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In this paper we propose an effective and efficient random projection ensemble classifier with multiple
empirical kernels. For the proposed classifier, we first randomly select a subset from the whole training
set and use the subset to construct multiple kernel matrices with different kernels. Then through adopt-
ing the eigendecomposition of each kernel matrix, we explicitly map each sample into a feature space and
apply the transformed sample into our previous multiple kernel learning framework. Finally, we repeat
the above random selection for multiple times and develop a voting ensemble classifier, which is named
RPEMEKL. The contributions of the proposed RPEMEKL are: (1) efficiently reducing the computational
cost for the eigendecomposition of the kernel matrix due to the smaller size of the kernel matrix; (2)
effectively increasing the classification performance due to the diversity generated through different ran-
dom selections of the subsets; (3) giving an alternative multiple kernel learning from the Empirical Ker-
nel Mapping (EKM) viewpoint, which is different from the traditional Implicit Kernel Mapping (IKM)
learning.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Kernel-based learning is successfully applied in machine learn-
ing [10,11,14,15,19,20]. The kernel-based learning transforms the
input space into a feature space and works in the feature space,
where the transformation is achieved through the mapping
UðxÞ : x! F . In the existing kernel-based learning, there are two
kinds of U(x) including implicit and explicit representations de-
noted as Ui(x) and Ue(x). The implicit mapping Ui(x) called
Implicit Kernel Mapping (IKM) [10] is achieved through introduc-
ing a kernel function k(xi,xj) that can determine the geometrical
structure of the mapped data in the feature space, where we need
not obtain the form of the Ui(x) but just compute the k(xi,xj) =
Ui(xi) �Ui(xj). In contrast, the Ue(x) called Empirical Kernel
Mapping (EKM) [16] should explicitly give all the features of x in
the mapped Ue-space.

On the other hand, the kernel-based learning can also be sorted
into Single Kernel Learning (SKL) and Multiple Kernel Learning
(MKL) according to the number of the used kernels in learning pro-
cessing. SKL selects one optimized kernel from a set of candidates.
MKL syncretizes and uses multiple kernels in learning processing.
Therefore, in our opinion there are naturally at least four combina-
tions: the SKL with IKM, the SKL with EKM, the MKL with IKM and
the MKL with EKM also denoted as MEKL. In traditional kernel-
ll rights reserved.
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based methods, the SKL with either IKM or EKM is widespread
[10,16]. Since MKL can increase performance effectively, the MKL
with IKM has recently got much attention [7,13]. In contrast, It is
less attracted for the MKL with EKM except our previous work
MultiK-MHKS [14].

The MultiK-MHKS explicitly maps the input samples into M fea-
ture spaces with given M different kernels. Then, it constructed a
term RIFSL called Inter-Function Similarity Loss and introduced RIFSL

into a regularization framework. In the MultiK-MHKS, we explicitly
mapped each sample x 2 Rd into UeðxÞ 2 Rr through the whole
training set S ¼ fðxi;uiÞg

N
i¼1 for M times with the given M kernels.

With each kernel k(xi, xj), we generated the kernel matrix
K 2 RN�N with the set S and carried out the eigendecomposition
of the K as follows

K ¼ QN�rKr�rQ
T
r�N ; ð1Þ

where r is the rank of the K. Then through letting R = QK1/2, each
sample x was explicitly mapped through the following form

UeðxÞr�1 ¼ R�1
r�N½kðx; x1Þ; . . . ; kðx; xNÞ�TN�1: ð2Þ

It can be found that it would take a computational cost with o(N3)
for the Eq. (1). If the N is large, it would be much larger for the com-
putational cost of the eigendecomposition of the K.

