated by two reasons: (1) “These local features based and
hybrid methods seem to be more robust against variations in pose
or illumination than holistic methods.” (2) “trying to build a
holistic description of a face using texture methods is not reason-
able,…, for faces, retaining the information about spatial relations
is important.” Here, we aim to intensively analyze and investigate
why eLBPH is more effective than hLBPH for FR.
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Generally speaking, the eLBPH is more complex than hLBPH,
because it nevertheless not only requires region division but also
concatenates all region LBP histograms. However, such region
division and histogram concatenation make eLBPH more effective
than hLBPH for FR, which are detailedly analyzed as follows:
1)
 As well known, the local feature is more robust against image
variations. So, the region division strategy in eLBPH makes each
subimage less-variational, as a result, the concatenated LBP
histograms are less-fluctuant, more stable, reliable and effec-
tive than hLBPH.
From the analysis in Section 3.1 we have known the largely
fluctuant hLBPH is unfavorable for facial images due to large
variations of facial images, as shown in Fig. 6(b). By contrast, if
the whole face is divided into some regions and one LBP
histogram for one region is individually calculated, as shown
in Fig. 6(c)–(f), then variations within-region are less than ones
of the whole image, in other words, textures within-region
relatively tend to uniform, and thus each regional histogram
becomes less fluctuant; with the increase of divided regions,
each regional histogram gradually becomes more stable, as
shown in Fig. 6(g), the largest difference among different bins
dramatically drops from 599 for the whole face (one region) to
9 for 200 regions. Hence, the so-concatenated histogram is
less-fluctuant and more reliable for facial representation. These
results are consistent with the conclusion in Section 3.1 that
the less variational an image is, the more reliable the extracted
LBP histogram is.
2)
 With such a region-division and histogram concatenation
strategy, the eLBPH preserves the spatial relation for face, as
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Fig. 7. Example of spatial preservation
shown in Fig. 7. While the whole face is divided into the left
and right regions shown in Fig. 7(a), the spatial relation of left
and right parts is basically preserved in the concatenated
histogram, as shown in Fig. 7(b); likewise, the whole face is
divided into the three regions (the upper, middle and bottom)
shown in Fig. 7(c) and the four regions (the left upper, right
upper, left bottom and right bottom) shown in Fig. 7(e), the
corresponding concatenated histograms shown in Fig. 7(d) and
(f) respectively show the spatial preservations of the so-divided
region relations for the face.

However, it is necessary to point out that eLBPH only relatively
rather than absolutely preserves the spatial relation for face. As
illustrated in Fig. 8, the whole face is divided into the left and right
regions, the corresponding two regional histograms are concate-
nated into the eLBPH, which preserves the left and right spatial
relations for the face. However, for a region, taking the right region
as an example, the LBP codes of “15” are fallen into the same bin
while they respectively come from three different locations, i.e.,
eyebrow, face and cheek. Clearly, within the right region, the
spatial relation information is absolutely lost. For the left region
(or any region of other division ways), there also exists the same
loss of spatial relation. From the relative spatial preservation of
eLBPH for face, it is not difficult to conclude that the hLBPH does
not preserve any spatial information of face due to its histogram
statistic over the whole face.

Moreover, the so-called spatial preservation of eLBPH is closely
related to the number of so-divided regions. From Fig. 7 it can be
seen that when the whole face is divided into two, three and four
regions, the corresponding spatial relations of these so-divided
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Fig. 9. Subimages of standard textural and facial images and their rearrangements. (a) Subimages of texture image, (b) Subimages of facial image, (c) Four rearrangements of
subimages in (a) and (d) Four rearrangements of subimages in (b).
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regions are preserved in the concatenated histogram. That is, with
the d divided regions, the spatial relations of the d regions for a
facial image are rightly preserved in the eLBPH. Therefore, the
larger the number of so-divided regions is, the better the spatial
relation of face is relatively preserved, and the FR performance
also is consequentially increased. However, unfortunately, it is
impossible for eLBPH to absolutely preserve such spatial relations,
the reason is: for a facial image with 100�100 (¼10,000) size, the
absolute spatial preservation requires the number of so-divided
regions reaches d¼10,000, i.e., one region per pixel, which is
obviously meaningless by the definition of LBP operator, expensive
and unreliable as demonstrated in Fig. 6(h) that the recognition
performance gradually decreases with the further increase of so-
divided region number followed 200.

