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Side information, like must-link (ML) and cannot-link (CL), has been widely used in single-view classifi-
cation tasks. However, so far such information has never been applied in multi-view classification tasks.
In many real world situations, data with multiple representations or views are frequently encountered,
and most proposed algorithms for such learning situations require that all the multi-view data should
be paired. Yet this requirement is difficult to satisfy in some settings and the multi-view data could be
totally unpaired. In this paper, we propose an learning framework to design the multi-view classifiers
by only employing the weak side information of cross-view must-links (CvML) and cross-view cannot-
links (CvCL). The CvML and the CvCL generalize the traditional single-view must-link (SvML) and
single-view cannot-link (SvCL), and to the best of our knowledge, are first definitely introduced and
applied into the multi-view classification situations. Finally, we demonstrate the effectiveness of our
method in our experiments.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Traditional learning only involves data with single view. How-
ever, in many real world circumstances, data with multiple natural
feature representations or views are frequently encountered. For
example, web pages can be represented by both its own content
and hyperlinks pointing to it. To tackle this data type, multi-view
learning has been developed since the pioneer works [7,31]. So
far many approaches [7,8,24,20] have been proposed and achieved
empirical and theoretical successes. All of those approaches rely on
two common assumptions, compatibility and independence be-
tween views [7]. However, to make the two assumptions work,
one requirement that should be fulfilled is such multi-view data
should be paired. Specifically, for the representation of a sample
in one view, there is a corresponding representation paired in the
other view.

Sometimes this requirement is over-rigorous in some circum-
stances. For instance, in a wireless sensor network, collected data
could be missed or polluted during data transmission due to device
malfunction or malicious attacks. Thus only partial data are paired
while the rest are unpaired [15]. In [19,15,18,25], some methods
have been proposed to deal with this scenario. More extremely,
in some circumstances where all data are even unpaired, for
example, web pages from English Routers and French Routers are
unpaired. We may not easily know which English web page corre-
sponds to which French web page.

This paper focuses on the most difficult totally-unpaired ex-
treme circumstance. Since no pairing information between multi-
ple views exists, we introduce a new type of side information,
called cross-view must-link and cross-view cannot-link, to help
learning. Must-link and cannot-link side information is usually
used in the classification [30,34] and clustering learning [33,28]
on single-view data (called SvML and SvCL in this paper). Two sam-
ples belonging to the SvML set share the same label, while in the
SvCL set possess different labels. Compared with commonly-used
supervised labels, such SvMLs and SvCLs are weaker in character-
izing supervision information. Virtually, we can infer both the
SvML and SvCL between samples if knowing their label informa-
tion, but cannot reversely. The SvML and the SvCL only provide
the label relations between samples within view, thus cannot help
the totally-unpaired multi-view learning. To achieve this goal,
some cross-view relations are needed. Consequently, in this paper,
we introduce the cross-view must-link (CvML) and cross-view can-
not-link (CvCL). Two representations in different views in CvML set
indicates that their labels are the same, while in CvCL set indicates
that their labels are different. Unlike SvML and SvCL, CvML and
CvCL build the implicit label relations across different views. As a
result, we can transfer mutually the learning information between
different views through these CvMLs and CvCLs. Compared with
explicit label information, CvML and CvCL are likewise also weaker
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in supervision like SvML and SvCL for the same reason. Moreover,
the paired information belongs to the CvML because paired repre-
sentations must own the same label, but the CvML does not mean
paired representations because two representations linked by
CvML could come from different samples. Intuitively, by forcing
the outputs of the target classification functions in each view to
obey the CvML and the CvCL constraints, the outputs learned in
one view can be shifted to that in the other view through both of
them and aid the classification learning in that view. To the best
of our knowledge, such side information has never definitely been
introduced and applied in multi-view classifier design.

The proposed framework is based on the classical regularization
frameworks [27,2] and the new regularization terms which encode
the CvMLs and the CvCLs side information, i.e. forcing the outputs
of the representations in the CvMLs to be the same and the outputs
of the representations in the CvCLs to be different. Since the true
(strongly-supervised) labels are unknown, the classical regulariza-
tion framework has to be modified by introducing probabilistic
indicators which indicate how possible the sample belongs to a gi-
ven class. Such a modified framework leads to a block-wise convex
optimization problem which can be iteratively solved effectively
by the classic block coordinate descent method with guarantee of
iterative convergence to a stationary point [5]. Our experiments
demonstrate its effectiveness as well.

We summarize our contribution as follows:

� We introduce and deepen the concepts of the CvML and the
CvCL, which are extensions of the SvML and the SvCL, to aid
the joint classification learning in different views.
� We develop a classification learning framework which utilizes

the cross-view side information to learn classifiers in the tough
unpaired multi-view settings.