To reduce the cost for the eigendecomposition of the K, in this
paper we first adopt the strategy of the Random Projection (RP).
RP aims to project the original high-dimensional data onto a
lower-dimensional space with a random matrix [1–3]. From the
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Eq. (2), it is found that the sample x is transformed into a r-dimen-
sional kernel space through the whole training set S with the size
N. Here, based on the random characteristic of RP, we randomly se-
lect a subset S0 ¼ fðxi;uiÞg

p
i¼1, p < N from the whole set S and use

the S0 to construct M kernel matrices Kl 2 Rp�p with M different
kernels. Through adopting the eigendecomposition for the Kl in-
stead of the original K, we explicitly map each sample x into
Ue

l ðxÞ; l ¼ 1 . . . M based on the Eq. (2). Due to changing the trans-
formed size for the x in the Eq. (2), we can reduce the computa-
tional cost of the matrix decomposition from o(N3) to o(p3).
Subsequently, we apply the transformed sample Ue

l ðxÞ; l ¼ 1 . . . M
into our previous MEKL framework [14].

Secondly, in order to prevent the proposed classifier from
reducing classification performance, we further give an ensemble
scheme with voting. In detail, we randomly select the subset S0

for multiple times and generate multiple S0q; q ¼ 1 . . . H. Subse-
quently, for each S0q; q ¼ 1 . . . H we repeat the explicitly mapping
(2) and the following learning applied into our previous MEKL
[14]. The final ensemble is produced through a voting scheme that
is applied to the classification outcomes of all the classifiers gener-
ated from S0q; q ¼ 1 . . . H. The whole procedure is named Random
Projection Ensemble Learning with Multiple Empirical Kernels de-
noted RPEMEKL for short. The advantages of the proposed RPE-
MEKL are highlighted as follows: (1) reducing the computational
cost for the eigendecomposition of the kernel matrix from o(N3)
to o(Hp3); (2) increasing the classification performance due to the
diversity generated through different random selections of the
S0qs; (3) giving an alternative multiple kernel learning from the
Empirical Kernel Mapping (EKM) viewpoint, which is different
from the traditional Implicit Kernel Mapping (IKM) learning.

The rest of this paper is organized as follows. Section 2 gives the
architecture of the proposed RPEMEKL. Section 3 demonstrates the
feasibility and effectiveness of the proposed RPEMEKL in terms of
classification and computation. Finally, both conclusion and future
work are given in Section 4.

2. Random Projection Ensemble Learning with Kernels
(RPEMEKL)

The proposed RPEMEKL is made up of two parts. The first part is
to randomly select a subset S0 from the whole set S based on the
random characteristic of RP and apply the transformed samples
from the S0 onto our previous MEKL framework [14]. The second
part is to repeat the first part for multiple times based on different
random selections for S0 and to construct a voting ensemble with
different classifiers generated from the first part.

Suppose that there is a training sample set S ¼ fðxi;uiÞg
N
i¼1 � X ,

where xi 2 Rd and its corresponding class label ui 2 { + 1, � 1}. In
the first part, we randomly select a sample subset S0 ¼
fðxi;uiÞg

p
i¼1 from the whole set S. Then we adopt the subset S0 to

generate the kernel matrix Kl 2 Rp�p with one certain kernel kl(xi,
xj) and carry out the eigendecomposition of each Kl as follows

Kl ¼ QlKlQ
T
l ; ð3Þ

where Kl 2 Rrl�rl is a diagonal matrix consisting of the rl positive
eigenvalues of Kl, and Ql 2 Rp�rl consists of the corresponding ortho-
normal eigenvectors. Here we adopt the EKM for each mapping and
thus each input sample x can be mapped into Ue

l ðxÞ through the fol-
lowing equation

Ue
l ðxÞ ¼ K�1=2

l Q T
l ½kðx; x1Þ; . . . ; kðx; xpÞ�T ; ð4Þ

where Ue
l ðxÞ 2 Rrl . The feasibility of doing so can be guaranteed by

the characteristic of RP in kernel-based learning, which is that the
learning based on the mapping (4) can lead to an approximate
separability at one certain margin [3]. Since our previous work
MultiK-MHKS [14] makes the p in the (4) with the size of the whole
input training samples N and in this paper we adopt a smaller p, the
computational cost for the eigendecomposition in the Eq. (3) can
decrease from o(N3) in the MultiK-MHKS to o(p3) in the proposed
method.

