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Abstract Canonical correlation analysis (CCA) is a widely used technique for analyzing
two datasets (two views of the same objects). However, CCA needs that the samples of the
two views are fully-paired. Actually, we are often faced up with the semi-paired scenario
where the number of available paired samples is limited and yet the number of unpaired
samples is sufficient. For such a scenario, CCA is generally prone to overfitting and thus
performs poorly, since its definition itself makes it only able to utilize those paired samples.
To overcome such a shortcoming, several semi-paired variants of CCA have been proposed.
However, unpaired samples in these methods are just used in the way of single-view leaning
to capture individual views’ structure information for regularizing CCA. Intuitively, using
unpaired samples in the way of two-view learning should be more natural and more attrac-
tive since CCA itself is a two-view learning method. As a result, a novel CCAs semi-paired
variant named Neighborhood Correlation Analysis (NeCA), which uses unpaired samples
in the two-view learning way, is developed through incorporating between-view neighbor-
hood relationships into CCA. The relationships are acquired through leveraging within-view
neighborhood relationships of each view’s all data (including paired and unpaired data) and
between-view paired information. Thus, it can take more sufficient advantage of the unpaired
samples and then mitigate overfitting effectively caused by the limited paired data. Promising
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experiments results on several popular multi-view datasets show its feasibility and effective-
ness.

Keywords Canonical correlation analysis · Semi-paired learning · Two-view learning ·
Neighborhood relationship · Neighborhood correlation

1 Introduction

High-dimensional co-occurring data associated with an object frequently and abundantly
emerge in the real world. For example, an Internet web page as an object can be repre-
sented as (co-occurring) page text and links to the page, and a human can be represented as
co-occurring visual and audio contents. A lot of works have been done for analyzing this
kind of data [1–7]. Among these works, canonical correlation analysis (CCA) is one of the
most widely adopted methods [8–12].

CCA is a classical but useful multivariate statistical analysis method [13]. It aims to find
maximally correlated projections between two sets of variables, which can be considered
as two views (views x and y) or representations of the same set of objects. However CCA
requires that such two views be fully-paired, i.e., each sample in view x should have a corre-
spondence in view y, and vice versa. Conversely, we are often faced such a scenario where
most samples in view x have no correspondences in view y, and vice versa, thus forming
the semi-paired scenario called here. For such a scenario, CCA is generally prone to overfit-
ting and thus performs poorly, since its definition itself makes it only suitful for the paired
scenario, so its applications are limited in the real world. Actually, abundant unpaired sam-
ples (i.e. x- and y-only samples) often contain much useful information which will benefit
the learning task, just as the unlabeled samples benefit semi-supervised leaning [14,15] by
exploiting the intrinsic data structure under clustering assumption or manifold assumption.
Recently, several works have concerned such new scenario [16–18]. Blaschko et al. [16] pro-
posed a semi-supervised Laplacian regularization of kernel CCA (SemiLRKCCA), which
utilizes intrinsic geometry structure of each view to regularize kernel CCA (KCCA) [19].
As a result, SemiLRKCCA can find a set of meaningful directions which not only make the
two view’s paired samples highly correlated but also capture each view’s manifold struc-
ture. SemiCCA [17] utilizes global structure of each view’s whole training samples (paired
and unpaired samples together) to regularize CCA in order to bridge CCA and principal
component analysis (PCA) [20,21] seamlessly. Both SemiLRKCCA and SemiCCA can take
sufficient advantage of unpaired samples in addition to paired samples, and consequently
achieve better results than CCA just based on the paired samples. It is necessary to mention
that the actual meaning of “semi-” in SemiLRKCCA and SemiCCA is “semi-paired” rather
than “semi-supervised” in popular semi-supervised learning literature [14,15]. Compared
with SemiLRKCCA and SemiCCA, more recent work termed as semi-paired and semi-
supervised generalized correlation analysis (S2GCA) [18] make further research for dealing
with semi-paired and semi-supervised scenario. S2GCA utilizes within-view structural infor-
mation and within-view discriminant information jointly, to preserve the individual view’s
structure of unlabeled data and separate labeled data in different classes from each other
simultaneously. Without semi-supervised information, S2GCA is similar to SemiLRKCCA
and SemiCCA.