The rest of the paper is organized as follows. In Section 2, we re-
view some related work. Then we introduce our framework in Sec-
tion 3. Next we illustrate our experiment results in Section 4. And
finally, we conclude this paper and present the future work in
Section 5.
2. Related work

Our work is related to both classification learning with the SvML
and SvCL side information and multi-view classification. Thus we
review the two parts respectively. Since the ML and CL side infor-
mation has never been used in multi-view classification, we mainly
review the related work on the single-view circumstance.
2.1. SvMLs and SvCLs for classification

The ML and CL side information in single view has demon-
strated its value in classification tasks. Yan et al. [30] formulated
both MLs and CLs into a convex pairwise loss function and inte-
grated it into the traditional margin-based learning framework.
Thus the proposed framework can handle both the label and
MLs/CLs together. Nguyen and Caruana [22] incorporated both
MLs and CLs into the margin-based learning framework and pro-
posed PCSVM algorithm. Zhang and Yan [34] first transformed both
the ML and the CL pairs of samples into a new space and learned an
estimator there, then transformed the estimator back into the ori-
ginal sample space. They proved that the final estimator is sign-
insensitively consistent with the optimal decision boundary and
gave out its asymptotic variance.

Rather than those directly incorporating both the MLs and the
CLs into classification models, metric learning goes along another
line. It first learns a Mahalanobis metric which obeys MLs and
CLs constraints, then uses the distance-based classifiers like the k
nearest neighbor to classify the test data. Typical works include
[10,29,13,23]. The ML and CL side information is also used to learn
proper kernel matrices for the later kernel machine algorithms. Li
et al. [21] forced the entries of kernel matrix corresponding to
MLs and CLs to be 1 and 0 respectively and developed a kernel
learning algorithm PCP. PCP is computationally intensive because
it is solved by Semidefinite Programming (SDP). Hu et al. [17] pro-
posed kernel propagation method to avoid solving SDP on full ker-
nel matrix. The main idea is first to learn a small kernel matrix then
propagate it into full kernel matrix.

The SvMLs and the SvCLs are also applied in other tasks like
clustering, image segmentation et al. For user’s reference we name
a few works in typical application domains like image segmenta-
tion [33], video surveillance [16], clustering [28,3,32]. Despite so
many works on the SvMLs and the SvCLs, the CvMLs and the CvCLs
are almost never touched to the best of our knowledge.
2.2. Multi-view learning

Multi-view learning is a very natural learning settings. It was
first touched in Yarowsky’s [31] and Blum et al.’s [7] works. Blum
et al. proposed the renowned co-training algorithm. It alternatively
trains the predictor in one view and uses the predicted labels to aid
the training in another view. Dasgupta et al. [9] proved a theoret-
ical PAC-style generalization bound of the co-training.

Sindhwani et al. [24] introduced the co-regularization
algorithm. The co-regularization algorithm directly models the
cross-view agreement and incorporates it into a regularization
framework. They introduced a family of algorithms with different
regularization frameworks (the classical regularization framework
and manifold regularization framework). The formulation is a con-
vex optimization problem rather than the style of alternatively
learning on each view like the co-training. The formulation is re-
lated to our framework to some extent. We will compare with it
in Section 3.4.

Since full paired multi-view data are over-rigorous in some
applications, some methods were proposed for partially paired cir-
cumstance. Kimura et al. [18] considered the situation where addi-
tional unpaired data are provided and developed Semi Canonical
Correlation Analysis (SemiCCA) algorithm. They used both the
paired and unpaired data to regularize CCA through PCA-type pen-
alty. Lampert and Kromer [19] proposed a modified Maximum
Covariance Analysis algorithm for weakly-paired multimodal data.
They guessed the pairing between data views and optimized it
along with dimension reduction parameter matrix. Blaschko et al.
[6] modified Kernel Canonical Correlation Analysis with Laplaician
regularization by using unpaired data and propose SemiLRKCCA
algorithm. However, they only embedded the local structure on
constraints but not in its objective and had too many model
parameters. The PPLCA algorithm propsed by Gu et al. [15] over-
comes the shortcomings of SemiLRKCCA. PPLCA simultaneously
embeds the local structure into both objectives and constraints
and has less model parameters. Sun et al. [25] developed discrim-
inative canonical correlation analysis in partially paired situations.
They proposed DCCAM by estimating the within-class and be-
tween-class correlation on both the paired and unpaired data.
3. Multi-view learning under cross-view MLs and CLs

In this section, we introduce our framework. Later, we compare
our framework with the co-regularization framework [24] at last.

Our training process can formally be conducted in two steps: in
the 1st step, we employ the available CvMLs and CvCLs to design a
(sign) classifier which is used to decide whether any given two



Fig. 1. Formal two-step training process.
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samples are from the same class or not. In fact, this step does not
involve any label, thus the classifier is not used to decide a real
class of a sample but just returns the sign label of either +1 or
�1 to indicate whether the sample shares the same real class or
not with some training sample. In order to determine its real label
finally, we need formally the 2nd step in which we adopt a few la-
beled samples provided to determine which real label the previous
sign label corresponds to. Fig. 1 shows the two steps.

