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a b s t r a c t

The traditional vectorized classifier is supposed to incorporate the class structural information but

ignore the individual structure of single pattern. In contrast, the matrixized classifier is supposed to

consider both the class and the individual structures, and thus gets a superior performance to the

vectorized classifier. In this paper, we explore one middle granularity named the cluster between the

class and individual, and introduce the cluster structure that means the structure within each class into

the matrixized classifier design. Doing so can simultaneously utilize the class, the cluster, and the

individual structures in the way that is from global to point. Therefore, the proposed classifier design

here owns the three-fold structural information, and can bring the classification performance to

an improving trend. In practice, we adopt the Modification of Ho–Kashyap algorithm with Squared

approximation of the misclassification errors (MHKS) as the learning paradigm and develop a Three-

fold Structured MHKS named TSMHKS. The advantage of the three-fold structural learning framework

is considering different close degrees between samples so as to improve the performance. The

experimental results demonstrate the feasibility and effectiveness of the TSMHKS. Furthermore, we

discuss the theoretical and experimental generalization bound of the proposed algorithm.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In statistical machine learning, the pattern to be dealt is
generally represented by the vector, which can be taken as one
point in a d-dimensional space [1–3]. The vector representation is
supposed to bring a convenience since the vector is expediently
dealt in mathematics. But if a pattern such as the image has
its own structure, the vectorization would make the image lose
some structural information such as spatial relationships between
pixels [4]. Especially for large images, the vector representation
would cause a high dimensional feature space, and thus increases
the computational complexity and the space of storage. In order
to solve the problems induced by the vector representation, a
matrix representation strategy was developed [5–7]. The matrix
representation learning was established in feature extraction.
Yang et al. [7] first proposed two-dimensional principal compo-
nent analysis (2DPCA) which extracted features directly from
image matrices. 2DPCA was validated to have a superior perfor-
mance to PCA in favor of both image classification and the
reduction of computational complexity and the storage space.
Li and Yuan [8] proposed two-dimensional linear discriminant
analysis (2DLDA) which was also based on image matrices and
ll rights reserved.
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could achieve a better recognition accuracy to linear discriminant
analysis (LDA). Chen et al. [9] developed a more general matrix-
ized feature strategy called MatPCA and MatFLDA. Compared with
both PCA and LDA, the MatPCA and MatFLDA reshaped a given
pattern into a new matrix one before extracting features. In this
way, due to that the newly formed matrix pattern retained all the
original components, the original information generally seems
not to be lost. Further, some new implicit structural or contextual
information could likely be additionally introduced, which was
validated in the experiments [9]. Moreover, in order to guide a
best way for describing a given texture such as matrix image,
Nanni et al. [13] conducted different approaches. They found that
the fusion approach with the uniform local quinary pattern (LQP)
and the rotation invariant local quinary pattern could obtain a
method that performed well. In this fusion approach, both the bin
selection based on variance and the neighborhood preserving
embedding (NPE) feature transform were applied.

Some researchers found that in the matrixized feature extrac-
tors such as 2DPCA and 2DLDA, the matrix representation is just
applied in feature extraction, but the subsequent classifier design
still resorts to the traditional vector-based technique. In other
words, the operated pattern of the classifier itself is still of vector
representation which has the following discriminant function:

gðxÞ ¼ ~wT xþw0 ð1Þ

where ~wARd is a weight vector, w0AR is a bias. Therefore, we
had proposed a matrixized classifier learning framework [10]
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which has the following discriminant function:

gðAÞ ¼ uT A ~vþv0 ð2Þ

where uARd1 , ~vARd2 are the two weight vectors respectively, and
v0AR is a bias. The differences between the matrixized classifier
with (2) [10] and the vectorized one with (1) are: (a) the matrix
pattern with the size of d1 � d2 replaces the d1d2 � 1 vector one;
(b) the two weight vectors in (2) respectively acting on the two
sides of the matrix pattern A replaces the original single weight
vector in (1); (c) the discriminant function (2) is the (1) imposed
with the Kronecker product decomposability constraint, which
was demonstrated in [10]. Further, a so-called fully matrixized
approach was developed in [11,12], which means that both the
feature extraction and the classifier design are directly based on
matrix pattern. Their experiments [10] demonstrated that the
fully matrixized approach indeed brings a significant advantage in
terms of both classification and computational performance.

On the other hand, it can be found that the motivation of the
matrixized learning above is based on the pattern itself. It means
that both the matrixized feature extraction and classifier expect
to get some structural information through the matrixization of
pattern. Therefore, the matrixized learning can be supposed to
consider the individual structural information, i.e. the information
of the individual matrix pattern. In contrast, the vectorization of
pattern might decrease the attention for the structure of the
individual pattern. But it is fortunate that the classical linear
or non-linear classifier design based on the vectorized pattern can
still get some class discriminating information through some
constraints in the learning model. We take the Modification of
Ho–Kashyap algorithm with Squared approximation of the mis-
classification errors (MHKS) [14] for an example. MHKS is a
vectorized linear classifier. It can integrate the class structure
such as the discriminating information through making the
distance between all the patterns belonging to different classes
as far as possible. Since the matrixized classifiers such as
MatMHKS [11] are derived from those vectorized one with class
structure, the matrixized ones inherit the characteristic of class
structure. Thus the matrixized classifier can be viewed as the one
with both class and individual structure.

However, it can be found that in many real-world cases,
patterns belonging to the same class would also have different
structures. In other words, it might be coarse to just consider the
discriminating information between different classes. Meanwhile,
the individual structure induced by the matrixized methods just
reflects the characteristic of the single pattern itself, and cannot
describe the structural information of the patterns which are
in the same class. Thus neither the vectorized nor matrixized
classifiers discussed above can integrate the structure within each
class. In order to solve the problem, in this paper we introduce the
structure within each class into the matrixized classifier design.
Compared with the discriminating structure between different
classes, the structure within each class can be viewed more local.
Compared with the individual structure of single pattern, the
structure within each class can be viewed more global. For
convenience, we call the discriminating structure between differ-
ent classes, the structure within each class, and the individual
structure of single pattern as the class, the cluster, and the
individual structures respectively. Namely, in the design of the
classifier, the class structure means the discriminating informa-
tion between different classes. The cluster structure means the
class itself information, i.e. the relationship between samples in
the same class. The individual structure means the information of
single pattern itself. Consequently, through introducing the
structure within each class into the matrixized classifier, we can
develop a new classifier design that owns the three-fold
structural information and brings classification performance to
an improving trend.

In practice, we adopt the vectorized and matrixized Modifica-
tion of Ho–Kashyap algorithm with Squared approximation of the
misclassification errors, i.e. MHKS [14] and MatMHKS [11] as the
learning paradigms since (1) both of them fall into the regular-
ization framework; (2) both employ a modification of the gradient
descent with a heuristic update-rule and thus it is simple to
achieve the optimization for their objective functions. Conse-
quently, through capturing the underlying structures within each
class with some unsupervised or supervised clustering techni-
ques, we can obtain multiple clusters to enclose the patterns of
each class, then introduce the multiple clusters into the matrix-
ized classifier MatMHKS, and finally develop a three-fold struc-
tural classifier named TSMHKS. To demonstrate the feasibility of
the proposed TSMHKS, we discuss its empirical generalization
risk bound. The experimental results here validate the effective-
ness of the TSMHKS. The advantage of the proposed learning
strategy is to not only inherit both the class discriminating
information and the individual structural information, but also
to integrate the information from different clusters, where the
samples in the same cluster are distributing as tightly as possible.

The rest of this paper are organized as follows. Section 2
reviews the related work of the structured classifiers and the
family of different Ho–Kashyap algorithms. Section 3 gives the
description of the proposed algorithm TSMHKS. In Section 4, the
experimental results on some synthetical data sets and real-world
benchmark data sets have shown the feasibility and effectiveness
of the TSMHKS. Finally, conclusions are given in Section 5.
2. Related work

This section first reviews the work about the structured
classifiers. Then since this paper takes the improved Ho–Kashyap
algorithm [3] as the working paradigm, we here introduce the
family of different Ho–Kashyap algorithms as well.

2.1. Structured classifiers

The structural information is important for designing a good
classifier in machine learning. Recently, many techniques have
been proposed to introduce as much structural information in
data as possible so as to improve the generalization performance
of classifiers. These classifiers introduced with structural informa-
tion can be called structured classifiers. Support vector machine
(SVM) [2,15] is one of the state-of-the-art classifiers and aims
to find a hyperplane that can separate two classes of data with a
maximal margin. Since SVM is a nice model, the structural
techniques based on SVM were well discussed in [16,18–21]. To
well describe the structure of the pattern, some researchers gave
the definition of the structural granularity that can characterize
the whole data [16]. According to the size of the granularity, there
are four forms, i.e. global granularity, class granularity, cluster
granularity and point (individual) granularity. This section gives a
brief introduction about the structured classifiers in terms of
different structural granularities.

Ellipsoidal kernel machine (EKM) [17] is a structural classifier
based on global granularity. EKM exploits the ellipsoidal structure
of the data through estimating the minimum volume bounding
ellipsoid. In the linear case of EKM, the classifier with a given
margin is shown to shatter fewer points than the previous
estimated one. The non-linear of EKM is kernelized through scaling
the general Hilbert spaces. The computational complexity of EKM
is in polynomial time. The optimization of EKM is achieved through
Semi-Definite Programming (SDP).
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Both minimax probability machine (MPM) [18] and maxi-min
margin machine (M4) [19] are the classical instances of structural
classifiers based on class granularity. To maximize the probability
of correct classification of future data points, Lanckriet et al. [18]
proposed MPM. Under all the possible choices of the class-
conditional densities with a given mean and covariance matrix,
MPM minimizes the worst probability of misclassification of
future data points. For the decision boundary, the above model
is translated into a convex second order cone optimization
problem. The mini-max problem can be interpreted geometrically
as minimizing the maximum of the Mahalanobis distances
between two classes. Lanckriet et al. [18] further addressed the
issue of the robustness with respect to the estimation errors
through a simple modification of input data. MPM is supposed
to consider data only either locally or globally. In contrast, M4

is constructed based on both local and global views of data.
Furthermore, the optimization of M4 can be cast as a sequential
conic programming problem, which can be solved more effi-
ciently. M4 provides a clear geometrical interpretation and pre-
sents a theoretical justification.