In fact, by the comparisons standard textural images and facial
ones in Section 3.1, it is not difficult to find that the spatial
preservation for a facial image is more important than that for a
standard textural one. The standard textures tend to uniform and
regularly-repeated; if a texture image is divided into some sub-
images as shown in Fig. 9(a), then the appearances within-
subimage generally are the same as (at least very similar to) the
one within whole image, and thus it is relatively difficult to
distinguish the various rearrangements shown in Fig. 9(c) of these
subimages. However, such a property is not true for a facial image
especially for the one with diverse variations, because various
subimages of a facial image usually exhibit more likely different
appearances as shown in Fig. 9(b), and the unique one of all
rearrangements of these subimages, as the first image shown in
Fig. 9(d), actually is a face, by contrast, the others are not at all, as
the last three rearranged images illustrated in Fig. 9(d). Clearly, the
faithful or absolute spatial preservation for a face is favorable for
good recognition performance, unfortunately, which is incapable
for eLBPH, however, fortunately, actually capable for the forth-
coming approach in Section 3.3.

In addition, eLBPH possibly yields a longer feature vector than
the input image itself. For example, for an image of size 100�100,
the length of feature vector for hLBPH equals to 65,536 with
LBP16,1; and at the same time, if the whole face is divided into
d¼100 regions, each regional histogram is separately extracted,
and all the extracted regional histograms are concatenated into an
eLBPH, then the total length of the feature vector reaches
6,553,600 (¼65,536�100), which clearly is very expensive. Of
course, if the number of neighbors in LBP operator is set to 8, then
the total length of the feature vector is 5900 (¼59�100), shorter
than the original 10,000.

Besides, in order to exhibit the properties of eLBPH as adequately
and impersonally as possible, here, we briefly illustrate the sensi-
tivity of eLBPH to the sub-block parameter. We know that the eLBPH
based FR performance depends on the concatenated histogram,
meanwhile, from the analysis in Section 3.2, we have grasped that



LBP operator Fed to 

LBP imageFacial image

Classifier 

Fig. 10. The process of FR based on hLBPI.

B. Yang, S. Chen / Neurocomputing 120 (2013) 365–379372
both the stability and effectiveness of so-concatenated LBP histo-
gram depend on the preprocessing of region division, so the eLBPH
generally is sensitive to the number of so-divided regions, just as
illustrated in Fig. 6(h). With the gradual increase in the number of
so-divided regions, correspondingly the accuracy of FR continuously
climbs up, 37.13% and 63.10% with 2 and 200 regions respectively,
that is, the accuracy is improved by 25.97% at most; meanwhile, the
accuracy gradually decreases with the number of so-divided regions
more than 200, about 56.0% with 400 regions, dropping by 7% at
most. Clearly, such results have shown that eLBPH is how sensitive
to the number of so-divided regions on Yale dataset, which
illuminates that the insensitivity of eLBPH to the number of so-
divided regions is not true for all facial images. In fact, the eLBPH is
also sensitive to the number of so-divided regions on the face
datasets used in our experiments (Section 4).

Besides, it is worth noting that the region division and calcula-
tion of regional histograms in eLBPH seem somewhat arbitrary
since the division possibly causes both aliasing and loss of
resolution [43].
3.3. hLBPI for FR

The LBP code of the center pixel in LBP operator is calculated by
Eq. (1), and the LBP codes for all pixels of an image traditionally only
are used to extract the LBP histogram by Eq. (3). So, one usually only
concerns their statistic histogram representation. However, the LBP
image (LBPI) formed by the LBP codes,2 as shown in Fig. 10 below,
just reflects intrinsic appearances of the original image. In fact, the
hLBPI has been used in [34] for face authentication or verification
and modified in [32] to obtain a simplified variant. And the hLBPI
feature can directly be used to FR as shown in Fig. 10 below, which is
attributed to the following reasons:

From Sections 3.1–3.3, we have clearly known that the hLBPH
descriptor is simple but ineffective for facial images, the eLBPH is
actually sensitive to the region-division parameter, relatively
complex, and absolutely losses intrinsic facial appearances, which
are crucial for recognition [43], though relatively preserves spatial
relations of a face. By contrast, the hLBPI of a facial image
preserves both intrinsic appearances and spatial relations.