3.1. Learning classifiers determining sign labels

Our framework is based on the classical regularization frame-
work [27,2] for supervised learning. It solves the following optimi-
zation problem:

min
f2Hk

1
2

XN

i¼1

Vðxi; ci; f Þ þ kkfk2
Hk

ð1Þ

whereHk is an Reproducing Kernel Hilbert Space (RKHS) induced by
a kernel k, ci is the label of sample xi, and V is a loss function, such as
the squared loss or the hinge loss.

In our settings, only the CvMLs and CvCLs side information are
at hand and the sample labels are unavailable. Consequently, we
are not certain of which classes the samples belong to. The brought
uncertainty is handled by introducing the probabilistic indicators
just like fuzzy c-means clustering algorithm [11], and Eq. (1) is
modified as follows

min
f2Hk ;u

1
2

XN

i¼1

X

r2fþ;�g
u2

irVðxi; cr ; f Þ þ kkfk2
Hk

ð2Þ

where ui for each xi is the probabilistic indicator vector which sub-
jects to non-negativity and unitary summation constraints. +, � are
the positive and negative labels. We let c+ = 1 and c� = �1 respec-
tively. Usually in order to avoid hard assignment of labels, the expo-
nents of uir are set to 2 rather than 1 [11].

Eq. (2) looks like the fuzzy c-means (FCM) formulation, however
essentially there is a major difference: in FCM the clustering per-
forms in sample space, thus the clustering centers are a set of vec-
tor prototypes to be optimized and have the same dimensionality
as the sample space, while our algorithm performs in (label) output
space with different dimensionality from the sample space, and the
centers are fixed to �1 and 1.

The CvMLs and the CvCLs are used to regularize the learning in
both views. The underlying principle is to force the classifiers’ out-
puts in separate views to obey both the CvMLs and the CvCLs con-
straints. For CvMLs, we simply use the square of difference of the
corresponding outputs. It is a convex formulation as follows:
X

ði;jÞ2M
ðfxðxiÞ � fyðyjÞÞ

2 ð3Þ

where M denotes the CvML set. It implies that large output differ-
ences would incur large penalties. But for the CvCLs, it is not so easy
to formulate [14,26]. Here we employ Goldberg et al.’s [14] method
and formulate the CvCLs into a convex penalty:
X

ði;jÞ2C
ðfxðxiÞ þ fyðyjÞÞ

2 ð4Þ
where C denotes the CvCL set. Note that the minus in Eq. (3) is
substituted for the plus in Eq. (4). The penalty is zero if fx(xi) and
fy(yj) have the same absolute value but opposite signs, thus mini-
mizing the penalty implies different output labels. The trivial case
fx(xi) = fy(yj) = 0 is avoided because it will raise classification error.

This idea could also be applied in multi-view clustering and
dimension reduction tasks if we can properly penalize the outputs
which violate the CvMLs and the CvCLs constraints. For example, if
the outputs of cluster algorithm are multinomial random variables,
we can consider penalize large (small) Kullback–Leibler diver-
gences of the representations in MðCÞ.

Integrating them together suggests the following optimization
problem:

min
fx ;fy ;ux ;uy

J ¼ 1
2

XNx

i¼1

X

r2fþ;�g
ux

ir
2Vðxi; ck; fxÞ þ

k1

2
kfxk2

Hkx

þ 1
2

XNy

j¼1

X

r2fþ;�g
uy

jr
2Vðyj; ck; fyÞ þ

k2

2
kfyk2

Hky

þ k3ðNx þ NyÞ
2jMj

X

ði;jÞ2M
ðfxðxiÞ � fyðyjÞÞ

2

þ k3ðNx þ NyÞ
2jCj

X

ði;jÞ2C
ðfxðxiÞ þ fyðyjÞÞ

2

s:t: ux
ir >¼ 0; uy

jr >¼ 0; for r in fþ;�g
ux

iþ þ ux
i� ¼ 1; uy

jþ þ uy
j� ¼ 1

ð5Þ

where x1; . . . ; xNx and y1; . . . ; yNy
are training representations in two

views respectively and Nx, Ny are the number of them. jMj and jCj
are the cardinality of M and C respectively. We divide the CvMLs
and the CvCLs penalties by jMj and jCj to balance the different num-
bers of CvMLs and CvCLs. In this formulation, the first two lines are
the probabilistic classification regularization framework in each
views, and the last two lines are the CvMLs and the CvCLs penalties.

Note that besides CvMLs and CvCLs, no label information is used
here. Thus the learned classifiers can only give out +1 and �1 sign
labels. Later, a few labeled samples will be used to determine
which real label the sign label corresponds to.