In SemiLRKCCA, SemiCCA and S2GCA, unpaired samples are just used in the way of
single-view leaning to capture individual views’ structure information for regularizing KCCA
or CCA. Consequently, CCA and its variants (SemiLRKCCA, SemiCCA and S2GCA) only
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Fig. 1 Comparison of considered correlations between different views in CCA and NeCA. a CCA, b NeCA.
‘↔’ denotes correlation between xi and yi , ‘≺ · · · �’ denotes correlations between xi ’s neighborhood and
yi ’s neighborhood, where xi and yi are paired samples

consider the correlations between paired samples in different views. However, using unpaired
samples in the way of two-view learning should be more natural and more attractive since
CCA itself is a two-view learning method. Actually, based on the manifold assumption [22],
it is reasonable to consider not only the correlations between paired samples in given two
views but also the correlations between their respective neighborhoods, as shown in Fig. 1
(see Sect. 3). Therefore, a novel dimension reduction method named Neighborhood Cor-
relation Analysis (NeCA), which uses unpaired samples in the two-view learning way, is
developed through incorporating between-view neighborhood relationships into CCA. Note
that the construction of between-view neighborhood relationships seems not so straightfor-
ward, since the two views (views x and y) are heterogeneous and semi-paired. Therefore,
a method named spectral minimizing-disagreement (SMD) [4] is adopted to generate the
relationships, mainly due to that SMD can incorporate the within-view neighborhood rela-
tionships and the between-view paired information without artificially equating or relating
them naturally.

The recent work S2GCA is a semi-supervised dimension reduction method. Similar to
S2GCA, local discrimination CCA (LDCCA) [23] also utilizes supervised information. On
the other hand, like our work NeCA, LDCCA also incorporates the local manifold geometry
structure of data in modeling. However, LDCCA is just appropriate for the fully-paired and
fully-supervised scenario, which is different from our semi-paired and unsupervised scenario
in NeCA. Thus, in our experiments, we do not make comparison with such two methods.
Our work NeCA is developed for adapting CCA to semi-paired scenario. Under the scenario,
the construction of between-view neighborhood relationships in NeCA is simple, only need-
ing a matrix multiplication (see Sect. 3.2). On the other hand, the works by Aria et al. [24]
and Tripathi et al. [25,26] utilize CCA as a dependency measure for solving the problem
of cross-domain (or cross-view) object matching (CDOM) [27]. The goal of CDOM is to
find correspondence between two sets of objects in different domains in an unsupervised and
unpaired way by maximizing pairwise dependency. Usually, solving the pairing problems in
[24–26] needs a complicated iterative algorithm, and high computational cost at each iter-
ation. Though [25] uses partial paired information as penalization to improve the accuracy,
there is no essential change in computational complexity. Similar to our work, the work
[28] for manifold alignment also uses the within-view neighborhood relationships to define
the between-view neighborhood relationships, However, it is computationally very complex
[25], which has factorial level permutations for a relationship established between different
views.
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In what follows, we summarize favorable and attractive characteristics of the proposed
algorithm:

(1) NeCA considers the correlations not only between those paired samples but also between
each sample in one view and its corresponding between-view local neighbors in the other
view. This way, it uses unpaired samples in the way of two-view learning. Thus, it can
take more sufficient advantage of the unpaired samples and then mitigate overfitting
effectively caused by the limited paired data.

(2) NeCA has no regularization in its optimization problem, due to that NeCA utilizes
those unpaired samples in the way of two-view learning. As a result, NeCA can be
boosted in performance by the regularizing individual views with structure informa-
tion as employed in SemiLRKCCA and SemiCCA. Thus, two extensions of NeCA
are developed: Laplacian-regularization NeCA (LRNeCA) and PCA-regularization of
NeCA (PRNeCA).

(3) CCA, SemiLRKCCA and SemiCCA are special cases of NeCA, LRNeCA and PRNeCA
respectively when they only consider the correlations between paired data.

(4) Despite all these advantages, NeCA still maintains the characteristic of being easily
solved by a generalized eigenvalue problem (GEP) similar to regular CCA, and can
directly be generalized to more than two views through the way of CCA to multi-set
CCA [29].

The remainder of this paper is structured as follows: In Sect. 2, we briefly review CCA
and its semi-paired variants. We propose NeCA and formulate specific learning algorithm
in Sect. 3. NeCA can be regularized by individual views’ structure information, therefore
corresponding generalizations of NeCA are presented in Sect. 4. In Sect. 5, we present the
experimental results on several popular multi-view datasets, including two web page datasets
(Internet Advertisements and WebKB) and two image datasets (Multiple Feature Handwritten
Digit Database [MFD] and Yale). Finally, we conclude this paper in Sect. 6.

2 CCA and Its Semi-paired Variants

2.1 Canonical Correlation Analysis (CCA)

CCA [8,13], proposed by Hotelling [13], is a well-known technique for finding pairs of
vectors that maximize the correlation between two sets of paired variables. The two sets of
variables can be considered as two views of the same objects.