Compared to both hLBPH and eLBPH for FR, the hLBPI has own
properties as follows:
2 Note: the LBP image is not a real image, and thus the corresponding experimental
results are empirical ones.
(1)
3

4

5

The extracted hLBPI feature by its definition clearly enjoys the
locality robustness, the high discriminative power and the
other attractive properties of LBP operator.
(2)
 The hLBPI quite faithfully preserves spatial relations and
intrinsic appearances of facial images. In fact, the hLBPI feature
for a face still is an image rather than a histogram, and vividly
reflects a face, as shown in Fig. 10.
(3)
 The hLBPI dispenses with the preprocessing of region division
and the post-processing of histogram statistic, and thus its
complexity is clearly lower than those of hLBPH and eLBPH,
which is illustrated by the sketch in Fig. 11.
(4)
 The hLBPI will not yield a longer feature vector. In fact, its
dimension is slightly lower than that of input image due to the
image edge is cut with the LBP operator.
(5)
 Like hLBPH and eLBPH, the hLBPI may also be measured by the
Chi-square measure in (4), nevertheless, where B is the length
of feature vector for hLBPI. So in the next section, for fairness,
the Chi-square measure is adopted for all approaches based on
LBP. Of course, since hLBPI is still a standard vector, naturally it
can also be measured in terms of usual distance metric such as
Euclidean.
(6)
 Though it is effective for facial images, the hLBPI is not suitable
for standard texture images. The reason is that standard
texture images generally have specific statistic property to a
certain degree, thus, their LBP images correspondingly inherit
the statistic property, as shown in Fig. 12; by contrast, the
hLBPI feature has no statistic capability of histogram descrip-
tor and thus is not an appropriate candidate, as experimentally
demonstrated in Section 4.2.
4. Experiment

In this section, we evaluate and compare hLBPI, hLBPH, eLBPH
and the three subspace approaches of Eigenface, Laplacianface3

and Fisherface for FR. The adopted benchmark face datasets are
FERET [44], Extended YaleB,4 CMU PIE5 and AR [45] with various
large-variations, and the gray value per pixel is rescaled to [0 1] for
increasing performances of the three subspace algorithms. In all
experiments, the 1NN classifier (with Chi-square measure for
hLBPI, hLBPH and eLBPH as in some references [14,15], with
Euclidean one for the subspace algorithms as done in [36–38]) is
http://people.cs.uchicago.edu/�xiaofei/
http://www.cs.uiuc.edu/homes/dengcai2
http://www.cs.uiuc.edu/homes/dengcai2
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adopted due to its simplicity and popularity for FR. Besides, the
hLBPI is compared with hLBPH on Brodatz [39] to show hLBPI is
not suitable for standard texture images.

4.1. Face recognition

4.1.1. Data description
FERET database contains 14,051 Gy-scale images of 1199 sub-

jects with variations in pose, illumination, facial expression and
age, etc. These facial images can be divided into the following five
sets: fa contains 1196 gallery face images. fb contains 1195 images
of subjects taken at the same time as the gallery images. The only
difference is that the subjects assume a different facial expression
than in the gallery image. fc contains 194 images of subjects under
significantly different lighting. duplicate I contains 722 images of
subjects taken between 1 min and 1031 days after the gallery
image was taken. duplicate II is a subset of the duplicate I set,
containing 234 images taken at least 18 months after the gallery
image. Each image is resized to 60�60. Fig. 13(a) gives some
sample images of the five sets.

Extended Yale B database contains 2414 front-view face
images of 38 individuals. For each individual, about 64 pictures
were taken under various laboratory-controlled lighting condi-
tions. The size of each image is to 32�32. Fig. 13(b) gives some
sample images of one person from this database.

CMU PIE database contains 68 individuals with 41,368 face
images as a whole. The face images in PIE were captured by 13
synchronized cameras and 21 flashes, under varying pose, illumi-
nation, and expression. This used subset consists of the five near-
frontal poses (C05, C07, C09, C27, C29) under different
illuminations, lighting and expressions which leaves us 170 near
frontal face images for each individual. The size of each image is to
32�32. Fig. 13(c) shows some sample images of one person.