3.2. Optimization

Without loss of generality, we use the square loss and propose
the regularized least square (RLS) under Cross-View MLs and CLs
(RLSCVMC) algorithm. It is easy to see that the representer theo-
rem holds (see appendix for the proof), thus the minimizer f H

x ; f
H

y

have the following forms:

f H

x ¼
XNx

i

aikxðx; xiÞ ð6Þ

f H

y ¼
XNy

j

bjkyðy; yjÞ ð7Þ

By substituting them for fx, fy in Eq. (5), we get the following opti-
mization problem:

min
a;b;ux ;uy

J ¼ 1
2

XNx

i¼1

X

r2fþ;�g
ux

ik
2ðaT kxi

� ckÞ
2 þ k1

2
aT Kxa

þ 1
2

XNy

j¼1

X

r2fþ;�g
uy

ik
2ðbT kyj

� ckÞ
2 þ k2

2
bT Kyb

þ k3ðNx þ NyÞ
2jMj

X

ði;jÞ2M
ðaT kxi

� bT kyj
Þ2

þ k3ðNx þ NyÞ
2jCj

X

ði;jÞ2C
ðaT kxi

þ bT kyj
Þ2

s:t: ux
ir >¼ 0; uy

jr >¼ 0; for r in fþ;�g
ux

iþ þ ux
i� ¼ 1; uy

jþ þ uy
j� ¼ 1



Table 1
Used supervision in Co-RLS and RLSCVMC. Here the cross-view data correspondence
in Co-RLS is categorized as ML. Yw: unlabeled data is only used in co-regularization
term not in least square loss.

Labeled Unlabeled CvML CvCL

Co-RLS Y Yw Y N
RLSCVMC N Y Y Y
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where matrices Kx, Ky are kernel matrix with their every entry be
kx(xi, xj) and ky(yi, yj) respectively. For notation convenience, we
let kxi

¼ ½kðxi; x1Þ; . . . ; kðxi; xNx Þ�
T and kyj

¼ ½kðyj; y1Þ; . . . ; kðy;yNy
Þ�T .

Note that the objective is convex with respect to each component
though is nonconvex per se. Classic block coordinate descent meth-
od could be used to solve this problem [5]. The basic idea is optimiz-
ing one block variable while keeping other variable blocks fixed and
repeating this step until meeting some stop criteria. Because the
objective function value decreases constantly after each step, this
procedure guarantees to converge to a stationary point [5].

We optimize (ux, uy), a and b iteratively while keeping the rest
variable blocks fixed. When a and b are fixed, optimizing ux and uy

can be decoupled into two independent but analogous problems
similar to Fuzzy c-means. Eq. (8) calculates current optimal solu-
tion ux, and uy has an analogous formula.

ux
ir ¼

1=ðaT kxi
� crÞ

2

P
r2þ;� 1=ðaT kxi

� crÞ2
ð8Þ

When ux, uy and b is fixed, the objective is convex and quadratic
with respect to a. The current optimal solution could be obtained
by setting its derivative to zero. Eqs. (10) and (9) are a’s coefficients
of linear and quadratic terms. By solving the linear equations
�Haa = ga, we get the current optimal a.

Ha ¼
XNx

i

X

r2fþ;�g
ux

ir
2kxi

kT
xi
þ k1Kx þ

k3ðNx þ NyÞ
jMj

X

ði;jÞ2M
kxi

kT
xi

þ k3ðNx þ NyÞ
jCj

X

ði;jÞ2C
kxi

kT
xi

ð9Þ

ga ¼ �
XNx

i

X

r2fþ;�g
ux

ir
2ckkxi

� k3ðNx þ NyÞ
jMj

X

ði;jÞ2M
bT kyj

kxi

� k3ðNx þ NyÞ
jCj

X

ði;jÞ2C
bT kyj

kxi
ð10Þ

When ux, uy and a is fixed, b can be optimized by analogy with the
updating formula of a. We omit the related formula of b here.

Note that we have closed-form solutions for updating each var-
iable block. We summarize the whole algorithm into Algorithm 1.

Algorithm 1. RLS under the CvMLs and the CvCLs
Input: data matrix X,Y, number of class, maximum iteration
number MaxIter

initialize a, b,
while iter < MaxIter do

step 1: update ux, uy with Eq. (8) and its analogy for uy.
step 2: update a = �Hanga by solving a linear equation.
step 3: update b by analogy with updating a

end while
1 http://archive.ics.uci.edu/ml/datasets/Multiple+Features.
3.3. Determining real labels of the sign labels

In training data, besides the CvMLs and CvCLs available, a few
labeled samples are also provided. Since the sign labels of those
samples have already been known after the classifiers are learned,
the sign labels and the real labels from the same samples can be
connected. For example, if a sample has the +1 sign label as well
as the first real class label, we may say the +1 sign label corre-
sponds to the first real class label. Note that we can only need as
few as two labeled samples, one for each class, to connect the sign
labels to real classes.
3.4. Comparison with co-regularization