To be specific, given X = [x1, . . . , xn] ∈ Rdx ×n and Y = [y1, . . . , yn] ∈ Rdy×n are the
two sets of variables of the same objects, where xi ∈ Rdx and yi ∈ Rdy (both with zero
mean) correspond to the i th object. CCA can be defined as the problem of finding a pair of
canonical basis vectors: wx of size dx × 1 and wy of size dy × 1, such that the projected vari-
ables wT

x X and wT
y Y are maximally correlated. The two projection vectors can be acquired

by maximizing the following correlation coefficient:

ρ = wT
x XY T wy√

wT
x X X T wxwT

y Y Y T wy

. (1)
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Since ρ is invariant to the scaling of wx and wy , CCA can be expressed equivalently as the
following constrained optimization problem:

max
wx ,wy

wT
x XY T wy

s.t. wT
x X X T wx = 1, wT

y Y Y T wy = 1.
(2)

The solution of formulation Eq. (2) can be obtained by solving the following GEP:

[
0 XY T

Y X T 0

] [
wx

wy

]
= λ

[
X X T 0

0 Y Y T

] [
wx

wy

]
, (3)

where λ is the generalized eigenvalue corresponding to the generalized eigenvector (wx , wy).
Usually, r -dimensional mappings (Wx ∈ Rdx ×r , Wy ∈ Rdy×r ) are given by selecting the
top r generalized eigenvectors of Eq. (3) and r ≤ min(dx , dy).

Additionally, the optimization problem of Eq. (2) can be rewritten in another equivalent
form as

min
wx , wy

n∑
i=1

(
wT

x xi − wT
y yi

)2

s.t.
n∑

i=1

(
wT

x xi
)2 = 1,

n∑
i=1

(
wT

y yi

)2 = 1.

(4)

CCA is not suitable for a semi-paired scenario according to its mathematical formulation (1).
In order to make it adapt this scenario, recently, two semi-paired variants of CCA (i.e. Semi-
LRKCCA and SemiCCA) were separately developed by utilizing the structural information
hidden in unpaired data in two views to regularize KCCA or CCA. And it has been shown
that both have better performance than KCCA or CCA which just relies on a small amount
of paired samples.

2.2 SemiLRKCCA: Semi-supervised Laplacian Regularization of KCCA

Based on KCCA [19] which is the kernelization of CCA for dealing with nonlinearly-cor-
related data, Blaschko et al. [16] developed a SemiLRKCCA through the manifold regulari-
zation technique [22] to tackle semi-paired scenario. In this paper without loss of generality
in comparison to both our proposed NeCA and SemiCCA, we just concern SemiLRKCCAs
linear version (named SemiLRCCA). However, their kernelizations to nonlinear counterparts
are straightforward.

Now suppose we are given two sets of training samples: X = [X P XU ] = [x1, . . . , x p,

x p+1, . . . , xNX ] ∈ Rdx ×Nx and Y = [YP YU ] = [y1, . . . , yp, yp+1, . . . , yNY ] ∈ Rdy×Ny ,
where X P = [x1, . . . , x p] and YP = [y1, . . . , yp] are paired samples; XU =
[x p+1, . . . , xNx ] and YU = [yp+1, . . . , yNy ] are unpaired samples; Nx (resp. Ny) is the
sample number of X (resp. Y ); dx (resp. dy) is the dimensionality of X (resp. Y ). Then,
SemiLRCCA can be expressed as the following optimization problem:

max wT
x X P Y T

P wy

s.t. wT
x

(
X P X T

P + γx

N 2
x

X L̂ X X T
)

wx + εxw
T
x wx = 1,

wT
y

(
YP Y T

P + γy

N 2
y

Y L̂Y Y T

)
wy + εyw

T
y wy = 1. (5)
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where L̂ x

(
=

(
DX

)− 1
2
(DX − SX )(DX )− 1

2

)
is the empirical graph Laplacian as defined

in manifold learning and constructed by the Nx samples (paired and unpaired samples)
of view x, γx is regularization parameter, SX is a similarity matrix of view x, DX is the
diagonal matrix whose entries are the row or column sums of SX ; L y and γy are defined
similarly.

From Eq. (5), we can know that εxw
T
x wx and εyw

T
y wy both are Tikhonov regularization

terms. Since Tikhonov regularization is the most commonly used method for overcoming
the singularity problem, we can compactly rewrite Eq. (5) as Eq. (6) by omitting Tikhonov
regularization terms εxw

T
x wx and εyw

T
y wy .

max wT
x X P Y T

P wy

s.t. wT
x

(
X P X T

P + γx X Lx X T
)

wx = 1, wT
y

(
YP Y T

P + γyY L yY T
)

wy = 1. (6)

where L X = 1
N 2

x
L̂ X and LY = 1

N 2
y

L̂Y . It is necessary to mention that the algorithms involved

(CCA, SemiLRCCA (i.e. Eq. (6)), SemiCCA and our NCA) all use Tikhonov regularization
in our experiments. Therefore, the performance of Eq. (6) is the same with that of Eq. (5).