Further, the proposed method explicitly maps all the input sam-
ples of the set S into the transformed sample set Ue

1ðxiÞ; . . . ;
��

Ue
l ðxiÞ; . . . ;Ue

MðxiÞÞgN
i¼1 with the Eq. (4) and M given kernels. Then,

we introduced the generated Ue
1ðxiÞ; . . . ;Ue

l ðxiÞ; . . . ;Ue
MðxiÞ

� �� �N
i¼1

onto our previous MEKL framework. In detail, we adopt the Modi-
fication of Ho-Kashyap algorithm with Squared approximation of
the misclassification errors (MHKS) [8] as the base classifier. There-
fore for the proposed RPEMEKL, we give the following optimization
problem:

min
xl 2 Rrlþ1; bl P 0

l ¼ 1 . . . M

L ¼
XM

l¼1

ðYlxl � 1N�1 � blÞTðYlxl � 1N�1 � blÞ
h

þ cl ~xT
l

~xl

�
þ k
XM

l¼1

ðYlxl

� 1
M

XM

j¼1

YjxjÞT Ylxl �
1
M

XM

j¼1

Yjxj

 !
; ð5Þ

where xl ¼ ½ ~xl
T ;x0l�T , ~xl 2 Rr

l ;x0l 2 R are the augmented weight
vector, the weight vector and the bias respectively; the matrix Yl

is defined as Yl ¼ u1 Ue
l ðx1ÞT ;1

� �
; . . . ;uN Ue

l ðxNÞT ;1
� �h i

; 1N�1 repre-

sents the vector of N dimension with all entries equal to 1;
bl 2 RN�1 represents the vector with all entries equal to nonnegative
values and the regularized parameters cl; k P 0 2 R. In the optimi-
zation problem (5), Yl, xl, bl correspond to one MHKS in one Ue

l -

space that is determined by the corresponding Ue
l ðxiÞ;ui

� �� �N
i¼1. In

the right side of the Eq. (5), the first term corresponds to the prin-
ciple of MHKSs in M views. The second term is to syncretize the M
MHKSs, which denotes that the outputs of the samples

Ue
l ðxiÞ;ui

� �� �N
i¼1 in each Ue

l -space onto their corresponding weight
vector xl are constrained to be maximally close to the average out-
puts of all the feature spaces.

In the optimizing processing for the (5), we employ a modifica-
tion of the gradient descent with a heuristic update-rule for each
xl. Through making the gradient of the L of the (5) with respect
to the xl be zero, we can obtain

@L
@xl
¼ 0() xl

¼ 1þ k
M � 1

M

	 

YT

l Yl þ cl
eI l

� ��1

YT
l bl þ 1N�1 þ k

1
M

XM

j¼1;j–l

Yjxj

 !
;

ð6Þ

where eIl is a diagonal matrix with full ones except the last element
set to zero. In the lth Ue

l -space, it can be noted that xl depends on bl

from the Eq. (6). Then by differentiating the L in Eq. (5) with respect
to bl and setting the result equal to zero, we can get

@L
@bl
¼ 0() el ¼ Ylxl � bl � 1N�1: ð7Þ

Then, we adopt the iterative algorithm for determining xl and bl

similarly to that in [8]. First, with bk
l representing the vector bl at

the kth iteration, we initialize b1
l P 0, then keep bk

l P 0 at each iter-
ation, and finally obtain

b1
l P 0

bkþ1
l ¼ bk

l þ ql ek
l þ jek

l j
� �

(
; ð8Þ



Table 1
Algorithm: RPEMEKL.

Input: the training sample set S ¼ fðxi;uiÞg
N
i¼1; the M kernels fklð�; �ÞgM

l¼1.
For q = 1 . . . H,

1. Randomly select a subset set S0q ¼ fðxi;uiÞg
p
i¼1 from the S;

2. Explicitly map fxigN
i¼1 into Ue

1ðxiÞ; . . . ;Ue
l ðxiÞ; . . . ;Ue

MðxiÞ
� �N

i¼1 by M kernels as shown in the Eq. (4).