RLSCVMC is related to Sindhwani et al.’s co-regularization
framework [24]. They proposed a family of algorithms in the
co-regularization framework: the Co-Regularized Least Squares
(Co-RLS), the Co-Regularized Laplacian SVM and Least Squares
(Co-LapSVM, Co-LapRLS). Co-LapSVM and Co-LapRLS place their
root on Manifold Regularization framework [4] while our RLSCVMC
is built on classical regularization framework. Thus we do not com-
pare with them and only compare with Co-RLS algorithm listed as
follows:

minfx ;fy

Xl

i

ðfxðxiÞ � ciÞ2 þ l
Xl

i

fyðyiÞ � ci
� �2 þ c1kfxk2

Hkx

þ c2kfyk2
Hky
þ cC
ðlþ uÞ

Xlþu

i

ðfxðxiÞ � fyðyiÞÞ
2 ð11Þ

where l, u mean the numbers of labeled and unlabeled samples
respectively. The formulation consists of two classical regulariza-
tion framework for each data view and a co-regularization term.

We can see that both Co-RLS and our framework are based on
the classical regularization framework. However our framework
estimates the loss on unlabeled data by introducing probabilistic
indicator vectors while Co-RLS only estimates the loss on the la-
beled data. From the perspective that the paired data can be trea-
ted as the CvML, the co-regularization term is exactly the same as
the CvML penalty term in Eq. (3). Apparently Co-RLS does not em-
ploy the CvCL supervision explicitly while our framework explicitly
penalize the violation of the CvCLs. We summarize the different
kinds of information used in Co-RLS and our framework in Table 1.

4. Experiment

In this section, we show the empirical study on RLSCVMC algo-
rithm. We first introduce the datasets used in our experiments,
then show the performance of RLSCVMC under different numbers
of the CvMLs and the CvCLs supervision. In the next, we illustrate
the classification performance under different parameter settings.
Finally, we compare RLSCVMC with Co-RLS algorithm. In all of
our experiments, linear kernel is used as in Sindhwani et al.’s
co-regularization paper [24].

4.1. Dataset description

In our experiments, four multi-view datasets listed below are
used.

� The Multiple Feature (handwritten) digit data set (MFD).1

This dataset comes from UCI machine learning repository [12]. It
consists of features of handwritten numerals (‘0’–‘9’) extracted
from a collection of Dutch utility maps. 200 patterns per class
(for a total of 2000 patterns) have been digitized in binary
images. These digits have six feature sets. Here we only choose
two feature sets as two views used in our experiments. They

http://archive.ics.uci.edu/ml/datasets/Multiple+Features


Table 2
Experimental dataset. NumP: #positive, NumN: #negative, VName: View Name.

Dataset View 1 View 2

View Dim Num NumP NumN View Dim Num NumP NumN

MFD Pix 240 400 200 200 Mor 6 400 200 200
Course Page 3000 1051 821 230 Link 1840 1051 821 230
ORL Pix 1024 40 20 20 LBP 1024 40 20 20
MRC EN 21531 9433 4331 5102 FR 24893 9992 5000 4992
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are pix (240 pixel averages in 2 � 3 windows) and mor (6 mor-
phological features). We use ‘0’ as positive class and ‘1’ as nega-
tive class.
� Course dataset.

This dataset consists of 1051 web pages collected from Com-
puter Science department websites at four universities: Cornell,
University of Washington, University of Wisconsin and Univer-
sity of Texas. These web pages are categorized into two classes:
course and non-course. Two views are web page content and
text on the links to the web page.
� ORL.

This dataset is a face dataset. It contains two feature sets. One is
the cropped face image (32 � 32) and the other is the LBP fea-
ture extracted from the image. The two feature sets are treated
as two views in experiments. We use the first two persons as
positive and negative classes.
� Multilingual Reuters Collection (MRC).2

This dataset is defined and provided by [1]. It contains collections
of five languages (EN,FR,GE,SP,IT) from six large Reuters catego-
ries (CCAT, C15, ECAT, E21, GCAT and M11) extracted from
RCV1 and RCV2. This dataset is totally unpaired. In our experi-
ments, we use English and French webpages as two views and
the CCAT/C15 categories as the positive and negative class.

Details are listed in Tabel 2. Note that, the first three datasets
have paired data while the last does not. In all our experiments,
we reduce the dimensions of Course and ORL dataset to 100 and
20 by PCA, and the dimension of MRC to 100 by LSA.
4.2. Performance examination of RLSCVMC