Both structured large margin machine (SLMM) [20] and
structural regularized support vector machine (SRSVM) [16] are
based on cluster granularity. SLMM is sensitive to the structure of
the data distribution. It incorporates the merits of structured
learning such as radial basis function networks and Gaussian
mixture models. SLMM is derived from the concepts of structured
degrees and bases on an analysis of the existing structured and
unstructured learning models. Through using the Wards agglom-
erative hierarchical clustering technique to extract the underlying
data structure, SLMM formulates the training processing as a
sequential second order cone programming. The advantages of
SLMM are validated in terms of accuracy, scalability, extensibility,
and noise tolerance. M4 is demonstrated to be a special case of
SLMM. SRSVM [16] is located at the cross of the cluster granu-
larity and aims to integrate the compactness within classes with
the separability between classes. SRSVM is demonstrated to
not only have a lower computational complexity but also hold
the sparsity of the solution. Laplacian support vector machine
(LapSVM) [21] is based on point granularity. LapSVM falls into
the semi-supervised learning framework that incorporates both
labeled and unlabeled data into a general purpose learner.
LapSVM uses the properties of reproducing Hilbert space to set
up a new representing theory that provides a theoretical basis for
the proposed algorithm. In this paper, through introducing the
structure of each class into the matrixized classifier discussed in
Section 1, we develop a classifier design that owns the three-fold
including class, cluster, and individual structural information.
2.2. Family of different Ho–Kashyap (HK) algorithms

Since the proposed method is an improved HK algorithm,
this section gives the description on the series of the related
Ho–Kashyap algorithms including the original HK [3], the Mod-
ification of HK algorithm with Squared approximation of the
misclassification errors (MHKS) [14], and the matrixized MHKS
(MatMHKS) [11].
2.2.1. HK

The HK algorithm is known as a simple linear classifier with a
fast gradient descent optimization. Suppose that there is a binary-
class classification problem with N samples ðxi,jiÞ, i¼ 1 . . .N,
where xiARd and its class label jiAfþ1,�1g. If the binary
classification problem is linearly separable, the decision function
of the HK classifier should satisfy the following formulation:

gðxiÞ ¼ ~wT xiþw0

40 if ji ¼ þ1

o0 if ji ¼�1

(
ð3Þ

where ~wARd is a weight vector, and w0AR is a bias. Then the
formulation (3) can be rewritten as the matrix form

Yw40N�1 ð4Þ

where Y ¼ ½y1, . . . ,yN�
T , yi¼ji½x

T
i ,1�T , and w¼ ½ ~wT ,w0�ARdþ1 are

the augmented weight vector. To get the solution for the w, we
give the criterion function of the HK algorithm as follows:

min Lðw,bÞ ¼ JYw�bJ2
2 ð5Þ

where bZ0N�1ARN is the vector with each element greater than
or equal to zero. To optimize (5), the HK algorithm adopts the
modified gradient descent technique, and at each iteration k takes
the derivative of the L with respect to w and b respectively as
follows:

@L

@w
¼ 2YT

ðYw�bÞ

@L

@b
¼�2ðYw�bÞ ð6Þ

At each iteration k, the augmented weight vector wk is derived as

wk ¼ Yybk ð7Þ

where Yy is the pseudo-inverse of Y, and the vector bk is requested
to satisfy bkZ0N�1, which is achieved through starting with
b0Z0N�1 and preventing any of its components from decreasing.
Thus the HK rule for the b can be given as follows:

b1Z0N�1

bkþ1 ¼ bkþrðekþ9ek9Þ

(
ð8Þ

where the error vector ek ¼ Ywk�bk, and the learning rate
0oro1. In practice, we define a criterion Jbkþ1�bkJ2rx for
the termination.

2.2.2. MHKS

The HK algorithm is supposed to be sensitive to outliers [14].
In order to solve this problem, Leski proposed a modified HK
algorithm named MHKS [14]. MHKS bases on the least square rule
and maximizes the separating margin [22–24]. Differently from
the separating hyperplane (4), MHKS replaces the 0N�1 with 1N�1

as follows:

YwZ1N�1 ð9Þ

Consequently, the criterion function of MHKS is changed as

min
wARdþ 1 ,bZ0

Lðw,bÞ ¼ ðYw�1N�1�bÞT ðYw�1N�1�bÞþC ~wT ~w ð10Þ

where CZ0 is the regularized hyperparameter that adjusts the
tradeoff between the model complexity and the training error.
The procedure of MHKS is almost the same as that of the HK
classifier. The difference of MHKS from HK is that the argument
weight vector wk in MHKS model becomes

wk ¼ ðY
T YþC~IÞ�1YT

ðbkþ1N�1Þ ð11Þ

where ~I is an identity matrix with the last element on the main
diagonal set to zero. Both the iteration for bk and the decision
function in MHKS are the same as those in HK.

2.2.3. MatMHKS

Since the vector representation for patterns fails in some
image-based learning, some matrix-based methods were pro-
posed in feature extraction [25–27] and classifier design [11].
MatMHKS is a matrixized classifier and can directly classify
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patterns represented with matrix. In the matrix case, suppose that
there is a binary-class classification problem with N matrix
patterns ðAi,jiÞ, i¼ 1 . . .N, where AiARd1�d2 and its class label
jiAfþ1,�1g. The decision function of MatMHKS for the binary
classification problem is given as

gðAiÞ ¼ uT Ai ~vþv0

40 if ji ¼ þ1

o0 if ji ¼�1

(
ð12Þ

where uARd1 and ~vARd2 are the weight vectors. The correspond-
ing optimization function of MatMHKS is defined as follows:

min
uARd1 , ~v ARd2 ,v0 ,bZ0

Lðu, ~v,v0,bÞ ¼
XN

i ¼ 1

ðjiðu
T Ai ~vþv0Þ�1�biÞ

2

þCðuT S1uþ ~vT S2 ~vÞ ð13Þ

where S1 ¼ d1Id1�d1
,S2 ¼ d2Id2�d2

are two regularized matrices
corresponding to the u and ~v respectively, and the regularized
parameter C (CAR,CZ0) controls the generalization ability of the
classifier by making a tradeoff between the complexity of the
classifier and the errors of training. The vectors u, ~v and the bias
v0 are obtained by the gradient of the formulation (13) with
respect to u, ~v and v0, respectively. The iteration for bk is the same
as that in MHKS. Here, we discuss the relationship between MHKS
and MatMHKS in the terms of the pattern expression. We have
given the following theorem as follows [10].

Theorem 1. Let AARm�n, BARn�p and CARp�q, then

vecðABCÞ ¼ ðCT
� AÞvecðBÞ ð14Þ

where vec(X) denotes an operator that vectorizes the matrix X

into the corresponding vector. For example, let X ¼ ðxijÞARp�q

and xi ¼ ðx1i, . . . ,xpiÞ
T be the ith column of X, and thus vecðXÞ ¼

ðxT
1 , . . . ,xT

i , . . . ,xT
q Þ

T is a vector with p� q dimensionality. � denotes

Kronecker product operation. According to Theorem 1, we can

transform the discriminant function of MatMHKS (12) into the

following form:

gðAiÞ ¼ uT Ai ~vþv0 ¼ ð ~v
T
� uT ÞvecðAiÞþv0

¼ ð ~v � uÞT vecðAiÞþv0 ð15Þ

Further compared with the discriminant function (3) of MHKS,
it can be found that both MatMHKS and MHKS have the same
form of the discriminant functions. ~v � u in (15) of MatMHKS

plays the same role as the weight vector ~w in MHKS. For the
reason that the weight vector ~w of MHKS does not always satisfy
decomposability of the Kronecker product, we can find that the
solution space for ~w is including that of u, ~v. Moreover, we make

~v � u, t0 ¼ v0, t¼ ½~t
T
,t0�

T , Y ¼ ½y1,y2, . . . ,yN�
T , yi ¼ji½vecðAiÞ,1�

T ,

i¼ 1 . . .N, and then the criterion function (13) of MatMHKS can
be reformulated as follows:

min
tARdþ 1 ,bZ0,t ¼ ~v�u

Lðt,bÞ ¼ ðYt�1N�1�bÞT ðYt�1N�1�bÞ

þCðuT S1uþ ~vT S2 ~vÞ ð16Þ

Compared with the (10) of MHKS, we can find that the first terms
of their right-handed sides have the same form, and the second
terms are both the regularization terms. But the difference
between MatMHKS and MHKS is that t in (16) should satisfy a
decomposability constraint of the Kronecker product, but w in
(10) does not have the constraint. Thus MatMHKS can be viewed
as the MHKS imposed with Kronecker product decomposability
constraint. It means that if we search for its optimal weight vector
on the space of the objective function (16), MatMHKS is guided by
some prior information such as the structural or local contextual
information which is reflected in the representation of Kronecker
production of the u and ~v, which is the reason why MatMHKS
outperforms MHKS in terms of classification performance. It can
also be found that MatMHKS can avoid overtraining due to both
the introduction of structural information and the reduction of
dimensionality for patterns, i.e. from the matrix pattern A with

the dimensionality of d1 � d2 to Av or uTA with the corresponding
dimensionality of d1 or d2.
3. Three-fold structured matrixized classifier design

This section gives the description for the architecture of the
proposed TSMHKS. The architecture of TSMHKS is made up of the
two parts. The first one is to construct the cluster structure of
each class through some unsupervised or supervised methods.
The second one is to introduce the obtained cluster information
into our previous matrixized classifier learning framework.