AR contains over 4000 color face images for 126 persons [45].
Here, we adopt the subset of 2600 images for 100 persons (50 men
and 50 women), 26 ones per person. These 26 images of each
person were taken at two sessions, separated about 2 weeks, 13
images per session, with different facial expression, lighting
conditions, and occlusions. Each image is resized to 60�48.
Fig. 13(d) shows 26 sample images of one person.
4.1.2. Parameter setting
Here, LBPP,R and LBPP,R

u2 (uniform pattern) respectively is
adopted for hLBPI and the two features of hLBPH & eLBPH, where
P, R and the pixel size of window for eLBPH are shown in Tables
1–4, for example, in Table 2, eLBPH (8�8) denotes to use the
8�8-pixel window. For an image with the size of 32�32, the
number of divided regions is (32/8)� (32/8)¼16. The 98% energy
of PCA is kept for the three subspace algorithms. The inverse of
within-class scatter matrix is replaced with the generalized-
inverse in Fisherface for addressing the singularity problem. For
Laplacianface, the neighbor parameter k is obtained by searching
from {1,5,9} and the heat kernel width t is directly set to the mean
of distances between samples, and finally the best results are
reported.
4.1.3. Single image per person (SIPP)
The single (training) image per person (SIPP) is one challenge in

FR [46]. Considering its application value, in this subsection, we
specifically separately perform the experiment on this problem to
evaluate the three LBP-based approaches.

We firstly adopt the FERET database to compare the three
approaches, where fa is utilized as gallery set and fb, fc, duI and
duII separately as probe set. Table 1 lists the accuracies of the
three approaches for four probe sets, and Fig. 14 shows their
accuracies for (P, R)¼(16, 2), where eLBPH with different window
sizes. It should be noted that in our experiments, for eLBPH, we
adopt neither the complex CSU Face Identification Evaluation
system [46] in [14,15] nor the preprocessing in [14,15] is for
making sure the achieved performance of individual approach is
indeed resulted purely from the approach itself but not the
complex evaluation system and the preprocessing.

Then we further use the EYaleB, CMU PIE and AR to compare
the accuracies, time complexities and feature vectors of the LBP-
based approaches and subspace-based approaches, the accuracies
of those are listed in Table 2, the time complexities are shown in
Fig. 15 and the feature vectors are shown in Fig. 16.

From Table 1 and Fig. 14, we can see that hLBPI always performs
better than eLBPH except for fb with (P, R)¼(8, 1) while hLBPH is
basically the worst one. Especially, the accuracies of hLBPI on fc for
(P, R)¼(8, 1) and (P, R)¼(16, 2) are respectively 27.84% higher and
31.96% higher than the ones of eLBPH; by contrast, the accuracies
of hLBPH actually only are 0%, which clearly show the suitability of
hLBPH for face images with illumination. Also, it can clearly be
shown by Fig. 14 that eLBPH is very sensitive to the window size
on the four probe sets. The accuracies of eLBPH actually continu-
ously increase with the change of the window size from 60�20 to
10�10, however, the maximum differences of accuracies among
the five window sizes on fb, fc, duI and duII are respectively
27.78%, 12.88%, 26.18% and 12.40%. Moreover, the smallest accura-
cies of eLBPH for 60�20 on fc and duII never reach so much as 1%.

From the results in Table 2 we can see that hLBPI consistently
outperforms the other approaches, especially on EYaleB, the



Fig. 13. Sample images of one person. (a) FERET, (b) Extended Yale B, (c) CMU PIE and (d) AR.

Table 1
Accuracy (mean) of hLBPI, eLBPH and hLBPH on FERET with fa(1196) as gallery set.

Probe (P, R) hLBPI hLBPH eLBPH (60�20) eLBPH (30�30) eLBPH (20�20) eLBPH (15�15) eLBPH (10�10)

fb(1195) (8, 1) 63.18 31.13 48.54 59.58 62.85 67.45 76.32
(16, 2) 70.04 11.38 13.64 15.40 33.14 46.61 69.12

fc(194) (8, 1) 35.57 0.00 0.00 1.55 3.09 4.64 7.73
(16, 2) 45.36 0.00 0.52 1.03 2.58 4.12 13.40

duI(722) (8, 1) 40.72 2.91 8.17 12.33 19.25 48.62 34.35
(16, 2) 42.11 1.66 1.25 2.49 4.71 10.94 22.02

duII(234) (8, 1) 35.04 0.00 0.85 2.56 6.84 9.83 13.25
(16, 2) 27.78 1.28 0.00 0.43 2.56 5.13 11.11

Table 2
Accuracy (mean7std%) of LBP and subspace based approaches on Yale B, PIE and AR. Where (16�16 and 8�8) of eLBPH are for EYaleB and CMU PIE, (33�24 and 22�12)
for AR.