3. For each Ue
l , Yl ¼ u1 UeT

l ðx1Þ;1
� �

; . . . ;uN UeT

l ðxNÞ;1
� �h i

; l ¼ 1 . . . M.

4. Initialize n > 0;ql > 0; cl P 0; b1
l P 0; l ¼ 1 . . . M and x1

l ; l ¼ 2 . . . M; set the iteration index k = 1.

5. xk
l ¼ 1þ k M�1

M

� �
YT

l Yl þ cl
eI� ��1

YT
l bk

l þ 1N�1 þ k 1
M

Pm
j¼1;j–lYjxk

j

� �
; l ¼ 1.

6. While kLk+1 � Lkk2 > n

i. ek
l ¼ Ylxk

l � bk
l � 1N�1; l ¼ 1 . . . M;

ii. bkþ1
l ¼ bk

l þ ql ek
l þ jek

l j
� �

; l ¼ 1 . . . M;

iii. xkþ1
l ¼ 1þ k M�1

M

� �
YT

l Yl þ cl
eI� ��1

YT
l bkþ1

l þ 1N�1 þ k 1
M

Pm
j¼1;j–lYjxk

j

� �
; l ¼ 1 . . . M;

iv. k = k + 1;
end of while

7. Get a hypothesis FqðxiÞ ¼ sign 1
M

PM
l¼1xT

l UeT

l ðxiÞ;1
h iT

	 

;

end of for
Output: the final hypothesis:

Ff ðxiÞ ¼ arg max
ui2fþ1;�1g

X
q:FqðxiÞ¼ui

1
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where at the kth iteration, the error vector of the lth Ue
l -space ek

l is
defined as ek

l ¼ Ylxk
l � bk

l � 1N�1, and the learning rate of the lth Ue
l -

space ql > 0. Then xkþ1
l can be given by the Eq. (6). In practice, the

termination criterion can be designed as kLk+1 � Lkk2 6 n. For the in-
put sample xi with its corresponding mapped forms Ue

l ðxiÞ
� �M

l¼1 gen-
erated through the Eq. (4), we can give the decision function in one
random selection of S0 as follows:

FðxiÞ ¼ sign
1
M

XM

l¼1

xT
l UeT

l ðxiÞ;1
h iT

 !
; ð9Þ

where the sign(z) = 1, if z > 0; otherwise sign(z) =�1.
In our opinion, each random selection of S0 would give a possi-

ble region in the whole solution space. Different S0 could expand
the searching region for the final solutions and give a diversity that
is required by ensemble learning. Thus, in the second part we ran-
domly select the subset S0 for multiple times and generate multiple
S0q; q ¼ 1 . . . H. Subsequently, for each S0q; q ¼ 1 . . . H we repeat the
explicitly mapping (4) and the following optimization for the (5).
In this case, we can get multiple functions Fq, q = 1 . . . H as shown
in the (9). The final ensemble classifier is produced through a vot-
ing scheme that is applied to the classification outcomes of all the
classifiers generated from S0q; q ¼ 1 . . . H. Therefore, for the input
sample xi with the Ue

l ðxiÞ
� �M

l¼1, we can give the final decision func-
tion of the proposed RPEMEKL as follows:

Ff ðxiÞ ¼ arg max
ui2fþ1;�1g

X
q:FqðxiÞ¼ui

1: ð10Þ

The whole procedure of the proposed RPEMEKL is summarized in
Table 1.
3. Experiments