3.1. Detection of data cluster

There are a lot classical clustering methods such as the
K-means clustering [28], the Agglomerative Hierarchical Clustering
(AHC) [29] and fuzzy-based clustering [30]. The proposed TSMHKS
adopts the K-means and AHC as the detection for the cluster
structure.

3.1.1. K-means clustering

Hartigan et al. [28] gave a K-means clustering method to deal
with unsupervised data. K-means clustering aims to partition N

samples into k clusters, i.e. S¼ fS1,S2, . . . ,Skg in which each sample
belongs to the cluster center with the nearest mean. In practice,
given a set of samples x1,x2, . . . ,xn, K-means clustering achieves
the above aim through minimizing the within-cluster sum of
squares as follows:

arg min
Xk

i ¼ 1

X
xj A Si

Jxj�miJ
2

ð17Þ

where mi is the mean of points in Si. It can be found that the
initialization of the k is sensitive for K-means clustering. If the k

is too small, some samples with different structures would be
included in the same cluster. If the k is too large, the size of
the clusters would be excessive, which might cause a large
computation.

3.1.2. Agglomerative Hierarchical Clustering (AHC)

As a hierarchical clustering, the AHC [29] can effectively solve
the selection for the size of clusters. Thus we here adopt the AHC
as the method to grasp the structure of the given data. In AHC,
one can initialize each point as a cluster and then calculate the
distance between every two clusters. While more than one cluster
remain, one should find the closest pair of clusters and merge
the two clusters. Meanwhile, one should also update the distance
between each pair of clusters. The distance between every two
clusters is measured by Ward’s linkage [31]. Ward’s linkage
between the clusters A and B is given as

WðA,BÞ ¼
9A9 � 9B9JmA�mBJ

2

9A9þ9B9
ð18Þ

where mA and mB are the means of the clusters A, B, respectively.
If the clusters A and B are merged into a new cluster D, Ward’s
linkage WðE,DÞ between the E and D can be conveniently derived
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from WðA,EÞ, WðB,EÞ, and WðA,BÞ through the following equation
[20]:

WðE,DÞ ¼
ð9A9þ9E9ÞWðA,EÞþð9B9þ9E9ÞWðB,EÞ�9E9WðA,BÞ

9A9þ9B9þ9E9
ð19Þ

In the initialization, Ward’s linkage between the two patterns xi

and xj is computed as

Wðxi,xjÞ ¼
Jxi�xjJ

2

2
ð20Þ

Ward’s linkage between the merged clusters increases as the size
of clusters decreases. In our method, we determine the size of
clusters by selecting the size corresponding to the knee point. The
knee point is the point of the maximum curvature on the curve
which shows the relationship between the size of clusters and the
merge distance as Salvador and Chan [32] do.

3.2. Architecture of three-fold structured classifier (TSMHKS)

Suppose that there is a set of samples Tvec ¼ fðx1,j1Þ, . . . ,

ðxN ,jNÞg, where N is the sample number, xpARd, and its corre-

sponding class label jpAfþ1,�1g. The vector set Tvec can

be matrixized into its corresponding matrix set Tmat ¼

fðA1,j1Þ, . . . ,ðAN ,jNÞg through some matrixized techniques [11],

where ApARd1�d2 ,d¼ d1d2. The objective function of MatMHKS

is given as Eq. (13). The first term of the right-handed side in
Eq. (13) is to minimize the number of misclassified samples and
to separate the binary-class samples as much as possible. This
term considers the class label information and is viewed to use
the class structure. The second term of the right-handed side in
Eq. (13) is a regularization term which makes a tradeoff between
the complexity of the classifier and the training errors. Meanwhile
this term uses the individual structure of samples through the
two weight vectors. Therefore, the objective function (13) of
MatMHKS shows the two-fold structures with both the class
and the individual aspects.

In this paper we introduce the cluster structure of each class
into the matrixized classifier learning and develop a novel
classifier design with three-fold structures. We first adopt the
above discussed clustering techniques and give a regularization
term including the cluster information as follows:

Rd ¼
Xnd

i ¼ 1

Xni

j ¼ 1

uT ðAij�Ai Þ ~v ~v
T
ðAij�Ai Þ

T u, ð21Þ

where Aij is the jth sample in the ith cluster, Ai is the mean of the
ith cluster, nd is the size of the total clusters, and the ni is the size
of the samples belonging to the ith cluster. The advantage of
introducing the Rd is given as follows. It is well-known that in
LDA, the within-class scatter Si of the ith class is defined by wTS

iw,

where Si ¼
P

xADi
ðx�miÞðx�miÞ

T , mi is the mean of the ith class, Di

is the set of samples in the ith class, x is the sample of the ith class,
and w is the transform vector. In LDA, we should make the Si as
small as possible. It means that the samples belonging to the
same class should be fixed as tightly as possible, which has the
same meaning as the Rd here. In the matrix case, we make the
samples in one cluster as tight as possible, which is achieving
through minimizing the Rd. Rd can keep the samples in the same
cluster as tight as possible.

Further it should be stated that although the above discussed
clustering methods such as the AHC is designed to deal with the
vector sample set Tvec, we can still make the AHC work through Ap

in the Tmat corresponds to xp in the Tvec. The reason for doing so is
that in the cluster granularity, we can regard the sample whatever
it is vector or matrix as one point, and need not consider the
represented form of the sample itself. Through adding the Rd into
the objective function (13), we can get the following objective
function:

min Jðu, ~v,v0,bpÞ ¼
1

2

XN

p ¼ 1

ðjpðu
T Ap ~vþv0Þ�1�bpÞ

2

þ
C

2
ðuT S1uþ ~vT S2 ~vÞþ

l
2

Rd ð22Þ

where both C and l are the regularized parameters. The first term
of the function (22) reflects the class structural information to
minimize the classification error. The second one reflects the
individual structural information. The third one reflects the
cluster structural information through minimizing the close
degrees of each cluster.

In order to optimize the objective function (22), we set Y ¼

½y1, . . . ,yN�
T , yp ¼jp½u

T Ap,1�T , p¼ 1, . . . ,N, v¼ ½ ~vT ,v0�
T , and rewrite

the function (22) as the following matrix form:

min Jðu,v,bpÞ ¼
1

2
ðYv�1�bÞT ðYv�1�bÞ

þ
C

2
ðuT S1uþvT ~S2vÞþ

l
2

Rd ð23Þ

where 1, bARN and ~S2 ¼ ð
S2
0

0
0Þ. From the functions (22) and (23),

we cannot directly get the closed-form optimal weights. Instead
we adopt the gradient descent technique to iteratively seek them.
The gradients of the objective functions (22) and (23) with respect
to u, v and b are given as follows:

@J

@u
¼ uS1þC

XN

p ¼ 1

jpAp ~vðjpðu
T Ap ~vþv0Þ�1�bpÞþl

Xnd

i ¼ 1

Xni

j ¼ 1

Pu ð24Þ

@J

@v
¼ v ~S2þCYT

ðYv�1�bÞþl
Xnd

i ¼ 1

Xni

j ¼ 1

~Gv ð25Þ

@J

@b
¼�CðYv�1�bÞ ð26Þ

where

~G ¼
G 0

0 0

� �
, G¼ ðAij�Ai Þ

T uuT ðAij�Ai Þ, P¼ ðAij�Ai Þ ~v ~v
T
ðAij�Ai Þ

T

ð27Þ

Then by setting @J=@u¼ 0 and @J=@v¼ 0, we can get

u¼ S1þC
XN

p ¼ 1

Ap ~v ~v
T AT

pþl
Xnd

i ¼ 1

Xni

j ¼ 1

P

2
4

3
5
�1

C
XN

p ¼ 1

jpAp ~vð1þbp�jpv0Þ

" #

ð28Þ

v¼ ~S2þl
Xnd

i ¼ 1

Xni

j ¼ 1

~GþCYYT

0
@

1
A�1

ðCYT
ð1þbÞÞ ð29Þ

From Eqs. (28) and (29), it can be found that the weight vectors u

and v are all determined by each other and the other b which is
the margin vector whose components determine the distance of
the corresponding sample to the separation hyperplane [16].
Moreover, since both u and v are also mutually dependent,
we iteratively seek the u and v by initializing the b, which is
similar to MatMHKS [11]. The design procedure for the proposed
TSMHKS is shown in Table 1. In Table 1, the k denotes the

iteration index, and the equation bðkþ1Þ ¼ bðkÞþrðeðkÞ þJeðkÞJÞ

prevents the reduction of all the components of the b. From the

procedure of the TSMHKS, it can be found that if the parameter l
is set to be zero, the TSMHKS is degenerated to MatMHKS. Further
if d1 and u are set to be 1 and omitting the iteration for the u,
MatMHKS is degenerated to MHKS [14]. Moreover, if the



Table 1
Algorithm: TSMHKS.

Input: S¼ fðA1 ,j1Þ, . . . ,ðAN ,jN Þg;

Output: the weight vectors u, ~v , and the bias v0;

1. Fix CZ0, lZ0, 0oro1; initialize bð1ÞZ0 and uð1Þ, vð1Þ, set the iteration index k¼1;

2. Let Y ¼ ½y1 ,y2 , . . . ,yN �
T , where yp ¼jp[uðkÞT Ap ,1�T ,p¼ 1, . . . ,N;

3. Let GðkÞ ¼ ðAij�Ai Þ
T uðkÞuðkÞT ðAij�Ai Þ,

PðkÞ ¼ ðAij�Ai Þ ~vðkÞ ~vðkÞ
T
ðAij�Ai Þ

T ,

If k¼1, then v¼v(1);

else vðkÞ ¼ ð ~S2þl
Pnd

i ¼ 1

Pni

j ¼ 1
~Gðk�1ÞþCYYT

Þ
�1
ðCYT
ð1þbðk�1ÞÞÞ, then v¼v(k);

4. Let eðkÞ ¼ YvðkÞ�1�bðkÞ;

6. Let bðkþ1Þ ¼ bðkÞþrðeðkÞþJeðkÞJÞ;

7. If Jbðkþ1Þ�bðkÞJ4x, then k¼ kþ1, go to Step 8; else stop;

8. Let uðkþ1Þ ¼ ½S1þC
PN

p ¼ 1 Ap ~vðkÞ ~vðkÞ
T AT

pþl
Pnd

i ¼ 1

Pni

j ¼ 1 PðkÞ��1½C
PN

p ¼ 1 jpAp ~vðkÞð1þbpðkÞ�jpv0ðkÞÞ�,

k¼ kþ1, go to Step 2.