Data (P, R) Based on LBP Based on subspace

hLBPI hLBPH eLBPH (16�16/33�24) eLBPH (8�8/22�12) Eigenface Laplacianface Fisherface

EYaleB (8, 1) 55.5572.12 7.5070.68 12.3071.04 17.6471.42 10.8371.22 18.3973.07 10.8371.22
(8, 2) 41.5172.05 9.0370.80 15.4470.94 19.9171.62

PIE (8, 1) 29.7971.65 9.0370.41 15.8670.86 23.7171.27 10.1770.69 15.9971.71 10.1770.69
(8, 2) 28.9371.45 11.4970.35 20.4870.86 25.4171.14

AR (8, 1) 31.4971.67 10.2470.90 15.7370.97 22.9071.22 10.9270.84 14.9271.76 10.9270.84
(16, 1) 28.6771.45 12.0170.94 18.7271.13 25.6671.34
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Table 3
Accuracy (mean7std%) of LBP and subspace based approaches on EYale B.

Gm/Pn (P, R) Based on LBP Based on subspace

hLBPI hLBPH eLBPH (16�16) eLBPH (8�8) Eigenface Laplacianface Fisherface

G5/P33 (8, 1) 89.6871.36 15.8870.96 32.5571.02 47.6470.99 29.3371.29 63.1372.36 64.5971.37
(8, 2) 79.4971.69 21.9670.86 40.8771.25 52.0271.39

G10/P28 (8, 1) 96.5070.50 21.2970.71 45.2771.02 64.8871.14 41.8371.10 81.0971.58 79.0171.79
(8, 2) 91.4170.74 30.0870.86 56.4971.31 69.6371.25

G20/P18 (8, 1) 98.9470.31 27.7470.93 57.2170.97 79.0670.97 54.8571.20 90.9770.73 88.3071.04
(8, 2) 97.1670.50 39.3171.23 70.2971.43 83.9871.05

Table 4
Accuracy (mean7std%) of LBP and subspace based approaches on CMU PIE.

Gm/Pn (P, R) Based on LBP Based on subspace

hLBPI hLBPH eLBPH (16�16) eLBPH (8�8) Eigenface Laplacianface Fisherface

G10/P160 (8, 1) 79.3470.82 29.4970.47 53.8370.57 70.7870.68 33.4870.46 63.0372.48 75.4970.79
(8, 2) 76.0270.86 39.6770.68 65.7070.58 72.8570.78

G30/P140 (8, 1) 93.6270.31 48.2270.49 78.5570.54 89.9970.50 59.5570.70 87.6970.67 91.7770.47
(8, 2) 91.8170.35 62.7170.65 87.0170.54 90.5770.44

G50/P120 (8, 1) 96.0070.26 58.4470.38 87.7670.37 95.0270.32 82.4570.57 93.1570.30 96.6470.21
(8, 2) 95.3670.29 73.9570.46 87.7670.37 95.1870.31
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Fig. 14. Accuracy (%) of three approaches for (P, R)¼(16, 2), where eLBPH with different window sizes. (a) fb, (b) fc, (c) duI and (d) duII.
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accuracy of hLBPI with (P, R)¼(8, 1) is 48.05% higher than
the one of hLBPH, 43.25% and 37.91% higher than the one of
eLBPH (16�16) and (8�8). In fact, for the same P and R, on
EYaleB, PIE and AR, the accuracy of hLBPI is at least 21.6%, 3.5%
and 3% higher than those of hLBPH and eLBPH, respecti-
vely. Meanwhile, the subspace based approaches clearly are
inapplicable due to too small training samples, i.e., SIPP, as well-
known.
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Fig. 15 shows the average times of extracting hLBPI, hLBPH and
eLBPH features,6 where the vertical axis denotes the consumed
average time(s) of extracting the hLBPI, hLBPH and eLBPH features
of one image on the used datasets (2414, 11,554 and 2600 images
in EYaleB, PIE and AR) by a PC with Intel Quad Core Q9400
(2.67 GHz), 3 G RAM, Windows XP and Matlab 7.1 (R14). We can
see that the individual times consumed by the three approaches
are not much for one image. However, for all images of used
datasets, their respective consumed times are very different. In
fact, the times taken by hLBPI on the three datasets are all very
small, concretely, less than 1 s, 5 s and 4 s with (P, R)¼(8, 1) on the
three datasets, and about 1 s, 5 s and 7 s with (P, R)¼(8, 2) on
EYaleB/PIE and with (P, R)¼(16, 1) on AR, which clearly is very
promising for real applications. By contrast, the extraction of two
histogram features hLBPH and eLBPH is expensive. Specifically,
eLBPH consumes respectively 10.4 s, 49.7 s and 13.6 s for (P, R)¼
(8, 1) on EYaleB/PIE and for (P, R)¼(16, 1) on AR, about 2-time
more than hLBPI on EYaleB and PIE.