Furthermore, for consistency and contrast with our work later, Eq. (6) can be rewritten as
follows:

max
wx , wy

wT
x X SSemi Y T wy

s.t. wT
x X DSemi X X T wx = 1, wT

y Y DSemiY Y T wy = 1. (7)

where SSemi =
[

Ip 0
0 0

]
, DSemi X =

[
Ip 0
0 0

]
+ γx Lx , DSemiY =

[
Ip 0
0 0

]
+γy L y and Ip is

the p × p identity matrix.
Similar to CCA, through the Lagrange multiplier method and some mathematical manip-

ulations, the solution of formulation (6) can be reduced to the following GEP:
[

0 X P Y T
P

YP X T
P 0

] [
wx

wy

]
= λ

[
X P X T

P + γx X Lx X T 0
0 YP Y T

P + γyY L yY T

] [
wx

wy

]
. (8)

2.3 SemiCCA: Semi-supervised Learning of CCA

In order to mitigate the overfitting of CCA due to limited paired data, Kimura et al. [17]
developed SemiCCA by combining CCA with PCA for utilizing unpaired samples. As a
result, it is simply formulated as a combined eigenvalue problem of both CCA and PCA.
This way, similar to CCA and SemiLRCCA, the solution of SemiCCA can also be attributed
to solving the following GEP:

A

[
wx

wy

]
= λB

[
wx

wy

]
, (9)

where A = β

[
0 C P

xy
(C P

xy)
T 0

]
+ (1 − β)

[
Cxx 0
0 Cyy

]
, B = β

[
C P

xx 0
0 C P

yy

]
+

(1 − β)

[
Idx 0
0 Idy

]
; Cxx = 1

nx
X X T , Cyy = 1

ny
Y Y T , C p

xx = 1
n p

X P X T
P , C p

yy =
1

n p
YP Y T

P , C p
xy = 1

n p
X P Y T

P ; Id is the d ×d identity matrix, and β is the trade-off parameter
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(0 < β < 1). The first terms of A and B ensure the correlations between the paired data
to be maximized and the second terms ensure the covariances of X and Y to be maximized
respectively.

Furthermore, A and B can be rewritten as A =
[

0 C P
xy

(C P
xy)

T 0

]
+ η

[
Cxx 0
0 Cyy

]
and

B =
[

C P
xx 0

0 C P
yy

]
+ η

[
Idx 0
0 Idy

]
, where η = 1−β

β
. Though no objective function was

explicitly given in [17]. In fact, we still deduce the corresponding objective function to
Eq. (9) as

max
wx , wy

wT
x C P

xywy + η

(
1

2
wT

x Cxxwx + 1

2
wT

y Cyywy

)

s.t. wT
x C P

xxwx + wT
y C P

yywy + η
(
wT

x wx + wT
y wy

)
= 1. (10)

Though Eqs. (3), (8) and (9) are all GEPs, Eqs. (3) and (8) can be solved in a decoupled way
but Eq. (9) cannot, due to that the left-side matrix of the former is anti-diagonal but that of the
latter is not. Consequently, solving the latter is more complex than solving the former. In the
following section, we desire that our NeCA still has such a decouplable property in solution.

3 Neighborhood Correlation Analysis (NeCA)

In this section, we formally introduce our NeCA method. CCA and its variants (SemiLRCCA
and SemiCCA) mainly consider the correlations between paired samples in different views
(views x and y). Actually, in terms of the manifold assumption, it is reasonable to consider
not only the correlations between paired samples in given two views but also the correla-
tions between their respective neighborhoods, as shown in Fig. 1. To this end, the between-
view neighborhood relationships are constructed by leveraging within-view neighborhood
relationships of individual views and between-view paired data. Then NeCA is developed
through incorporating between-view neighborhood relationships into CCA, which can take
more sufficient advantage of unpaired samples in the way of two-view leaning. As a result,
NeCA can consider the correlations between the samples in one view and their corresponding
between-view local neighbors in the other view, in addition to the correlations between those
paired samples. This way, it can work with partially-paired data with large number of the
unpaired samples.