Table 2
The information description for the two groups of synthetical data denoted with

ToyA and ToyB.

Class Mean Covariance matrix

ToyA-class I [2.0, 0.1] [1.8, 0.0; 0.0, 8.0]

[9.1, 40] [1.3, 0.0; 0.0, 9.0]

[20, �0.1] [1.7, 0.0; 0.0, 7.2]
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regularize parameter C is set to be 0, MHKS is degenerated to the
original HK algorithm. Therefore, all the MatMHKS, MHKS, and HK
can be viewed as one special instances of the TSMHKS. Finally, the
discriminant function of the TSMHKS can be given as follows:

gðAÞ ¼ uT A ~vþv0

40, AA classþ1

o0, AA class�1

(
ð30Þ
ToyA-class II [9.9, �40] [1.3, 0.0; 0.0, 8.3]

[2.0, �80] [1.0, 0.0; 0.0, 7.8]

[20, �81] [1.3, 0.0; 0.0, 7.2]

ToyB-class I [6.0, 20] [4.3, 0.0; 0.0, 5.0]

[5.0, 0.1] [4.8, 0.0; 0.0, 5.0]

[7.0, �20] [4.7, 0.0; 0.0, 4.2]

ToyB-class II [20, 22] [4.3, 0.0; 0.0, 4.3]

[21, �1.2] [5.0, 0.0; 0.0, 4.8]

[21, �21] [4.3, 0.0; 0.0, 4.2]
4. Experiments

This section is validating the effectiveness of the proposed
TSMHKS. Firstly, we give the experimental setting for all the
implemented algorithms. Secondly, we compare and discuss the
discriminant boundaries of TSMHKS with MHKS and MatMHKS
on the synthetic data sets. Thirdly, we further analyze TSMHKS
on some UCI Benchmark data sets [36] in terms of: (1) the size
of clusters; (2) the matrix size of patterns; (3) the regularized
parameters C and l; (4) the convergence; (5) the generalization
risk; (6) the classification and computational complexity, and
(7) the comparison between TSMHKS and the related ensemble
techniques. Finally, we also show the analysis for the performance
of TSMHKS with the varying size of the image data.

4.1. Experimental setting

In our experiments, we have carried out the proposed
TSMHKS, the vectorized and matrixized modifications of Ho–
Kashyap algorithm named by MHKS and MatMHKS, the state-
of-the-art SVM with linear, polynomial and RBF kernels. In the
implementation of TSMHKS, the vector b is initialized by 10�6.
The learning rate r is set to 0.99. Both the regularized parameters
C and l are chosen from the same set f10�3,10�2,10�1,100,
101,102,103

g. The termination variable x is fixed to 10�4. In
practice, we add another termination condition by a maximal
size of the iteration maxIter¼500 so as to avoid the over-fitting
loop. In the experimental processing, we optimize the initialized
weight vectors u and ~v from the set f0:1,0:2,0:3, . . . ,0:9,1g and
find that their corresponding results are not sensitive to the
initialization for the u or ~v. In both MHKS and MatMHKS,
the initializations for the parameters b, r, C, x, u, and ~v are given
the same setting as those in TSMHKS. For the implemented SVM,
the used kernels are the linear kernel kerðxi,xjÞ ¼ xix

T
j , polynomial

kernel kerðxi,xjÞ ¼ ðxix
T
j þ1Þd and the radial basis function (RBF)

kernel kerðxi,xjÞ ¼ expð�Jxi�xjJ
2
2=s2Þ. The kernel parameter d is set

to 2. The kernel parameter s is chosen from the same set like C

and l, i.e. f10�3,10�2,10�1,100,101,102,103
g. Here, we report SVM

with the best result of the three kinds of kernels including the
linear, polynomial, and RBF ones. All the computations are
performed on Intel Core 2 processors with 2.66 GHz, 4 G RAM
DDR3, Microsoft Windows XP, and MATLAB environment.

4.2. Synthetical data

In this subsection, we compare TSMHKS with MatMHKS and
MHKS on the synthetic data. MHKS is viewed to integrate
the class structure through making the distances between all
the patterns belonging to different classes as far as possible.
MatMHKS is viewed to inherit the information of both class and
individual structures. TSMHKS is viewed to integrate the cluster
structure besides the class and individual structures. In order to
explicitly validate the characteristic of TSMHKS, we generate two
groups of synthetical data with different cluster structures. The
first group denoted as ToyA is made up of two classes (‘þ ’ vs. ‘J’).
Each class consists of three clusters which appear as a line
distribution. Each cluster is generated under the Gaussian dis-
tribution, whose mean and covariance matrix are shown in
Table 2. Here we sort each cluster into the two non-overlapping
parts including the training set with the S samples and the testing
set with the S samples, where S is set to 25, 50, 100 respectively.
Fig. 1(a), (c), and (e) shows the discriminant boundaries of
TSMHKS, MatMHKS, and MHKS in the testing set of ToyA with
different S. The second group of the used synthetical data denoted
as ToyB is generated in the similar way as ToyA. But the difference
is that the three clusters of each class in ToyB appear as a triangle
distribution. Fig. 1(b), (d), and (f) shows the discriminant bound-
aries of TSMHKS, MatMHKS, and MHKS in the testing set of ToyB
with different S. From this figure, it can be found that TSMHKS
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Fig. 1. The discriminant boundaries of TSMHKS, MatMHKS, and MHKS in the two groups of the synthetical data: (a), (c) and (e) give the discriminant boundaries in the

testing set of ToyA; (b), (d) and (f) give the discriminant boundaries in the testing set of ToyB.
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with different S’s can have a more accurate discriminant bound-
ary than both MatMHKS and MHKS. The advantage brought by
TSMHKS can be attributed to the introduced information
of the clusters. Further, we also give the error rates of TSMHKS,
MatMHKS, and MHKS for the testing cases in Fig. 1. It shows
that TSMHKS has a superior accuracy to both MatMHKS and
MHKS.

Moreover, it can be found that although the used synthetical
data has the dimensionality with two and cannot be matrixized
into different sizes, MatMHKS still can have the two weights and
the corresponding two regularization matrices as shown in (13).
MHKS just owns only one weight and one regularization matrix
~wT ~w. Therefore MatMHKS might be guided by some prior

information which is reflected in the representation of Kronecker
production of the two weights u and ~v, which induces that
MatMHKS outperforms MHKS as shown in Fig. 1.
4.3. UCI data

In order to investigate the feasibility and the effectiveness of
TSMHKS, we evaluate its performance in terms of the following
seven aspects on some real-world data sets which are obtained
from UCI repository of machine learning databases [36]. Table 3
gives the description for the used data sets, where the data
sets Australian Card, Breast-Cancer-Wisconsin, German Data,
House-Votes-84, Liver-disorders, Pima-Indians-Diabetes, and
Post-Operative are denoted as AuC, BCW, GeD, HOV, Liver, PID,
and POS for short respectively. The one-against-one classification
strategy [33] is adopted for multi-class problems here. All the
performances including the average classification accuracy and
training time of the implemented algorithms here are reported
through the strategy named Monte Carlo cross validation (MCCV)
[34], i.e. randomly splitting the data set into the two parts
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including the training and validation sets and repeating the
procedure for T times. In our experiments, T is set to 10.

4.3.1. Influence of the size of clusters

As we state above, TSMHKS is made up of the two parts. The
first one is constructing the cluster information in each class
through one certain clustering technique. Here we adopt K-means
clustering and AHC to generate the clusters for each class. Thus
we discuss the influence of the size of the clusters generated by
both K-means and AHC over the performance of the data sets
from Table 3. Here the TSMHKS with K-means is named TSMHKSK,
and the TSMHKS with AHC is named TSMHKSA. For the reason
that the K-means method is sensitive for the choice of the
initialized value of the k. If the k is too small, some samples with
different structure would be included in the same cluster. If the k

is too large, the size of the clusters would be excessive, which
might cause a large computation. Moreover if we set the k too
large, we have to put some strong-relative samples into different
clusters, which would cause a poor result. In this case with a large
k. Table 9 gives the average results of TSMHKSK and TSMHKSA
Table 3
The description for the used data sets.

Data set # of features # of cla

Australian Card (AuC) 14 2

Audiology 70 24

Bands 39 2

Breast-Cancer-Wisconsin (BCW) 9 2

Crx 15 2

German Data (GeD) 24 2

Glass 9 6

Heart 13 2

House-Votes-84 (HOV) 16 3

Ionosphere 33 2

Iris 3 3

Letter (UCI) 16 3

Liver-disorders (Liver) 6 2

Mushroom 22 2

Pendigits 16 10

Pima-Indians-Diabetes (PID) 8 2

Post-Operative (POS) 8 3

Satellite Image 36 10

Shuttle 9 7

Sonar 60 2

Thyroid 21 3

Waveform 21 3

Waveform-noise 40 3

Wine 13 3

Vowel 10 11
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Fig. 2. Classification accuracies (%) of MHKS and Mat
with the varying size of the clusters in terms of classification
accuracy and training time. Since AHC can optimize the size k of
the clusters by the knee point [32], we give its corresponding
result with the optimal size in Table 9.