Fig. 16 shows the first 10 input images of the gallery set on AR,
the corresponding hLBPH, eLBPH, hLBPI features and the first 10
base vectors of Eigen-, Laplacian- and Fisher-faces, where the
length of concatenated histogram for a gallery image in eLBPH
(33�24) is 236 (¼59�4). We can observe that the hLBPI vividly
reflects the intrinsic appearance details of faces. For example, as
shown in Fig. 16(a), the wore sunglasses of 1st, 3rd, 5th, 7th and
8th faces, the wore scarfs of 2nd and the last faces, the screaming
mouth of 6th and the angry eyes of 9th faces are all vividly
revealed in the corresponding hLBPI-faces in Fig. 16(b). By contrast,
the histogram feature vectors of hLBPH and eLBPH are unable to
reflect the appearances of input images at all. At the same time,
the Eigen-, Laplacian- and Fisher-faces also reflect the appearances
of face images to different degrees; however, their so-reflected
effects clearly are not better than hLBPI-face, of course, which is
partially attributed to too small training samples for SIPP.
4.1.4. FR with multi-gallery images per person
Each dataset is divided into different gallery/probe sets Gm/Pn. With

each division of Gm/Pn for EYaleB and PIE, 30 random splits are
generated and the corresponding average accuracy is reported. Mean-
while, since the facial images in AR are taken in two sessions with
different expressions and occlusion variations, the four groups (G1–7/
P8–13, G1–7/P14–20, G1–7/P21–26, G1–13/P14–26) are divided. Tables 3–5
respectively show the recognition performances of approaches based
on LBP and subspace on EYaleB, CMU PIE and AR, where the bolded
6 Those of subspace approaches are not shown because they need train and
thus well-known relatively complex.
and underlined accuracy ranks 1st, bolded and italic accuracy 2nd
and only bolded accuracy 3rd.
(1)
 From Tables 3 and 4 we can see that hLBPI always outperforms
the other approaches on EYaleB and PIE except that it is
slightly worse than the supervised Fisherface on PIE for G50/
P120. Especially on EYaleB for G20/P18, its best accuracy reaches
98.94%; by contrast, the best result of the other approaches
only is 90.97% of Laplacianface. Moreover, when the gallery
images per person are relatively small, e.g., G5/P33 (5 images),
hLBPI far surpasses the other approaches. In fact, the hLBPI
gets at least 15% and at most 74% improvements over the other
approaches. Undoubtedly, hLBPI is actually promising for FR
with large illumination variations.
(2)
 hLBPI is the best one on AR for G1–7/P21–26 and G1–13/P14–26
with (P, R)¼(8, 1), while ranks 2nd at the other cases, as
shown in Table 5, whereas eLBPH is better on AR overall. Such
results show that the combination of the histogram descriptor
and region division strategy is a good candidate for facial
images with occlusions, the reasons are as follows: the occlu-
sion parts (sunglasses and scarf) of images are relatively
uniform, for which the histogram descriptor is more suitable,
and thus the corresponding concatenated histogram is less
fluctuant and effective. These experimental results are consis-
tent with the analysis above. However, the performances of
eLBPH (16�16 and 8�8) on Yale B and (16�16) on PIE are
unsatisfactory, which show that eLBPH yet is not alternative
for facial images with large illumination variations. At the
same time, the performances of eLBPH with small window
(8�8 on EYaleB and PIE, 22�12 on AR) are improved over
those with larger window (16�16 on EYaleB and PIE, 33�24
on AR), which demonstrates that the regional and concate-
nated histograms are more stable and reliable with the limited
increase of so-divided regions (less window corresponding to
more regions).
(3)
 The hLBPH is unsuccessful on the experimented face datasets,
as demonstrated in Tables 3–5, which is consistent with the
reports in the current works [14,15]. Specifically, its perfor-
mances are always the worst on the three datasets except that
it is slightly better than Eigenface on PIE for G30/P140 with (P,
R)¼(8, 2) and AR for G1–7/P21–26 with (P, R)¼(16, 1), however,
such slightly better accuracies are also unsatisfactory.
(4)
 As a supervised subspace approach, Fisherface shows its com-
petence. In fact, on the three datasets, it obtains relatively
excellent performance. As an unsupervised subspace approach,
Laplacianface is relatively good on EYaleB, acceptable on PIE and
unsatisfactory on AR. By contrast, Eigenface is the worst, in fact,
it only slightly precedes hLBPI on the three datasets with
several divisions of Gm/Pn.
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(5)
 Besides, the performance of hLBPI with (P, R)¼(8, 1) is better
than that with (P, R)¼(8, 2) while the performance changes of
hLBPH and eLBPH with (P, R)¼(8, 1) and (8, 2) are on the
contrary. Such results show that smaller radius is often more
suitable for hLBPI since it has not the region-division locality.
4.2. Recognition for texture images