3.1 Constructing Within-View Neighborhood Graph

A neighborhood graph of view x is constructed as G X = {X, SX } with a vertex set X and a
within-view affinity weight matrix SX , SX = (SX

i j )Nx ×Nx is defined as

SX
i j =

{
exp

(−||xi − x j ||2/2σ 2
x

)
0

xi ∈ Nk
(
x j

) ∨ x j ∈ Nk (xi ) ∨ i = j
otherwise

, (11)

where Nk(xi ) denotes the k nearest neighbors of xi . Similarly, a neighborhood graph of view
y is constructed as GY = {Y, SY }, SY = (SY

i j )Ny×Ny is defined as

SY
i j =

{
exp

(
−||yi − y j ||2/2σ 2

y

)

0

yi ∈ Nk
(
y j

) ∨ y j ∈ Nk (yi ) ∨ i = j
otherwise

, (12)

where Nk(yi ) denotes the k nearest neighbors of yi .
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3.2 Constructing Between-View Neighborhood Graph

Note that views x and y are heterogeneous, therefore the construction of between-view
neighborhood graph seems not so straightforward. Fortunately, the two within-view’s neigh-
borhood graph constructed in Sect. 3.1 can be used to guide the construction of between-view
neighborhood graph.

Similar to [4], we assume that the neighbors of xi in view x and the neighbors of the yi

in view y are between-view similar, where xi and yi are paired samples from the two views.
Under the assumption, the between-view neighborhood graph can be constructed through
leveraging the within-view neighborhood graphs of individual views and paired data and is
defined as a bipartite graph G XY = {X ∪Y, SXY } with a vertex set X ∪Y and a between-view
affinity weight matrix SXY ∈ RNx ×Ny which describes the affinity weights between samples
in different views.

Then, we need to consider how to encode SXY by utilizing both the within-view neighbor-
hood relationships of views x and view y (i.e. SX and SY ) and paired information between
different views. Facing such a semi-paired scenario, we adopt a method named SMD [4]
to generate SXY , since it can incorporate the within-view neighborhood relationships and
the between-view paired information without artificially equating or relating them naturally.
According to the definition of SMD, SXY is defined as

SXY
i j = SSmd

i j =
p∑

h=1

SX
ih × SY

hj , (13)

where p is the number of paired data, i ∈ {1, 2, . . . , NX } and j ∈ {1, 2, . . . , NY }. Intui-
tively, the term within the sum will be closer to one when xi is close to xh (i.e. SX

ih is close
to one) in view x and y j is close to yh (i.e. SY

hj is close to one) in view y. Thus, if xi and

y j share many paired neighbors, SXY
i j will be large. Then we can construct a full bipartite

affinity matrix SXY between views using Eq. (13) where h sums over only the p paired data
{(x1, y1), . . . , (x p, yp)}. Now SXY can be more compactly written as a matrix form

SXY = SSmd = S̃X ×
(

S̃Y
)T

, (14)

where S̃X = SX (:, 1 : p) ∈ RNx ×p, S̃Y = SY (:, 1 : p) ∈ RNy×p . Figure 2 shows the
graphical view of the encoding of SSM D .

XS

p

p

xN       p−

p −

)S (

yN p

Y T

Fig. 2 A graphical view of the matrix multiplication required to compute SSmd , when there are p paired
samples in both views, (Nx − p) samples only in view x and (Ny − p) samples only in view y [4]
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3.3 Formulation of NeCA

NeCA gets developed through incorporating between-view affinity weight matrix SXY (=
SSmd) into the CCAs object function (4). Its object function is defined as

min
wx , wy

Nx , Ny∑

i, j=1

(
wT

x xi − wT
y y j

)2
SSmd

i j . (15)

Following some simple algebraic steps, we see that

Nx∑

i

Ny∑

j

(
wT

x xi − wT
y y j

)2
SSmd

i j

=
Nx∑

i

Ny∑

j

(
wT

x xi SSmd
i j xT

i wx + wT
x y j SSmd

i j yT
j wx − 2wT

x xi SSmd
i j yT

j wy

)

=
Nx∑

i

wT
x xi DRow

i i xT
i wx +

Ny∑

j

wT
y y j DCol

j j yT
j wy − 2

Nx∑

i

Ny∑

j

wT
x xi SSmd

i j yT
j wy

= wT
x X DRow X T wx + wT

y Y DColY T wy − 2wT
x X SSmd Y T wy

where DRow and DCol are diagonal matrices and their entries are row and column sums of

SSmd respectively, i.e. DRow
i i = ∑Ny

j SSmd
i j and DCol

j j = ∑Nx
i SSmd

i j . Therefore, the minimi-
zation problem (15) can be reduced to the following optimization problem:

max
wx , wy

wT
x X SSmd Y T wy

s.t. wT
x X DRow X T wx = 1, wT

y Y DColY T wy = 1. (16)

Finally, using Lagrange multiplier method as CCA, we can recast the optimization problem
(16) as the following GEP (see Appendix):