3.1. Experimental setting

In this section, we compare the RPEMEKL with its original mod-
el MultiK-MHKS and some other state-of-the-art MKL including
SVM-2K [4], MKDA(SDP) [6], and the efficient MKL implementa-
tions with SILP [12] in terms of classification accuracy and training
time so as to validate its effectiveness and efficiency. In our exper-
iment, the used kernels for the proposed RPEMEKL and the MultiK-
MHKS are the linear kernel k(xi, xj) = xixj and the two RBF kernels

kðxi; xjÞ ¼ exp � kxi�xjk22
2r2

� �
. In practice, we normalize the linear kernel

matrix with the following method [11]. Given an unnormalized

kernel matrix K, we would like to construct the normalized eK . Note

that eK ij ¼ Kij=
ffiffiffiffiffiffiffiffiffiffiffi
KiiKjj

p
. Define k ¼ ð1=

ffiffiffiffiffiffiffiffi
K11
p

; . . . ;1=
ffiffiffiffiffiffiffiffi
Knn
p

Þ. Then,eK ¼ K � ðkkTÞ, where � denotes element-wise product. The kernel
parameter r for the first RBF kernel is set to the average value of
all the ‘2-norm distances kxi � xj k2, i, j = 1, . . . , N and the r for
the second one is set to one tenth of the first r. Since SVM-2K only
can deal with two kernels in one learning process, we give the best
accuracy corresponding to the optimal combination from the three
candidate kernels for all the used data sets. MKDA(SDP) still fol-
lows the setting of kernels in the literature [6]. In the RPEMEKL
and MultiK-MHKS, the margin vector bl is initialized to 10�6, the
n in the termination criterions is fixed to 10�3, the learning ratio
q is set to 0.99, and the xl, l = 2, . . . , M are initialized to one unit
vector, respectively. Both the regularization parameters c and k
are optimized from the set {2�4, 2�3, . . . , 23, 24}. For the RPEMEKL,
we set H = 3 and carry out the RPEMEKL with p = N/10 and the opti-
mized p, where the p is selected form the set {0.1, 0.2, 0.3, 0.4,
0.5} � N. The one-against-one classification strategy is adopted
for the multi-class classification problem. The adopted benchmark
data are obtained from [5] including: Arrhythmia (279 Attributes/
16 Classes/452 Samples), Clean (166/2/476), Glass (10/6/214),
House-votes (16/2/435), Ionosphere (34/2/351), Iris (4/3/150), Letter
(432/10/500), Pima (8/2/768), Wine (12/3/178), Segmentation (19/
7/2310), Page-block (10/5/5473), Waveform (21/3/5000), Cmc (9/
3/1473), and Sonar (60/2/208). All computations are run on IBM
X3650M2 Server with four Intel Xeon 2.00 GHz processors and
6GB ram running Windows Server 2008 R2 Operating System
and MATLAB environment.

3.2. Classification performance comparison

In this section, we carry out the RPEMEKL, the MultiK-MHKS,
the classical MKL algorithm SVM-2K [4], the state-of-the-art



Table 2
Classification accuracy (%) and p-value comparison between RPEMEKL with the optimized p and p = 0.1, MultiK-MHKS, SVM-2K, MKDA(SDP), and MKL [12].

RPEMEKL MultiK-MHKS SVM-2K MKDA(SDP) MKL
Accuracy(optimized p) Accuracy Accuracy Accuracy Accuracy
Accuracy(p = 0.1) p-value p-value p-value p-value

Cmc 51.74 ± 1.53 49.73 ± 1.06⁄ 47.06 ± 1.68⁄ 49.12 ± 1.29⁄ 29.37 ± 9.28⁄

50.83 ± 1.44 0.0223 0.0000 0.0032 0.0000

Glass 95.24 ± 2.87 95.43 ± 2.37 97.90 ± 1.33 93.69 ± 4.67⁄ 97.71 ± 1.63
93.52 ± 2.97 0.3217 0.1595 0.0000 0.0618

House-votes 92.17 ± 1.89 91.84 ± 2.12 87.24 ± 1.39⁄ 38.46 ± 0.00⁄ 94.29 ± 1.43
90.60 ± 1.90 0.8733 0.0159 0.0000 0.2588