From this table, it can be found that: (1) the TSMHKSA

considers only the optimal size for k but the TSMHKSK should
consider multiple cases so as to choose a better result. The result
of TSMHKSK might not be the best one since we cannot give all
the possible sizes for k. In TSMHKSK, it might happen that if the k

is small, some samples which belong to different classes would be
enclosed into the same cluster and if the k is large, we would have
some isolate samples. (2) TSMHKSA has a better performance than
TSMHKSK in most of the cases since the adopted AHC can give the
optimal k but the K-means one cannot. (3) Although for each
k TSMHKSA has a comparable training time to TSMHKSK, the
K-means one in TSMHKSK should consider multiple cases with
different k’s. Thus it can be supposed that TSMHKSA takes less
training time than TSMHKSK. Taking AuC for example, TSMHKSA

takes a 52.36 s for training while TSMHKSK uses 167.90 s in total
so as to get the optimal recognition.
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MHKS with the varying C on the used data sets.
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4.3.2. Influence of the size of matrix

Our previous work [11,10] has shown that for the same data
set, different matrix sizes of one pattern would lead to different
classification results for the matrixized classifiers. Since TSMHKS
also falls into the matrixized classifier learning, we here discuss
how the role of the matrix size plays. To generate different matrix
sizes for each data set in Table 3, we adopt the similar matrixiza-
tion technique in the literature [10,35]. The adopted matrixization
way for each pattern x is reshaping without overlapping among
the components of the x. It is that the original x is partitioned into
multiple equal size sub-vectors which are then arranged column-
by-column into the new matrix. For the same pattern, we can
generate different matrix sizes by using different sub-vectors.
Table 10 shows the classification performance of the matrixized
classifiers TSMHKS including TSMHKSA and TSMHKSK, and MatMHKS
on the data sets with different matrix sizes.

From Table 10, we can observe that compared with MatMHKS,
TSMHKS has a better performance on almost all the used data
sets. Since the difference between TSMHKS and MatMHKS is that
TSMHKS is integrated by the cluster structure information but
MatMHKS is not. Thus the improved performance of TSMHKS can
be attributed to the introduced cluster information. It can be also
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Fig. 3. The logarithm value of the objective function (22) of TSMHKS changes with th

Heart, MUS, PID, GeD, Liver, Ionosphere, and Sonar respectively.

Table 4
Algorithm: computing the generalization bound.

Input: S¼ fðx1 ,j1Þ, . . . ,ðxN ,jN Þg.

Output: The generalization bound R(h).

1. Fix y¼0.05; Compute the maximum distance from the mean of samples to one sa

set the maximum distance to be B.

2. Compute the kernel matrix of training set and get its eigenvalues: l1 Zl2 Z � � �Z

3. Let M be the number of eigenvalues, and n is the number of training samples;

compute the c(n,j) by Eq. (37), and get the largest one to be the c of the norm of w

compute the gðmÞ and k(l) by Eqs. (35) and (36), respectively.

4. Set a certain margin g between 8gðmÞogr1;

Set g¼8gðmÞþ1

2
.

5. Give a hypothesis class FðcÞB; Start to train a classifier, and compute the number of t

6. Use Eq. (32) to compute the Rg
s ðhÞ.

7. Compute the result of Aj ¼ Rr
sðhÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm ln 2þ lnðdce=ygÞd8B=geÞ=ð2nÞ

p
under present

8. Compute all the Ai (for i¼1,2,y,L), where L denote the Lth classifier by the hypot

9. Sort the result of Ai (for i¼1,2,y,L) and according to the degree of the confidence
found that TSMHKSA takes the first or second place in terms of the
classification. Further considering the large computational com-
plexity for TSMHKSK, we would adopt the AHC as the technique
for generating the cluster information in the following experi-
ments. Moreover, we can also conclude that to get the better
result of TSMHKS, we should choose enough kinds of the matrix
sizes of pattern and select the best one from different matrix
sizes.
4.3.3. Influence of the regularized parameters C and l
It is known that the regularized parameters C and l play

a balance role between the empirical and generalization risk.
Thus both C and l can influence the performance of the related
algorithms. Here, TSMHKS, MatMHKS, and MHKS all adopt these
parameters. The C is used in both MatMHKS and MHKS. TSMHKS
uses both C and l. To clearly show the role of the C and l, we give
the average classification accuracies of both MHKS and MatMHKS
with the varying C on the used data sets in Fig. 2. From this figure,
it can be found that when the C is initialized by 1 or 10, the
best performance might be got on the used most data sets. For
MatMHKS, the Glass attains the best recognition when the C is set
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Table 5
Classification accuracy (%) comparison between TSMHKS, MatMHKS, MHKS, and

SVM (The best accuracy for each data set is denoted by bold and the second one by

italic.).

Data set TSMHKS MatMHKS MHKS SVM

AuC 89.57 87.39 80.00 84.78

Audiology 74.95 73.40 72.73 73.12

Bands 81.61 67.96 73.33 70.72

BCW 98.71 97.85 97.00 98.71

Crx 86.46 82.57 85.93 85.57

GeD 79.04 76.65 80.84 79.34

Glass 94.37 87.32 85.92 74.65

Heart 86.67 86.67 86.67 88.90
HOV 93.30 93.25 93.13 91.26

Ionosphere 93.16 88.03 87.18 92.31

Iris 97.33 94.67 93.33 97.33

Letter 94.68 81.20 81.20 94.65

Liver 81.74 77.39 74.78 75.65

Mushroom 94.71 85.19 95.57 99.96
Pendigits 93.05 93.05 93.05 96.91
PID 92.58 90.63 90.23 77.73

POS 78.09 71.11 70.00 77.12

Satellite image 83.70 83.70 83.70 83.65

Shuttle 92.97 92.97 92.98 85.95

Sonar 82.69 72.12 69.23 76.92

Thyroid 93.60 93.03 93.41 92.13

Vowel 57.35 54.98 54.98 49.59

Waveform 86.27 86.23 86.23 80.91

Waveform-noise 86.75 86.47 86.43 86.37

Wine 100.00 100.00 100.00 96.67

Table 6
The average training time (in seconds) comparison between TSMHKS, MatMHKS,

MHKS, and SVM.

Data set TSMHKS MatMHKS MHKS SVM

AuC 52.36 19.90 23.32 7.16

Audiology 43.69 21.21 13.91 0.13

Bands 44.63 28.12 17.58 0.07

BCW 32.78 18.91 13.26 7.75

Crx 88.61 58.32 49.12 0.31
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by 0.001, but it attains the worst result with C initialized by 1. For
Wine, the best performance for both MHKS and MatMHKS is got
when C is initialized by 1 or 10. Thus, it can be concluded that the
C plays an important role onto the performance of both MHKS
and MatMHKS. The C should be optimized and here we adopt
the MCCV technique [34] stated above. For TSMHKS, there are two
used regularized parameters C and l. Therefore, we give the
classification accuracies of the varying l with some certain fixed
C so as to show the roles of both C and l. Fig. 7 gives their
corresponding results, where the regularized parameters C and
l are selected from the same set f10�3,10�2,10�1,100,101,
102,103

g. From this figure, it can be found that both C and l have
a great influence on the classification performance. It is known
that for the learning framework of TSMHKS, the function (22) has
three terms. The first one uses the class discriminant information
to minimize the classification error. The second one reflects
the individual structural information. The third one reflects the
cluster structural information through minimizing the close
degrees of each cluster. The C and l decide the importance
of the regularization terms ðuT S1uþ ~vT S2 ~vÞ and Rd, respectively.
The large the parameter is, the importance the corresponding
regularization term is.

4.3.4. Convergence analysis for TSMHKS

In this section, we give an experimental discussion about the
convergence of TSMHKS. We adopt an empirical justification as
used in [37] so as to demonstrate that TSMHKS can converge in
the limited iterations. Fig. 3 shows that the logarithm value of the
objective function (22) of TSMHKS changes with the iteration
number on the binary-class data sets including AuC, Bands, BCW,
Crx, Heart, MUS, PID, GeD, Liver, Ionosphere, and Sonar respec-
tively. From this figure, it can be found that the target (22) value
on the used data sets can quickly converge to stable values, where
less than 40 iterations is usually enough to achieve convergence.

4.3.5. Generalization risk analysis for TSMHKS

It is known that the analysis of the generalization risk bound is
important for interpreting the performance behavior of a learning
algorithm. Here, we give the discussion of the generalization risk
bound for TSMHKS, MatMHKS, and MHKS through the empirical
covering number in terms of the distribution of the eigenvalues of
the kernel matrix [38].

Supposing that the pattern ðx,jÞAZ follows a certain distribu-
tion Pðx,jÞ, the generalization risk of a hypothesis hAF can be
given by [39]

RðhÞ ¼
X
ðx,jÞAZ

dðjhðxÞr0ÞPðx,jÞ ð31Þ
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Fig. 4. Empirical bounds of the generalization risks for TSMHKS, MatMHKS, and

MHKS on the binary-class data sets including AuC, BCW, PID, GeD, Liver, Iono-

sphere, Sonar, Heart, Bands, Crx, and Mushroom.
If the training set fxi,jig
n
i ¼ 1 distributed from Z is given, the

empirical margin risk for a certain margin g can be defined by
the rate of the samples with [39]

jihðxiÞog : Rg
s ðhÞ ¼ ð1=nÞ

Xn

i ¼ 1

dðjihðxiÞogÞ ð32Þ

Then the following derivation gives an upper bound for the
generalization risk of one learning algorithm [38,39]. Let
l1Zl2Z � � �Zln be the eigenvalues of the kernel matrix derived
GeD 57.30 35.54 33.60 17.46