In this subsection, we perform simple texture analysis on
Brodatz [39]. Our purpose is to demonstrate that hLBPI is not
appropriate whereas hLBPh is a good candidate to texture images.
Brodatz contains 111 texture classes. Fig. 4(a) shows its some
images. Here, each texture image is separated into 16 subimages
with the size of 64�64 such that the image set consists of 1776
images of 111 classes, 16 images each class. Half images of each
class are randomly chosen 20 times to comprise the gallery
set and the other for the probe set, and the average result is
reported.

Here, we compare hLBPI and the successful hLBPH feature with
different groups of (P, R) in texture analysis. From Table 6 we can
see that the accuracy of hLBPI is pathetically low, the highest one
does not reach 30%, and defector consistently far worse than those



Table 5
Accuracy (%) of LBP and subspace based approaches on AR.

Gm/Pn (P, R) Based on LBP Based on subspace

hLBPI hLBPH eLBPH (33�24) eLBPH (22�12) Eigenface Laplacianface Fisherface

G1–7/P8–13 (8, 1) 85.67 28.50 61.33 87.00 32.33 42.50 54.67
(16, 1) 88.50 36.83 71.33 91.83

G1–7/P14–20 (8, 1) 91.43 48.57 83.14 93.00 77.14 73.43 85.14
(16, 1) 91.00 53.86 86.72 93.14 85.14

G1–7/P21–26 (8, 1) 64.83 15.17 36.33 60.50 15.50 20.50 29.67
(16, 1) 71.83 17.33 42.17 68.33

G1–13/P14–26 (8, 1) 83.23 36.31 70.15 81.46 61.54 59.69 78.62
(16, 1) 82.62 41.69 74.00 83.62

Table 6
Accuracies (mean7std%) of hLBPI, hLBPH on Brodatz.

(P, R) (16, 1) (16, 2) (8, 1) (8, 2)

hLBPI 23.7270.98 26.4470.66 14.2670.78 17.2370.89
hLBPH 90.4570.75 85.9670.93 89.4070.64 85.5470.87
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of hLBPH. Such results sufficiently show that hLBPI is not suitable
for standard texture images.
5. Conclusion

In this paper, we do not propose a novel FR approach, but
rather systematically examine and compare hLBPH, eLBPH and
hLBPI, and thus discover the incapable and effective reasons of
hLBPH, eLBPH and hLBPI for FR. The extensive experiments show
the promising performance of hLBPI and eLBPH for FR, and the
worst one of hLBPH. However, our final purpose is to provide
practitioners with some guidance for reasonably selecting an
appropriate approach in real tasks, so, here, we give some remarks
on hLBPI, hLBPH and eLBPH as follows:
(1)
 The hLBPH is simple and prominent for standard texture
analysis yet unsuitable for FR.
(2)
 The hLBPI is efficient, and is a good candidate for FR with large
variations especially with illumination, yet infeasible for stan-
dard texture images.
(3)
 The eLBPH is relatively complex and sensitive to the region-
division parameter, yet appropriate for FR with partial occlu-
sion variations and illuminations.
Besides, the effectiveness of hLBPI for FR drives us to dedicate
some further studies including
(1)
 utilizing the corresponding code features of existing LBP histo-
gram variants [11,12,22,43] to obtain better FR performance,
(2)
 examining the impacts of some preprocessing techniques
especially Gabor filter [22,33,47–49] on the hLBPI,
(3)
 introducing it to facial expression recognition [50,51], video
recognition [52], gender classification [53], etc.
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