Ionosphere 89.60 ± 2.05 87.60 ± 2.35 83.20 ± 7.66 63.81 ± 0.00⁄ 70.40 ± 1.73⁄

87.43 ± 4.22 0.9232 0.9589 0.0000 0.0000

Clean 80.55 ± 2.35 79.16 ± 1.56 55.54 ± 1.85⁄ 56.64 ± 0.00⁄ 89.49 ± 1.81⁄

70.59 ± 3.32 0.6264 0.0000 0.0000 0.0000

Iris 96.00 ± 1.54 95.07 ± 2.18⁄ 96.67 ± 1.30⁄ 96.22 ± 2.35⁄ 98.00 ± 0.94⁄

95.20 ± 0.93 0.0289 0.0362 0.0000 0.0023

Letter 82.96 ± 2.30 68.48 ± 3.71 69.60 ± 2.34⁄ 90.20 ± 2.61⁄ 92.72 ± 0.96⁄

79.68 ± 3.40 0.0935 0.0302 0.0000 0.0000

Pima 74.82 ± 1.63 73.85 ± 2.14 65.10 ± 1.75 65.22 ± 0.00⁄ 76.25 ± 1.26⁄

71.77 ± 2.04 0.3794 0.0723 0.0000 0.0017

Page-block 93.45 ± 3.61 91.34 ± 3.34 89.80 ± 0.15⁄ 85.74 ± 1.16⁄ 94.01 ± 2.17⁄

92.99 ± 0.42 0.2374 0.0000 0.0000 0.0000

Arrhythmia 62.61 ± 1.04 57.84 ± 1.69⁄ 55.76 ± 4.22 63.88 ± 4.70⁄ 64.86 ± 1.69
56.85 ± 0.84 0.0000 0.0604 0.0000 0.0532

Wine 95.30 ± 2.69 92.61 ± 3.76⁄ 80.00 ± 4.05⁄ 96.42 ± 2.88⁄ 95.29 ± 2.57
75.80 ± 6.34 0.0000 0.0000 0.0000 0.4961

Segmentation 94.70 ± 0.50 94.70 ± 0.69 83.97 ± 1.28⁄ 97.07 ± 0.61⁄ 92.15 ± 1.94⁄

93.19 ± 0.59 0.7519 0.0000 0.0000 0.0085

Sonar 75.44 ± 4.62 76.92 ± 2.39 58.06 ± 4.19⁄ 79.13 ± 4.85⁄ 85.63 ± 2.39⁄

65.92 ± 3.12 0.2162 0.0000 0.0081 0.0000

Waveform 83.44 ± 4.63 85.95 ± 1.67 65.37 ± 1.12⁄ 74.57 ± 3.87⁄ 86.79 ± 3.67⁄

75.30 ± 0.47 0.0551 0.0000 0.0000 0.0336

Note: The best accuracy of each data set is in italic. The p-values are from a t-test comparing each classifier to RPEMEKL.
⁄ Difference from RPEMEKL is significant at 5% significance level, i.e. p-value less than 0.05.
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multiple kernel discriminant analysis algorithms MKDA using SDP
[6], and the efficient MKL implementations with SILP [12] and dis-
cuss their classification performance. For each used data set, the
classification accuracies on the validation sets generated by the
n-folds MCCV [17] are averaged and reported in Table 2. For n-folds
MCCV, we randomly split the data set into two parts including the
training and validation sets, and repeat the procedure n times. In
our experiments, n is set to 10. In Table 2, the best results of the
different methods are in bold. In addition to reporting the average
accuracies, we also perform the paired t-test [9] by comparing the
RPEMEKL with the other classifiers including the MultiK-MHKS,
SVM-2K and MKDA(SDP). The null hypothesis H0 demonstrates
that there is no significant difference between the mean number
of samples correctly classified by RPEMEKL and the other classifi-
ers. Under this assumption, the p-value of each test is the probabil-
ity of a significant difference in correctness values occurring
between two testing sets. Thus, the smaller the p-value, the less
likely that the observed difference results from identical testing
set correctness distributions. The threshold for p-value is set to
0.05 here. From Table 2, we can find that compared with the Mul-
tiK-MHKS, the proposed RPEMEKL achieves a clear improvement
on most of the used data sets especially for the arrhythmia, iono-
sphere, letter, and wine. Meanwhile, our RPEMEKL has a competi-
tive accuracy to SVM-2K and MKDA(SDP), which is validated by the
p-value reported here. The experimental phenomenon validates
the effectiveness of the proposed algorithm.