In this experiment, we show the performance of RLSCVMC on
different numbers of the CvMLs and the CvCLs. Since CvMLs and
CvCLs are weak supervision, we want to know how many CvMLs
and CvCLs are need to give out a satisfied performance. So we train
our framework on different number of training set and see the pre-
diction results. So we use the following experimental settings. The
numbers of the CvMLs and the CvCLs grow from 0%(Nx + Ny)/2 to
100%(Nx + Ny)/2 at an interval of 10%(Nx + Ny)/2. For each CvMLs
and CvCLs number combination, ten trials are run and the mean
accuracies are reported. For each trial, we randomly and evenly
split the dataset into training set and testing set. The CvML is con-
structed by randomly choosing two representations with the same
label in the training set of two views, and the CvCL is constructed
by randomly choosing two representations with different labels in
the training set of two views. The a, b variables are randomly ini-
tialized, and in our experiments we find out that our framework is
insensitive to the initial values. Traditional parameter selection
method Cross-validation is not applicable here due to the absence
of labeled data. So we tune the parameter heuristically. For all
experiments we set k3 = 1 which approximately balances the loss
term and cross-view side information regularization term. k1 is
set to 100 for dataset MFD and 1 for the rest datasets and k2 is
2 http://multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.htm.
set as the same with k1 for convenience. We draw the 3D-bar graph
of the mean accuracies in Fig. 2.

All subfigures in Fig. 2 demonstrate that the performance is
increasing with the MLs and the CLs numbers. However the
increase of performance is not monotonous with respect to the
number of the CvMLs and the CvCLs especially for the ORL data-
set. That may be caused by the unstable learned predictors on
these datasets. Table 3 lists the average standard deviations on
the four dataset. Among them, the ORL dataset gets a high aver-
age standard deviation and obtains a vibrating increase of perfor-
mance, while the Course and the MRC datasets have very small
average standard deviation and their increasing are almost
monotonous.

Fig. 4 plots the diagonal bars in Fig. 2 for each dataset. On the
Course and the MRC datasets, their accuracies both rise quickly
to about 0.9 at 20% supervision, then keep almost stable. While
on the ORL dataset, the accuracy increases approximately linearly.
In addition, on all but the MFD datasets, the accuracies on their two
views assume similar trend which may be partly due to the co-reg-
ularization among different views.

An interesting phenomenon is that the accuracy does not in-
crease when the number of CvMLs (CvCLs) increases and the
number of CvCLs (CvMLs) is zero, especially on the Course, the
MRC and the ORL datasets. Actually it is a degenerated solution
of RLSCVMC. We demonstrate this phenomenon by a toy problem
in Fig. 3. It is a two-view two-class dataset. Each class in each
view is generated from a Gaussian distribution. We draw the clas-
sification hyperplane (the blue line), and label positive and nega-
tive area on the 2D plane on both views. Fig. 3(a)/(b) depicts the
situation when CvCLs/CvMLs does not exist. When only CvMLs
exist in Fig. 3(a), the classifiers in both views give all data the
same label. Apparently this solution incurs little penalty on the
CvMLs regularization because of the same label. Furthermore,
due to adaption of the probabilistic indicator vector ux, uy in Eq.
(2), it also incurs small classification loss. When only the CvCLs
exist, the situation is similar. The classifiers give data in different
views opposite labels, thus incur little penalty on the CvCLs reg-
ularization. And the classification loss in Eq. (2) is also small. To
avoid this kind of degenerated solution, both the CvMLs and the
CvCLs supervision are needed. As we see in Fig. 2(c), (f), (g),
and (h), the accuracies dramatically increase from 0%(Nx + Ny)/2
to 100%(Nx + Ny)/2 CvMLs (CvCLs).
4.3. Parameter study

In this experiment, we study the accuracies under different
parameter settings. The experiment setting follows the previous
experiment. The parameters k1, k2 are set to be the same and
are chosen from [1e1, 1e2, 1e3, 1e4, 1e5]. The parameter k3 is cho-
sen from [1e0, 1e1, 1e2, 1e3, 1e4, 1e5]. The generation of training
data and testing data is the same with the previous experiment.
For each parameter setting, ten trials are run and the mean accu-
racies are reported. Due to the space limitation, we only illustrate
the results when the number of the CvMLs and the CvCLs are set
to be 30%(NX + Ny)/2. We also check the results of different

http://multilingreuters.iit.nrc.ca/ReutersMultiLingualMultiView.htm
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Fig. 2. Performance of LSCVMC.
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numbers of the CvMLs and the CvCLs and observe the similar re-
sults. Fig. 5 shows the heat map of the accuracies of different
parameter settings. On general, the accuracies do not varies very
much under different parameter settings. It implies that our
framework is not quite sensitive to parameters. The ORL dataset
has a relatively unstable accuracies, which could be caused by



Table 3
Average standard deviations

ORL MFD Course MRC

View 1 0.099 0.039 0.010 0.005
View 2 0.086 0.038 0.008 0.005
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the unstable classifiers learned from too little training data rather
than by different parameter settings. The accuracies on the MFD
dataset keep above 90% for the most of the parameters and only
drop on two group of parameters. On the Course dataset, the
accuracies keep high when neither parameters are too large or
too small.
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4.4. Comparison with Co-RLS

In this experiments we compare RLSCVMC with Co-RLS to test
the effectiveness of RLSCVMC.