Glass 70.18 37.85 41.19 2.43

Heart 9.71 9.79 9.34 3.20

HOV 97.79 41.93 21.01 0.05

Ionosphere 356.48 9.87 15.81 1.55

Iris 15.00 8.60 8.26 0.30

Letter 20 202.01 21 219.37 26 252.85 24 388.83

Liver 39.78 9.94 8.19 1.68

Mushroom 216.47 126.02 58.01 3.01

Pendigits 5763.78 5732.23 4012.34 84 822.63

PID 31.70 23.09 17.43 8.84

POS 97.79 8.78 2.47 0.91

Satellite image 1435.12 1483.45 2303.76 18 123.36

Shuttle 6853.00 6821.21 6796.60 16 066.39

Sonar 23.74 2.91 10.42 0.58

Thyroid 247.42 237.47 575.82 13 253.17

Vowel 304.65 332.18 358.52 1691.56

Waveform 176.60 203.63 277.73 4014.23

Waveform-noise 320.69 328.19 897.68 3812.33

Wine 14.16 14.11 16.33 46.30
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from the training samples. For the hypothesis class

FðcÞB ¼ f/w,xSþb : JwJrc,9b9rBg ð33Þ

we have the following inequality holding simultaneously for all
g,8gðmÞogr1:

PsAZn ð(hAFðcÞB : RðhÞZRr
sðhÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm ln 2þ lnðdce=ygÞd8B=geÞ=ð2nÞ

q
Þry ð34Þ
Table 7
Classification accuracy (%) comparison between TSMHKS and the different ensem

‘‘KmeansþBagging’’, ‘‘KmeansþVoting’’, ‘‘AHCþAdaboost’’, ‘‘AHCþBagging’’, and ‘‘AHCþV

‘‘AþA’’, ‘‘AþB’’, and ‘‘AþV’’ respectively. (The best accuracy for each data set is denot

Data set TSMHKS AþS KþS KþA

AuC 89.57 60.49 60.43 78.65

Audiology 74.95 74.95 73.63 71.06

Bands 81.61 81.64 81.11 68.54

BCW 98.71 98.84 98.67 98.68

Crx 86.46 86.46 85.77 82.60

GeD 79.04 77.36 76.65 73.35

Glass 94.37 95.60 95.21 88.57

Heart 86.67 87.80 86.67 80.64

HOV 92.10 72.25 72.10 90.36

Ionosphere 93.16 89.63 88.89 88.48

Iris 97.33 97.67 97.67 96.32

Letter 94.68 96.23 95.10 70.47

Liver 81.74 61.02 60.87 60.87

Mushroom 94.71 86.81 85.75 94.71

Pendigits 93.05 95.06 93.86 93.02

PID 92.58 77.88 77.34 73.23

POS 78.09 78.09 76.67 68.74

Satellite image 83.70 84.33 83.83 84.55

Shuttle 92.97 95.20 93.70 92.94

Sonar 82.69 85.17 83.65 84.62

Thyroid 93.60 95.35 93.66 93.00

Vowel 57.35 59.24 58.25 45.45

Waveform 86.27 87.03 87.02 85.71

Waveform-noise 86.75 88.28 87.26 86.75

Wine 100.00 100.00 100.00 96.59

Table 8
The average training time (in seconds) comparison between TSMHKS and the different e

‘‘KmeansþBagging’’, ‘‘KmeansþVoting’’, ‘‘AHCþAdaboost’’, ‘‘AHCþBagging’’, and ‘‘AHCþV

‘‘AþA’’, ‘‘AþB’’, and ‘‘AþV’’ respectively.

Data set TSMHKS AþS KþS KþA

AuC 52.36 47.47 43.35 562.82

Audiology 43.69 42.64 36.98 675.00

Bands 44.63 43.81 36.40 503.83

BCW 32.78 31.27 30.70 386.21

Crx 88.61 87.17 84.19 1572.20

GeD 57.30 52.41 44.80 660.96

Glass 70.18 65.45 61.76 1018.79

Heart 9.71 8.84 8.83 188.46

HOV 97.79 92.01 74.43 1425.88

Ionosphere 356.48 322.27 270.50 6700.47

Iris 15.00 13.56 11.09 177.94

Letter 20 202.01 18 421.99 15 770.63 27 2416.80

Liver 39.78 39.52 34.41 488.48

Mushroom 216.47 200.43 167.36 3733.04

Pendigits 5763.78 5248.22 4211.92 108 307.35

PID 31.70 29.88 25.10 520.13

POS 97.79 97.36 93.27 1548.38

Satellite image 1435.12 1418.49 1301.81 24 021.18

Shuttle 6853.00 6544.09 6020.96 110 312.30

Sonar 23.74 23.11 19.35 270.51

Thyroid 247.42 229.41 202.65 2998.18

Vowel 304.65 287.64 261.44 5195.19

Waveform 176.60 171.62 156.36 3395.88

Waveform-noise 320.69 311.16 295.04 6091.58

Wine 14.16 14.07 11.83 243.99
where

gðmÞ ¼ min
jA f1;2,...,m�1g

6� 2ð1�jÞ=kð2j�1
Þ
ðl1 . . . lkð2j�1

Þ
Þ
1=2kð2j�1

Þcðm,jÞ ð35Þ

kðlÞ ¼minfkAf1, . . . ,ng : lkþ1r ðl1 . . . lk=l2Þ1=k
g ð36Þ

cðm,jÞ ¼minð1,1:86
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log2ðn=ðm�jÞþ1Þ=ðm�jÞ

q
Þ ð37Þ
ble techniques including ‘‘AHCþSVDD’’, ‘‘KmeansþSVDD’’, ‘‘KmeansþAdaboost’’,

oting’’, which can be shortly denoted as ‘‘AþS’’, ‘‘KþS’’, ‘‘KþA’’, ‘‘KþB’’, ‘‘KþV’’,

ed by bold and the second one by italic.)

KþB KþV AþA AþB AþV

70.96 79.83 90.07 86.37 90.07

71.01 71.72 76.91 73.76 76.21

68.26 68.39 70.92 70.26 70.74

95.70 98.71 100.00 95.31 99.03

82.42 83.11 87.45 85.38 87.21

70.96 74.80 79.52 79.26 79.26

85.18 92.96 95.75 94.51 95.65

69.12 86.77 88.13 87.13 87.13

89.48 90.16 93.02 92.96 93.30
77.27 95.46 92.64 93.92 93.92

84.00 97.33 99.38 87.14 98.32

68.98 72.22 95.13 95.13 95.13

58.26 63.21 84.07 79.73 81.81

91.09 82.62 85.42 84.86 85.30

93.01 93.08 95.59 92.51 93.27

68.75 78.13 93.43 92.68 93.03

68.73 68.80 71.08 71.00 71.70

80.75 82.82 83.92 83.92 83.92

92.96 93.01 95.55 95.17 95.32

58.65 70.87 87.72 83.11 85.51

92.59 93.23 95.88 94.27 95.13

38.31 51.30 57.88 52.51 57.88

85.74 85.71 86.91 86.91 86.91

86.43 86.12 88.81 86.04 88.32

90.91 100.00 100.00 100.00 100.00

nsemble techniques including ‘‘AHCþSVDD’’, ‘‘KmeansþSVDD’’, ‘‘KmeansþAdaboost’’,

oting’’, which can be shortly denoted as ‘‘AþS’’, ‘‘KþS’’, ‘‘KþA’’, ‘‘KþB’’, ‘‘KþV’’,

KþB KþV AþA AþB AþV

399.45 545.22 1078.98 546.72 997.34

371.44 399.90 733.45 718.07 439.43

274.06 702.85 830.24 547.19 1319.41

280.98 563.39 433.00 508.03 935.81

744.04 1117.83 2830.56 1405.64 2064.87

464.67 811.46 939.56 788.58 1539.24

612.78 877.02 1147.09 1152.27 1181.30

59.47 96.48 199.65 83.34 191.69

850.47 982.39 2835.13 1027.92 1742.94

2186.21 4871.91 12 216.95 3770.60 4983.93

98.15 121.66 312.02 181.10 164.23

143 392.92 203 767.58 489 995.80 193 247.50 374 510.61

237.32 581.13 543.78 428.85 1161.60

1383.47 2243.03 6693.92 1701.81 2835.20

48 653.00 59 441.97 157 476.53 92 748.26 101 041.93

273.78 380.48 567.75 326.82 711.84

570.01 1462.25 1648.30 629.61 1978.77

10 920.90 14 533.72 32 327.88 15 880.05 25 395.98

64 127.49 117 515.71 114 515.18 92 426.66 134 171.67

151.89 335.79 482.53 187.33 662.14

2118.62 3824.79 4115.80 3044.55 3844.40

1729.95 4066.91 7374.99 2619.15 6589.91

1166.83 2485.25 5838.91 1177.66 4653.92

2558.01 4126.66 9456.96 2947.02 5001.18

77.45 213.29 383.88 127.81 424.81



Table 9
The performance comparison between TSMHKSA and TSMHKSK in terms of the average classification accuracy (%) and

training time (seconds), where the best accuracy for each data set is denoted by bold and the second one by italic.