[
0 X SSmd Y T

Y (SSmd)T X T 0

] [
wx

wy

]
= λ

[
X DRow X T 0

0 Y DColY T

] [
wx

wy

]
, (17)

where λ is the generalized eigenvalue corresponding to the generalized eigenvector (wx , wy).
Consequently, NeCA, which inherits merit of CCA, can be easily solved by comput-
ing the GEP in the same decoupled way as CCA and SemiLRCCA. Now taking the top
r ≤ min(dx , dy) generalized eigenvectors, we obtain r -dimensional mappings (Wx ∈
Rdx ×r , Wy ∈ Rdy×r ) with respect to the two views. From Eq. (16) and Fig. 1, we can
know that CCA is a special case of NeCA when it only considers the correlations between
paired samples (i.e. X, Y and SSmd are replaced by X P , YP and a p × p identity matrix
respectively in Eq. (16)).

3.4 Algorithm of NeCA

Based on the above formulation and solution, we summarize the specific algorithm of NeCA
in Table 1.
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Table 1 The algorithm of NeCA

Input: Semi-paired data:
X = [

x1, . . . , x p, x p+1, . . . , xNX

] ∈ Rdx ×Nx and Y =
[
y1, . . . , yp, yp+1, . . . , yNY

] ∈ Rdy×Ny ,
where X P = [x1, . . . , x p] and YP = [y1, . . . , yp] are p paired data;

Output: Projection matrices: Wx , Wy

Procedure:

Step 1: Construct within-view affinity weight matrices SX and SX using Eqs. (11) and (12) respectively;

Step 2: Using Eq. (13) to construct between-view affinity weight matrix SXY (= SSmd ) based on SX , SY

and p paired data;

Step 3: Obtain projection matrices wx and wy through solving generalized eigenvalue problem Eq. (17).

Step 4: Taking the top r ≤ min
(
dx , dy

)
generalized eigenvectors, we obtain r -dimensional mappings

(Wx ∈ Rdx ×r , Wy ∈ Rdy×r ).

4 Generalization of NeCA

NeCA utilizes those unpaired samples in the way of two-view learning differently from both
SemiLRKCCA and SemiCCA in the way of single-view learning and has no any regulariza-
tion in its optimization problem. In fact, NeCA can further be boosted in performance by the
regularization using individual views’ structure information just as both SemiLRCCA and
SemiCCA do for CCA. As a result, two extensions of NeCA are presented: LRNeCA and
PRNeCA. Their optimization problems are defined in Eqs. (18) and (19) respectively.

(1) LRNeCA

max
wx , wy

wT
x X SSmd Y T wy

s.t. wT
x

(
X DRow X T + γx X Lx X T

)
wx = 1,

wT
y

(
Y DColY T + γyY L yY T

)
wy = 1. (18)

(2) PRNeCA

max
wx , wy

wT
x X SSmd Y T wy + η

(
1

2
wT

x Cxxwx + 1

2
wT

y Cyywy

)

s.t. wT
x X DRow X T wx + wT

y Y DColY T wy + η
(
wT

x wx + wT
y wy

)
= 1.

(19)

From Eqs. (18) and (19), we can see that LRNeCA and PRNeCA utilize those unpaired sam-
ples in single-view and two-view learning ways simultaneously. As a result, they can take
advantage of the between-view’s neighborhood correlation information and each view’s local
or global structure information effectively. Additionally, LRNeCA and PRNeCA naturally
degenerate to SemiLRCCA and SemiCCA respectively when only considering correlations
between paired samples.

5 Experiments

In this section, we perform experiments for comparing the NeCA family (NeCA and its vari-
ants: LRNeCA and PRNeCA) with CCA family (CCA and its variants: SemiLRCCA and
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SemiCCA). Their performance is evaluated by two-view classification experiments on dif-
ferent types of widely used multi-view datasets including WebKB, Internet Advertisements,
MFD and Yale. Specifically, WebKB and Internet Advertisements both are two classes web
page datasets (the former is two-view and the latter is multi-view); MFD is a multi-class hand-
written digits dataset and Yale is a multi-class face dataset. In the following experiments,
we mainly perform two kind of experimental comparisons: (1) NeCA versus CCA, where
NeCA and CCA only utilize the between-view’s correlation information; (2) LRNeCA versus
SemiLRCCA and PRNeCA versus SemiCCA, where NeCA variants (LRNeCA and PRNe-
CA) and CCA variants (SemiLRCCA and SemiCCA) all utilize not only the between-view’s
correlation information but also the single-view’s local or global structure information.

5.1 Evaluation Metric

For any test sample xi in view x (resp. y j in view y), we firstly extract features W T
x xi (resp.