On the other hand, it can be found that the RPEMEKL is worse
than the efficient MKL [12] on some datasets from this table. Here,
we give its reason. In RPEMEKL, each input sample x is mapped into
Ue

l ðxÞ through the following equation
Ue
l ðxÞ ¼ K�1=2

l Q T
l ½kðx; x1Þ; . . . ; kðx; xpÞ�T ; ð11Þ

where p is much smaller than the whole training set size N, which
might make some discriminant information lost and thus cause that
the experimental results fail to validate the advantage of the pro-
posed method. However, as Section 2 stated, the feasibility of our
method can be guaranteed by the characteristic of Random Projec-
tion (RP) in kernel-based learning, which is that the learning based
on the mapping (11) can lead to an approximate separability at one
certain margin [3]. Since our previous work MultiK-MHKS [14]
makes the p in the (11) with the size of the whole input training
samples N and we adopt a smaller p, the computational cost for
the eigendecomposition in the Eq. (12) can decrease from o(N3) in
the MultiK-MHKS to o(p3) in the proposed method.

Kl ¼ Q lKlQ
T
l : ð12Þ

Meanwhile, it can be found that the proposed RPEMEKL selects
Empirical Kernel Mapping (EKM) [16] instead of the traditional Im-
plicit Kernel Mapping (IKM). As we have demonstrated in the liter-
ature [14], we make B = KQK�1/2. Then the dot product matrix of
fUeðxiÞgN

i¼1 generated by EKM can be calculated as

BBT ¼ KQK�1=2K�1=2Q T K ¼ K: ð13Þ

That is exactly equal to the kernel matrix in the traditional IKM, and
thus the mapped samples respectively generated by EKM and IKM
have the same geometrical structure. In [16,14], it is shown that
comparing EKM with IKM, the former is easier to access and easier
to study the adaptability of a kernel to the input space than the latter.
That is why we select EKM here. On the whole, the RPEMEKL gives an
alternative multiple kernel learning from the EKM viewpoint, which



Table 3
Average training time (in second) comparison between RPEMEKL with the optimized
p and p = 0.1, MultiK-MHKS, SVM-2K, MKDA(SDP), and MKL [12].

RPEMEKL MultiK-
MHKS

SVM-
2K

MKDA(SDP) MKL

Cmc 24.09 3572 0.17 779.8 15,516
Glass 4.809 14.76 1.466 36.69 318.7
House-votes 0.817 6.658 0.875 73.28 330.8
Ionosphere 0.431 5.580 0.738 44.41 99.72
Iris 0.341 1.360 0.286 28.25 63.06
Clean 1.638 20.90 0.554 105.6 211.6
Letter 9.652 236.9 14.06 230.2 63.06
Pima 1.793 11.66 2.878 459.6 2513
Page-block 82.15 8983 398.8 41,751 57,266
Arrhythmia 41.88 496.1 11.63 100.8 3477
Wine 0.317 1.86 0.641 30.37 73.31
Segmentation 680.5 7634 86.77 39,218 31,259
Sonar 0.112 12.61 0.356 15.95 44.32
Waveform 45.56 375.6 145.2 726.9 7558

Note: The shortest time of each data set are in italic.
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Fig. 1. Convergence of RPEMEKL on the natural logarithm value of the objective
function (5) on the binary-class datasets including clean, house-votes, ionosphere,
pima, and sonar.
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is different from the traditional IKM learning. In future we would
make up the lost of some information due to the random selection
from the whole sample set as shown in the Eq. (11).