Data set Size of cluster Percentage of recognition Training time

TSMHKSK TSMHKSA TSMHKSK TSMHKSA TSMHKSK TSMHKSA

AuC 15 45 78.65 85.65 25.47 52.36

18 79.52 27.93

21 70.96 35.34

24 78.83 33.11

27 79.83 46.05

Audiology 24 67 69.88 75.41 12.76 41.36

48 72.01 19.21

72 73.14 39.21

Bands 2 12 67.21 73.03 21.11 44.63

3 66.28 25.47

4 70.03 29.31

5 65.56 32.98

6 68.38 38.03

BCW 2 34 98.71 98.25 33.69 32.78

3 98.71 37.57

4 98.68 40.38

5 98.70 49.70

6 95.7 65.13

Crx 2 19 79.97 88.31 48.11 88.61

3 83.96 52.12

4 85.40 58.31

5 84.67 61.36

6 85.43 79.31

GeD 2 55 72.16 78.44 31.17 57.30

3 73.35 40.84

4 71.86 53.76

5 71.86 61.22

6 70.96 79.47

Glass 6 35 85.18 92.96 48.42 70.18

7 88.73 60.29

8 85.18 72.03

9 88.57 72.05

10 88.68 84.18

11 85.18 103.52

12 88.72 130.80

13 85.18 141.78

14 88.56 159.00

15 88.70 169.01

16 88.75 188.06

17 88.73 225.62

18 88.21 245.54

Heart 2 19 86.67 87.78 8.92 9.71

3 71.11 8.95

4 62.22 8.93

5 61.11 8.90

6 60.00 8.90

HOV 3 10 85.09 98.64 49.12 97.79

4 89.84 51.10

5 90.25 53.29

6 93.65 57.50

7 93.70 59.87

8 93.00 62.78

9 90.52 69.35

Ionosphere 2 28 88.89 92.31 237.01 356.48

3 83.95 301.60

4 78.02 337.13

5 74.09 363.42

6 74.07 363.42

Iris 3 10 96.11 97.33 14.49 15.00

4 96.32 14.82

5 87.31 13.06

6 89.23 14.18

7 97.33 13.83

8 97.33 15.91

9 84.00 13.25
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Table 9 (continued )

Data set Size of cluster Percentage of recognition Training time

TSMHKSK TSMHKSA TSMHKSK TSMHKSA TSMHKSK TSMHKSA

Letter 26 1567 94.55 94.68 20 214.45 20202.01

35 94.52 20 214.52

44 94.51 20 214.55

53 93.55 20 214.54

62 94.32 20 214.63

70 94.11 20 214.56

78 94.52 20 214.53

Liver 2 40 58.26 81.74 20.28 39.78

3 58.26 35.59

4 57.39 34.62

5 60.87 46.17

6 60.87 59.86

Mushroom 2 42 95.23 87.77 87.31 213.11

3 95.13 93.21

4 96.48 118.12

5 92.87 131.89

6 95.56 179.32

Pendigits 10 367 93.01 93.05 5775.44 5763.78

13 93.02 5775.51

17 93.08 5775.54

20 93.02 5775.53

23 93.08 5775.62

27 93.05 5775.55

30 93.02 5775.48

PID 2 67 75.38 91.41 34.47 31.70

3 75.82 40.05

4 75.83 41.84

5 75.85 44.94

6 87.50 51.33

POS 3 21 69.64 74.50 29.03 97.79

4 69.94 31.09

5 69.61 33.11

6 69.93 41.21

7 71.06 42.32

8 67.92 51.11

9 65.92 57.10

Satellite image 6 137 83.70 83.70 1468.95 1435.12

7 83.65 1465.35

8 83.45 1465.13

9 83.47 1459.86

10 83.65 1459.41

11 83.45 1461.46

12 83.45 1472.14

13 83.49 1459.65

14 83.12 1506.95

15 82.32 1462.41

16 82.98 1459.44

17 83.32 1465.49

18 82.20 1461.60

Shuttle 7 5488 93.00 92.97 6886.95 6853.00

9 93.01 6883.35

10 92.94 6883.13

11 92.96 6877.26

13 93.01 6877.41

15 92.96 6879.46

16 92.90 6890.14

18 92.90 6877.65

20 92.83 6924.95

21 92.81 6877.82

Sonar 2 15 78.85 81.73 7.37 23.74

3 78.82 14.72

4 78.83 39.20

5 78.55 53.84

6 78.18 54.22

Thyroid 3 1770 93.23 93.37 243.95 247.21

4 93.16 240.35

5 93.00 236.02

6 92.59 234.30

7 93.20 234.41
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Table 9 (continued )

Data set Size of cluster Percentage of recognition Training time

TSMHKSK TSMHKSA TSMHKSK TSMHKSA TSMHKSK TSMHKSA

Vowel 11 70 55.19 57.58 343.06 304.65

18 55.19 361.96

22 54.98 349.92

28 55.19 343.78

33 54.98 343.57

Waveform 3 166 86.47 86.27 173.95 176.60

4 86.43 170.35

5 86.15 170.13

6 86.15 164.26

7 86.43 164.41

8 86.15 166.46

9 85.74 177.14

10 85.71 164.65

11 85.38 211.95

12 85.32 164.82

Waveform-noise 3 100 86.75 86.47 343.95 320.69

4 86.71 340.35

5 86.43 340.13

6 86.43 334.26

7 86.71 334.41

8 86.43 336.46

9 86.12 347.14

10 86.32 334.65

11 85.12 381.95

12 85.67 334.82

Wine 3 12 100.00 100.00 16.06 14.16

4 100.00 34.96

5 98.33 66.92

6 100.00 16.78

7 98.33 15.77
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Since TSMHKS, MatMHKS, and MHKS all belong to the linear
algorithms, the kernel matrix is got through introducing the linear
kernel. But in Eq. (33), its hypothesis falls into the vectorized
function. The matrixized TSMHKS and MatMHKS cannot be directly
applied into the above equation. Therefore, we should revise the
decision function (30) for TSMHKS and MatMHKS through the
technique in the literature [10]. As showed in [10], we let AARm�n,
BARn�p, and CARp�q, then

vecðABCÞ ¼ ðCT
� AÞvecðBÞ ð38Þ

where vec(X) denotes an operator that vectorizes the matrix X

into the corresponding vector. For example, let X ¼ ðxijÞARp�q and
xi ¼ ðx1i, . . . ,xpiÞ

T be the ith column of X, and thus vecðXÞ ¼

ðxT
1 , . . . ,xT

i , . . . ,xT
qÞ

T is a vector with p� q dimensionality. � denotes
the Kronecker product operation. Through this conversion, we can
convert the matrixized decision function to the vectorized one.

By the above generalization risk analysis [38], we give the
algorithm that gives how to compute the generalization bound for
one data set in Table 4. Here we select 11 binary-class data sets
shown in Table 3 to estimate the generalization bounds for the
TSMHKS, MatMHKS, and MHKS. The corresponding results are
shown in Fig. 4. From this figure, it can be found that the bounds
of TSMHKS are smaller than those of both MHKS and MatMHKS
on the seven data sets AuC, Bands, Crx, BCW, GeD, Ionosphere,
and Sonar. However, due to more free regularization parameters
involved than the other algorithms and the insufficient samples
characterizing the data manifold structure, TSMHKS yields an
unstable capability and its bounds achieve even the largest ones
on PID. Moreover, since MatMHKS is the MHKS imposed with
Kronecker product decomposability constraint and guided by
some prior information which is reflected in the representation
of Kronecker production of the u and ~v, MatMHKS can outperform
MHKS in terms of classification performance MHKS especially for
Sonar, which accords with the generalization risk analysis.

4.3.6. Performance comparison between TSMHKS, MatMHKS, MHKS,

and SVM

In this section, we give a comparison between TSMHKS,
MatMHKS, MHKS, and SVM in terms of classification and training
time. Here we give the best results of SVM from the used three
kinds of kernels including the linear, polynomial, and RBF kernels.
We report the average classification accuracies and training time
of the TSMHKS, MatMHKS, MHKS, and SVM through the MCCV
[34] in Tables 5 and 6, where we give the best accuracy for each
data set denoted by bold and the second one by italic. From the
two tables, it can be found that: (1) the proposed TSMHKS attains
a superior classification accuracy to the other three methods
in most used data sets due to its more consideration of data
distribution within and between classes, though TSMHKS is a
linear algorithm; (2) the TSMHKS has a comparable quantity to
the other algorithms in terms of training time cost, though it
would need time to implement the cluster processing.

4.3.7. Performance comparison between TSMHKS and ensemble

algorithms

In this subsection, we give the performance comparison
between TSMHKS and the designed two kinds of ensemble
strategies. The first one is showed as follows. Instead of adding
a regularization term for the cluster information, we give an
ensemble of classifiers, where each classifier is trained by using
only one cluster of a given class. Thus we use some patterns of
one certain class to train a certain classifier. Support vector data
description (SVDD) [40] can construct a hypersphere which can
enclose as many target objects as possible, which can minimize



Table 10
Classification accuracy (%) comparison between TSMHKSA, TSMHKSK, and MATMHKS. (The best accuracy for each

data set is denoted by bold and the second one by italic. The matrix size of each data set is written in the bracket.)

Data set Matrix size TSMHKSA TSMHKSK MatMHKS

AuC (2�7) 89.57 58.26 80.00

(7�2) 85.22 57.83 74.35

Audiology (2�35) 75.66 74.09 70.99

(5�14) 75.53 72.01 72.90

(14�5) 76.41 73.88 75.12

(35�2) 75.08 72.62 73.24

Bands (3�13) 68.40 68.68 68.00

(13�3) 72.64 70.22 70.77

BCW (3�3) 98.71 98.25 97.81

Crx (3�5) 88.49 85.16 83.32

(5�3) 88.40 85.15 81.82

GeD (2�12) 71.56 71.56 71.56

(3�8) 79.04 73.35 76.65

(4�6) 72.46 72.16 72.46

(6�4) 74.25 71.86 73.95

(8�3) 71.86 71.86 71.86

(12�2) 70.96 71.86 70.96

Glass (3�3) 94.37 88.73 87.32

Heart (1�13) 86.67 86.67 86.67

(13�1) 64.44 72.22 62.22

HOV (2�8) 99.60 93.73 94.92

(4�4) 94.07 93.00 90.65

(8�2) 95.02 93.09 92.24

Ionosphere (3�11) 90.60 86.32 88.03

(11�3) 97.44 88.89 87.18

Iris (2�2) 94.67 96.00 94.67

Letter (1�16) 94.68 94.55 81.20

(2�8) 89.70 89.33 63.73

(4�4) 83.50 83.13 39.05

(8�2) 67.30 66.93 20.88

(16�1) 54.43 54.05 8.88

Liver (2�3) 77.39 77.39 75.65

(3�2) 80.00 80.00 77.39

Mushroom (2�11) 98.83 94.01 87.58

(11�2) 85.48 94.81 87.74

Pendigits (1�16) 93.05 92.11 93.05

(2�8) 88.22 93.08 85.82

(4�4) 78.53 91.21 76.24

(8�2) 53.89 92.31 44.97

(16�1) 35.53 87.12 23.30

PID (2�4) 92.58 99.22 90.63

(4�2) 92.19 97.66 90.23

POS (2�4) 74.50 71.63 71.93

(4�2) 73.43 67.92 70.73

Satellite image (1�36) 83.70 83.70 83.70

(2�18) 79.50 78.12 74.35

(3�12) 81.15 77.11 81.30

(4�9) 46.20 78.31 43.75

(6�6) 75.00 80.12 66.00

(9�4) 79.05 81.11 80.10

(12�3) 45.90 79.31 43.70

(18�2) 70.10 67.32 62.25

(36�1) 45.70 78.12 43.00

Shuttle (1�9) 92.97 93.01 92.97

(3�3) 85.95 87.11 85.22

(9�1) 80.05 89.32 79.26

Sonar (2�30) 79.81 61.54 70.19

(3�20) 82.69 62.50 72.12

(4�15) 81.73 65.38 72.12

(5�12) 77.88 67.31 66.35

(6�10) 80.77 65.38 68.27

(10�6) 76.92 73.08 67.31

(12�5) 77.88 78.85 68.27

(15�4) 74.04 73.08 64.42

Z. Wang et al. / Pattern Recognition 46 (2013) 1532–15551546



Table 10 (continued )