W T
y y j ), then perform its classification based on W T

y YP (resp. W T
x X P ), where YP are paired

training data in view y (resp. X P are paired training data in view x). In this paper, the nearest
neighbor classifier is employed to estimate the classification accuracies of different methods.

5.2 Parameter Selection

In both NeCA family and SemiLRCCA, the neighborhood size k is searched from
{1, 2, . . . , l}(l is smaller than the number of each class’s training samples in each view),
where l is empirically set as 20, 30, 20 and 5 for Internet Advertisements, WebKB, MFD and
Yale respectively; the heat kernel width σ is set as c×σ0 (σ0 is the mean norm of each view’s
training samples), where c is simply set as 1 for Internet Advertisements and MFD and c
is searched from {2−4, 2−3, . . . , 24} for WebKB and Yale. In LRNeCA and SemiLRCCA,
parameter γx (= γy) is searched from {2−20, 2−18, . . . , 220}. In PRNeCA and SemiCCA,
parameter η is also searched from {2−20, 2−18, . . . , 220}. We perform five-fold cross-val-
idation to select the optimal parameters. The parameters sought corresponding to the best
results in the validation are used in testing. In our experiments, Tikhonov regularization is
used for all the algorithms involved (CCA, SemiLRKCCA, SemiCCA and our NCA).

5.3 Database Description

(1) Internet Advertisements Dataset. This dataset1 is selected from UCI machine learning
repository, which is composed of 3,279 web images (459 Ads. and 2,820 Non-ads.) with
1,558 attributes. All attributes, except four missing value, can be split into five sets covering
urls and text descriptions. They are: (1) 472 attributes from ancurl terms, i.e. urls provided
by images (Ancurl); (2) 111 attributes from alt terms, i.e. alter native text descriptions when
some errors occur (Alt); (3) 19 attributes from caption terms, i.e. caption texts of images
(Cap); (4) 495 attributes from origurl terms, i.e. original or source urls of images (Origurl);
(5) 457 attributes from url terms, i.e. urls of web pages where the images are placed (Url).
(2) WebKB. The WebKB course dataset2 has been frequently used in the empirical study
of multi-view learning since it was first introduced by Blum et al. [30]. The dataset con-
tains 1,051 web pages collected from computer science departments of four universities.
The pages are manually classified into two categories: course (230) and non-course (821).
The dataset has two views which are the textual content of a web page (page view) and the

1 The datasets are available from http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements.
2 The datasets are available from http://www.cs.cmu.edu/afs/cs/project/theo-11/www/wwkb/.
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Table 2 The average classification accuracies across 20 runs on Internet advertisements dataset and the
corresponding standard deviations