We did not conduct more comparison experiments with other
algorithms, mainly because the introduced CvMLs and CvCLs con-
cepts are relatively new. So far as we know, at present there have
not had related work based on such side information yet. However,
loosely speaking, Co-RLS can be viewed as a related work. Since Co-
RLS only works only on full paired data, only the ORL, the MFD and
the Course dataset are used in this experiment.

In this experiment, the parameters in RLSCVMC are set to the
same as in the above experiment. For Co-RLS, we set l = 1 and
k1 = k2 in Eq. (11) to make the parameter setting in Co-RLS similar
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n the CvMLs or the CvCLs does not exist.
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(e) Course-Page (f) Course-Link

Fig. 5. Accuracies under different parameter settings. The x and y axes indicates the two parameters in our framework. The color indicates the accuracies. Red color means a
high accuracy, while blue color means a low accuracy. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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to that in RLSCVMC. We select the two parameters in Co-RLS by
fivefold cross validation both in {0.01,0.1,1,10,100}. The means
and standard deviations of accuracies are listed in Table 4.

We test the performance on different portions of labeled train-
ing data. We first randomly select half as training set and the rest
as testing set. Then we choose a part of training set, which
increases from 10%N to 100%N at an interval of 10%N, where N is
the number of training samples, as the labeled set. The rest is used
as unlabeled set. In the next, we create every possible the CvMLs
and the CvCLs from the labeled training set for RLSCVMC algo-
rithm. Thus the supervised information used in Co-RLS and
RLSCVMC is the same. And the difference is that Co-RLS directly
uses the labels while RLSCVMC first converts the labels into the
CvMLs and the CvCLs and uses them instead. Note that, besides



Table 4
Accuracy comparison between RLSCVMC and Co-RLS. The boldface means t-test is
passed.

RLSCVMC Co-RLS

ORL-Pix ORL-LBP ORL-Pix ORL-LBP

10% .580 ± .043 .565 ± .058 .592 ± .141 .575 ± .144
20% .550 ± .031 .600 ± .083 .732 ± .128 .670 ± .148
30% .680 ± .110 .662 ± .098 .710 ± .148 .690 ± .119
40% .710 ± .100 .657 ± .077 .702 ± .122 .677 ± .091
50% .737 ± .071 .727 ± .066 .742 ± .078 .730 ± .057
60% .807 ± .111 .722 ± .119 .817 ± .094 .695 ± .153
70% .827 ± .123 .825 ± .081 .837 ± .079 .780 ± .065
80% .882 ± .077 .800 ± .052 .862 ± .089 .830 ± .055
90% .882 ± .044 .785 ± .073 .870 ± .081 .800 ± .092

100% .917 ± .047 .832 ± .048 .920 ± .038 .835 ± .042

MFD-Pix MFD-Mor MFD-Pix MFD-Mor

10% .992 ± .003 .996 ± .004 .942 ± .025 .989 ± .008
20% .991 ± .004 .993 ± .006 .952 ± .015 .986 ± .007
30% .990 ± .006 .994 ± .005 .951 ± .035 .988 ± .007
40% .988 ± .004 .994 ± .004 .963 ± .019 .991 ± .007
50% .988 ± .006 .992 ± .002 .972 ± .017 .991 ± .008
60% .988 ± .008 .995 ± .004 .963 ± .022 .995 ± .005
70% .991 ± .008 .991 ± .004 .971 ± .012 .990 ± .006
80% .991 ± .004 .991 ± .005 .976 ± .010 .990 ± .006
90% .986 ± .009 .994 ± .004 .975 ± .011 .993 ± .007

100% .991 ± .005 .994 ± .005 .977 ± .011 .992 ± .006

Course-Page Course-Link Course-Page Course-Link

10% .923 ± .036 .894 ± .015 .930 ± .013 .911 ± .019
20% .943 ± .011 .911 ± .013 .933 ± .013 .920 ± .016
30% .953 ± .014 .922 ± .009 .944 ± .010 .924 ± .014
40% .954 ± .007 .935 ± .009 .948 ± .012 .939 ± .013
50% .960 ± .011 .934 ± .008 .955 ± .011 .931 ± .012
60% .962 ± .005 .943 ± .006 .959 ± .006 .945 ± .008
70% .964 ± .006 .944 ± .009 .957 ± .007 .941 ± .011
80% .963 ± .011 .946 ± .010 .960 ± .011 .944 ± .012
90% .967 ± .007 .945 ± .006 .964 ± .007 .944 ± .006

100% .964 ± .012 .944 ± .008 .967 ± .008 .947 ± .005
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the label set, Co-RLS also makes full use of all the unlabeled sam-
ples and the pairing information on the unlabeled sample set while
RLSCVMC does not. Thus in fact, Co-RLS uses much more informa-
tion than RLSCVMC. In such a circumstance, the current compari-
sons will naturally be much more prone to Co-RLS than our model.