3.3. Running time comparison

In this section, we analyze the RPEMEKL in terms of computa-
tion complexity. Since Step 6.iii of RPEMEKL in Table 1 seems to
be computational heavy, we first discuss it. The Step 6.iii of RPE-
MEKL is given as follows

xkþ1
l ¼ 1þk

M�1
M

	 

YT

l Ylþcl
eI	 
�1

YT
l bkþ1

l þ1N�1þk
1
M

Xm

j¼1;j–l

Yjxk
j

 !
;

l¼1 . . .M; ð14Þ

where 1þ k M�1
M

� �
YT

l Yl þ cl
eI� �
2 Rðrlþ1Þ�ðrlþ1Þ;YT

l 2 Rðrlþ1Þ�N , bkþ1
l þ

�
1N�1 þ k 1

M

Pm
j¼1;j–lY jxk

j Þ 2 RN . Since the Eq. (14) needs to get the

inverse matrix of 1þ k M�1
M

� �
YT

l Yl þ cl
eI , we need to decrease its

computational complexity for the inverse. Fortunately, the
dimensionality of 1þ k M�1
M

� �
YT

l Yl þ cl
eI is (rl + 1) � (rl + 1), where rl

is the size of the positive eigenvalues of Kl and determined by the
following equation

Kl ¼ Q lKlQ
T
l ; ð15Þ

where Kl 2 Rrl�rl is a diagonal matrix consisting of the rl positive
eigenvalues of Kl, and Ql 2 Rp�rl consists of the corresponding ortho-
normal eigenvectors. Since Kl is generated by the sample subset
S0 ¼ fðxi;uiÞg

p
i¼1 randomly selected from the whole set S with the

size N, p is less than N and rl 6 p is small. Therefore, the computa-
tional complexity of the Eq. (14) is smaller.

Then we also give the average training time of the performed
algorithms corresponding to the optimal parameters in Table 3.
From this table, it can be found that compared with the MultiK-
MHKS, RPEMEKL takes a much smaller training time on all the used
data sets which attributes to that the RPEMEKL only utilize p sam-
ples instead of N (p < N) to construct the kernel matrix K and thus
the whole decomposition complexity is decreasing from o(N3) to
o(Hp3). On the other hand, since SVM-2K just adopts two kernel
in learning processing, its computational cost is the smallest on
most of all the used datasets. However, it should be stated that
since SVM-2K can deal with only two kernels in one learning pro-
cess, it should be implemented for three times for the three candi-
date kernels and Table 3 just gives one optimal result. We also can
find that MKDA(SDP) takes a large time for training since it de-
pends on the complex SDP. Finally, although the RPEMEKL is worse
than the efficient MKL [12] on some datasets in terms of classificai-
ton, RPEMEKL has a superior training time to the MKL [12].

3.4. Convergence analysis

In this section, we discuss the convergence of the RPEMEKL.
Here, we adopt an empirical justification as used in [18] to demon-
strate that RPEMEKL can converge in the limited iterations. Fig. 1
shows the natural logarithm value of the objective function (5)
changes with the iteration number of RPEMEKL respectively on
the binary-class datasets including clean, house-votes ionosphere,
pima, and sonar. From the figure, it can be found that the optimi-
zation objectives (5) on these datasets can obviously converge to
stable values, where less than five iterations are usually enough
to achieve convergence.

4. Conclusion and future work

In this paper, we develop an ensemble classifier with multiple
kernels named RPEMEKL. The characters of the proposed RPEMEKL
has two folds. First, the RPEMEKL can efficiently reduce the eig-
endecomposition of the kernel matrix. The reduction can be guar-
anteed by the characteristic of RP in kernel-based learning that the
learning based on the mapping (4) can lead to an approximate sep-
arability at one certain margin [3]. Secondly, the classification per-
formance of the RPEMEKL can be improved by the diversity
generated from different random selections of the subsets S0qs.
The experimental results here demonstrate the effectiveness and
efficiency of the RPEMEKL. On the whole, the proposed RPEMEKL
gives an alternative multiple kernel learning from the EKM view-
point, which is different from the traditional IKM learning. In fu-
ture we would give a solution to make up the lost of some
information due to the random selection from the whole sample
set.
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