Data set Matrix size TSMHKSA TSMHKSK MatMHKS

(20�3) 77.88 71.15 65.38

(30�2) 64.42 61.54 53.85

Thyroid (3�7) 93.23 93.23 93.03

(7�3) 92.71 93.03 92.71

Vowel (1�10) 54.98 47.84 54.98

(2�5) 50.87 55.19 41.34

(5�2) 43.94 55.19 34.42

(10�1) 37.66 47.40 28.14

Waveform (1�21) 86.27 76.65 86.23
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Fig. 5. Classification accuracy (%) comparison of TSMHKS, MatMHKS, MHKS, and SVM with the varying number of the training sets on Coil-20, Letter, and ORL.
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the probability of accepting the non-target data named outlier
objects. Thus the first ensemble strategy adopts SVDD as the
base classifier that trains on each generated cluster. Further each
cluster can induce one hypersphere. For the test processing,
one given test pattern should be classified by multiple SVDDs.
We firstly compute the distances between the test pattern and
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Fig. 6. The average training time (in seconds) comparison of TSMHKS, MatMHKS, MHKS, and SVM with the varying number of the training sets on Coil-20, Letter, and ORL.

2 http://www.cs.columbia.edu/CAVE/coil-20.html.
3 http://sun16.cecs.missouri.edu/pgader/CECS477/NNdigits.zip.
4 http://www.cam-orl.co.uk.

Z. Wang et al. / Pattern Recognition 46 (2013) 1532–15551548
multiple hypersphere centers of SVDDs. Then the test pattern has
the same class label as the patterns which are in the nearest
hypersphere. Since K-means clustering and AHC for generating
the clusters is firstly implemented and SVDD follows, the first
ensemble strategy in our experiments can be denoted as ‘‘Kmeansþ

SVDD’’ and ‘‘AHCþSVDD’’.
The second ensemble strategy is combining multiple TSMHKSs

with different sets of parameters. In detail, both the regularized
parameters C and l are chosen from the set f10�3,10�2,10�1,100,
101,102,103

g. The initialized weight vectors u and ~v are from the
set f0:1,0:2,0:3, . . . ,0:9,1g. The pattern itself also has different
kinds of matrix representations. In the experimental processing,
we combine the classifiers generated from the above different
parameters. In terms of the ensemble technique, we use three
ways including the Adaboost, Bagging, and Voting. In the experi-
ments, we firstly carry out the step including K-means clustering
and AHC for generating the clusters. Then we adopt different
ensemble techniques including Adaboost, Bagging, and Voting
for multiple TSMHKSs. Thus the second ensemble strategy has
the following different implementing ways including ‘‘Kmeansþ

Adaboost’’, ‘‘KmeansþBagging’’, ‘‘KmeansþVoting’’, ‘‘AHCþAdaboost’’,
‘‘AHCþBagging’’, and ‘‘AHCþVoting’’.

Tables 7 and 8 give the classification and computation time
comparison between TSMHKS and the designed two ensemble
strategies. In the tables, we use ‘‘K’’ to replace ‘‘Kmeans’’, ‘‘A’’ to
‘‘AHC’’, ‘‘S’’ to ‘‘SVDD’’, ‘‘A’’ to ‘‘Adaboost’’, ‘‘B’’ to ‘‘Bagging’’, and
‘‘V’’ to ‘‘Voting’’. From Table 7, it can be found that the first and
second ensemble strategies have some advantages here due to the
reduced risk of overfitting. The second ensemble strategy could
work well on almost all the data sets. Consequently, its computa-
tion time increases but the risk of overfitting is reduced. Further-
more, it can also be found that Adaboost and Voting can bring
better performance than Bagging. On the other hand, the second
ensemble strategy would take more computation time, which is
shown in Table 8.
4.4. Image data

The above experiments are carried out on the synthetical and
some UCI data sets which are represented by vector. In the vector
case, we should firstly reshape these data into matrices in
different size so as to fit with TSMHKS and MatMHKS. In this
section, we give a discussion for the proposed algorithm on the
matrix data, i.e. images including COIL-20,2 Letter,3 and ORL.4

COIL-20 is a database of gray-scale images of 20 objects. The
objects are placed on a motorized turntable against a black
background. The turntable is rotated through 3601 to vary the
object poses with respect to a fixed camera. Images of the objects
are taken at pose intervals of 51, which corresponds to 72 images

http://www.cs.columbia.edu/CAVE/coil-20.html
http://sun16.cecs.missouri.edu/pgader/CECS477/NNdigits.zip
http://www.cam-orl.co.uk
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per object. For our experiments, we have resized each of the
original 1440-dimensionality images down to 3232 pixels per
image. Then, we use the size of the training with 36, 24, 18, 12, 8,
and 6 and the rest as testing in each class in each run. Letter data
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Fig. 7. Classification accuracies (%) of TSMHKS with the
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varying l at certain fixed C on the used data sets.
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Fig. 7. (continued)
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of which provides 10 different images. The main challenge on this
data set is of pose and expression variations. For ORL, we employ
the first five, four, three, and two images per person for training
and the rest for testing in each run.
For the use images, we report the average classification accu-
racy and training time of TSMHKS, MatMHKS, MHKS, and SVM
with the above setting. Fig. 5 gives the classification accuracy of
TSMHKS, MatMHKS, MHKS, and SVM with the varying number of



85.0

90.0

95.0

100.0

λ (Iris)

c=0.001

c=0.01

c=0.1

c=1

c=10

c=100

c=1000

0.001 0.01 0.1 1 10 100 1000 0.001 0.01 0.1 1 10 100 1000

0.001 0.01 0.1 1 10 100 1000 0.001 0.01 0.1 1 10 100 1000

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

λ (Letter)

c=0.001

c=0.01

c=0.1

c=1

c=10

c=100

c=1000

68.0

70.0

72.0

74.0

76.0

78.0

80.0

68.0

λ (Liver)

c=0.001

c=0.01

c=0.1

c=1

c=10

c=100

c=1000
78.0

79.0

80.0

81.0

82.0

83.0

84.0

85.0

86.0

87.0

λ (Heart)

c=0.001

c=0.01

c=0.1

c=1

c=10

c=100

c=1000

0.001 0.01 0.1 1 10 100 1000
90.0

90.8

91.6

92.3

93.1

93.9

94.7

95.4

96.2

97.0

90.0

λ (Pendigits)

c=0.001

c=0.01

c=0.1

c=1

c=10

c=100

c=1000

P
er

ce
nt

ag
e 

of
 R

ec
og

ni
tio

n 
(%

)
P

er
ce

nt
ag

e 
of

 R
ec

og
ni

tio
n 

(%
)

P
er

ce
nt

ag
e 

of
 R

ec
og

ni
tio

n 
(%

)

P
er

ce
nt

ag
e 

of
 R

ec
og

ni
tio

n 
(%

)
P

er
ce

nt
ag

e 
of

 R
ec

og
ni

tio
n 

(%
)

Fig. 7. (continued)
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the training sets. Fig. 6 gives the average training time with the
varying number of the training sets. From the figures, it can be
found that: (a) TSMHKS has the best classification accuracy on the
used three image data sets; (b) the training cost of the compared
four algorithms are comparable; (c) TSMHKS has a significant
classification superior to the other algorithms on the images with
the small training set; (d) both the classification accuracy and
training cost of the compared algorithms increase with the
increasing size of training sets. Moreover, it can also be found that
the matrixized classifier can well deal with the image data for the
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reason that the image data is a matrix pattern and the weight
vectors u, ~v can carry with prior information such as the structural
or local contextual information which is shown by the representa-
tion of Kronecker production of the weight vectors u and ~v.
5. Conclusions

In this paper, we give the data information including the indivi-
dual, cluster, and class structures. We explore one middle granularity
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named the cluster between the class and individual, and introduce the
cluster structure that means the structure within each class into the
matrixized classifier design. In doing so, we can simultaneously utilize
the class, the cluster, and the individual structures in the way that is
from global to point. Therefore, the proposed classifier named
TSMHKS has a three-fold structural information. For analyzing the
feasibility and effectiveness of TSMHKS, we carry out TSMHKS and
the related algorithms including MatMHKS, MHKS, and SVM on the
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synthetic and some real-world data. We give the discussion for
TSMHKS in terms of: (1) the size of the clusters; (2) the matrix size
of pattern; (3) the regularized parameters; (4) the convergence;
(5) the generalization risk; (6) the classification and computational
complexity; and (7) the relationship with the ensemble techniques.
According to the above discussion, it could be concluded that the
proposed three-fold structural learning strategy has a superior
classification performance and can lead to a low empirical generation
risk bound.
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