Through comparing the results of both Co-RLS and RLSCVMC in
Table 4, it can be witnessed that our RLSCVMC exhibits comparable
performance on two datasets, and significant performance on MFD
dataset. Though so, we can find that current RLSCVMC can still
leave a further room for its performance promotion since the pres-
ent experimental setting is more favorable for Co-RLS than for our
model. In addition, how to utilize CvMLs and CvCLs more effec-
tively is still needed.

On the ORL dataset, the performance of RLSCVMC and Co-RLS is
comparable. Most of the results are statistically not significant ex-
cept two (20% ORL-Pix, and 70% ORL-LBP).

On the Pix view under 20% labeled samples, the accuracy of Co-
RLS is higher than RLSCVMC by over 10 percent, however its vari-
ance is also high (0.128) thus is not so convincing.

RLSCVMC outperforms Co-RLS on the MFD dataset especially on
the Pix view. On this view, all the results are significantly better
than Co-RLS’s. On the Mor view, three of ten results are better
while the rest are comparable. Note that on the Pix view, RLSCVMC
achieves high accuracies even under a small labeled set while Co-
RLS does not. With less than or equal to 30% labeled set, RLSCVMC
yields an average 4.2% higher accuracy. On the Course dataset,
RLSCVMC still beats Co-RLS. On the Page view, half of the accura-
cies of RLSCVMC are significantly higher than Co-RLS, and the rest
are comparable. On the Link view, each of both algorithms obtains
a significantly higher accuracy.
So, RLSCVMC, which only uses CvMLs and CvCLs, demonstrates
its learning ability, and it achieves better results on the MFD and
the Course datasets, and comparative results on the ORL dataset
by using less information than Co-RLS.

As discussed in Section 3.4, RLSCVMC estimates the classifica-
tion loss on unlabeled data and employs the CvCLs explicitly,
which makes it achieve better relatively performance than Co-RLS.

5. Conclusion and future work

In this paper, we develop a framework which utilizes the cross-
view side information, specifically the CvMLs and the CvCLs, to learn
classifiers in multi-view circumstance where view data are totally
not paired. We show the effectiveness of our framework and dem-
onstrate why the solutions are degenerated when only the CvMLs
(CvCLs) are available. In our comparative experiments, we observe
that our framework achieves better performance than Co-RLS algo-
rithm under the same supervision. There are still some problems de-
served to study in the future. So far, our framework only works for
two-view dataset because of the limitation of modeling. How to ex-
tend it to the dataset with more than two views is a practical and
important question. Furthermore, our CvMLs and CvCLs are general
multi-view side information. They are not just limited to classifica-
tion tasks. How to apply them into multi-view clustering and
dimension reduction tasks under totally-unpaired dataset is also
deserve examining. The performance of RLSCVML only gets one sig-
nificant improvement comparing with Co-RLS, although the exper-
iment is more favorable for Co-RLS. There is still a further room for
the performance promotion, and this is our next work.
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Appendix A

Theorem 5.1. The optimizers f H

x ; f
H

y of Eq. (5) admit the represen-
tations of the form respectively

f H

x ¼
XNx

i

aikxðx; xiÞ ð12Þ

f H

y ¼
XNy

j

bjkxðy; yjÞ ð13Þ

Proof. We decompose fx 2 HKx (fy 2 HKy ) into two parts. The first
part is in the subspace spanned by kernel functions
kxðx1; �Þ; . . . ; kxðxNx ; �Þ ðkyðy1; �Þ; . . . ; kyðyNy

; �ÞÞ, and the second part is
in its orthogonal complement.

fx ¼ fxk þ fx? ¼
XNx

i

aikðxi; xÞ þ fx? ð14Þ

ðfy ¼ fyk þ fy? ¼
XNy

i

bjkðyj; yÞ þ fy?Þ ð15Þ

Then we may write fx(xk) and fy(yk) as

fxðxkÞ ¼
XNx

i

aikðxi; xkÞ þ fx?ðxkÞ ¼
XNx

i

aikðxi; xkÞþ < fx?; kðxk; xÞ >

¼
XNx

i

aikðxi; xkÞ ð16Þ
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fyðykÞ ¼
XNy

i

bjkðyj; ykÞ þ fy?ðykÞ ¼
XNy

i

bjkðyj; ykÞþ < fy?; kðyk; yÞ >

¼
XNy

j

bjkðyi; ykÞ ð17Þ

And for all fx\ and fy\ we have

kfxk2
Hx
¼ kfxk þ fx?k

2
Hx
¼ kfxkk

2
Hx
þ kfx?k

2
Hx

P kfxkk
2
Hx

ð18Þ

kfyk2
Hy
¼ kfyk þ fy?k

2
Hy
¼ kfykk

2
Hy
þ kfy?k

2
Hy

P kfykk
2
Hy

ð19Þ

Thus for any fixed ai, bj, the function value of objective is minimized
for fx\ = 0 and fy\ = 0. Since these are also solutions, the theorem
holds. h
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