CCA and its variants NeCA and its variants

CCA SemiLRCCA SemiCCA NeCA LRNeCA PRNeCA

1

Ancurl 69.65 ± 8.5 72.45 ± 2.5 82.05 ± 9.3 75.25 ± 7.5 73.65 ± 8.1 80.25 ± 7.3

Altcap 61.15 ± 7.6 65.10 ± 2.3 63.75 ± 7.5 64.25 ± 5.7 65.70 ± 2.8 65.50 ± 6.1

2

Ancurl 77.90 ± 6.4 79.10 ± 4.1 86.00 ± 3.9 81.05 ± 6.7 80.30 ± 4.7 86.60 ± 4.8

Origurl 65.15 ± 2.6 66.90 ± 5.2 63.40 ± 5.0 69.00 ± 5.3 68.70 ± 2.7 69.05 ± 4.9

3

Ancurl 79.80 ± 5.2 80.25 ± 4.7 85.35 ± 4.1 81.20 ± 7.2 79.40 ± 4.1 86.25 ± 4.7

Url 72.10 ± 8.5 75.30 ± 7.0 70.90 ± 8.0 74.60 ± 7.1 76.95 ± 6.9 77.80 ± 7.8

4

Url 69.90 ± 8.4 71.55 ± 8.0 74.45 ± 8.0 71.00 ± 8.2 72.55 ± 7.4 75.65 ± 5.9

Origurl 59.75 ± 5.1 66.75 ± 6.3 60.00 ± 5.6 62.85 ± 7.4 67.05 ± 6.8 64.15 ± 4.8

5

Url 66.30 ± 8.0 67.45 ± 7.6 67.75 ± 8.4 66.15 ± 8.5 67.85 ± 8.2 69.65 ± 7.8

Altcap 59.75 ± 6.6 66.40 ± 2.6 64.25 ± 1.7 62.00 ± 7.5 65.65 ± 4.9 65.30 ± 3.8

6

Altcap 64.10 ± 6.4 65.20 ± 4.6 65.80 ± 2.5 59.70 ± 6.8 63.30 ± 5.1 64.55 ± 5.7

Origurl 56.85 ± 2.7 60.00 ± 5.4 58.70 ± 5.5 59.45 ± 6.2 60.50 ± 6.3 61.80 ± 6.5

words that occur in the hyperlinks of other web pages pointing to that web page (link view).
We borrowed a processed WebKB course dataset from Sindhwani et al. [31] and used it
in our experiment. For the page representation, 3,000 features were selected according to
information gain. For the link representation, 1,840 features were generated with no feature
selection. The first 200 samples are selected for each class in a balanced manner. Each view’s
dimension is preprocessed by PCA [20,21] to 100. (3) MFD. The MFD3 is picked out from
UCI machine learning repository. It is composed of six feature sets of handwritten digits from
0 to 9. Each class contains 200 samples. The six sets are flourier coefficient (Fou), contour
correlation characteristics (Fac), Karhunen-Loève expansion coefficient (Kar), pixel average
(Pix), Zernike moment (Zer) and morphological characteristics (Mor), and their dimension
are 76, 216, 64, 240, 47 and 6 respectively. In this section, we evaluate the effectiveness of
the proposed NeCA. (4) Yale. This database4 [32] contains 165 face images of 15 individuals.
There are 11 images per subject, and these 11 images are respectively under the following
different facial expression or configuration: center-light, wearing glasses, happy, left-light,
wearing no glasses, normal, right-light, sad, sleepy, surprised, and wink. Furthermore, in the
following experiments, we use the centered data based on all the training samples for each
dataset.

3 The datasets are available from http://www.ics.uci.edu/~mlearning/MLSummary.html.
4 The datasets are available from http://cvc.yale.edu/projects/yalefaces/yalefaces.html.
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5.4 Internet Advertisements Dataset

According to the five feature sets of Internet Advertisements Dataset, we construct four views:
(1) Ancurl; (2) AltCap (which is composed of Alt and Cap due to that they both belong to
the text descriptions of images); (3) Origurl; (4) Url. We choose any two views from the four
views as views x and y respectively, and thus there are six two-view combinations in total.
The first 200 samples are selected for each class in a balanced manner. Fifty percent of the
samples of each class are randomly selected for training and the rest for testing. Further, we
randomly select 10 % in the training set as the paired data and the rest as the unpaired. Table 2
reports the accuracies averaged over 20 independent trials, for the subspace dimensionality
that provided the highest accuracy.

From the Table 2 (in which the best performances are bolded), we can obtain several
attractive observations:

(1) NeCA versus CCA. NeCA achieves better classification accuracy on 10 out of the 12
cases (view combinations 6 × 2 cases/combination) and improves over 3 % on 6 cases.

(2) LRNeCA versus SemiLRCCA: LRNeCA wins nine cases. PRNeCA versus SemiCCA:
PRNeCA wins 10 cases and improves over 3 % on 4 cases.

(3) NeCA family versus CCA family: NeCA family wins nine cases.

5.5 WebKB Course Dataset

In this experiment, 50 % web pages of each category are randomly selected for training and
the rest for testing. Further, three groups of experiments are performed, where 5 %, 10 %
and 15 % of the training set are respectively selected as the paired data and the rest as the
unpaired data. Table 3 reports the accuracies averaged over 20 independent trials, for the
subspace dimensionality that provided the highest accuracy.

From the Table 3 (in which the best performances are bolded), we can obtain several
attractive observations:

(1) NeCA versus CCA: NeCA achieves better classification accuracy on all cases and
improves over 4 % on four cases.

Table 3 The average classification accuracies across 20 runs on WebKB and the corresponding standard
deviations

CCA and its variants NeCA and its variants

CCA SemiLRCCA SemiCCA NeCA LRNeCA PRNeCA

5 %

Page 76.80 ± 6.7 79.20 ± 4.1 77.10 ± 6.7 77.15 ± 6.6 80.00 ± 5.2 84.60 ± 6.9

Link 76.45 ± 8.9 77.00 ± 8.1 79.00 ± 6.8 80.35 ± 8.6 82.55 ± 4.4 82.35 ± 3.8

10 %

Page 77.15 ± 7.9 81.70 ± 2.8 83.65 ± 4.7 81.10 ± 5.1 83.70 ± 5.3 90.15 ± 1.4

Link 77.95 ± 8.0 81.05 ± 7.6 85.60 ± 2.6 82.70 ± 3.6 83.75 ± 3.1 86.45 ± 3.3

15 %

Page 81.95 ± 5.7 82.15 ± 6.5 83.50 ± 5.2 83.80 ± 3.9 84.60 ± 3.6 91.45 ± 3.1

Link 79.35 ± 8.6 83.05 ± 8.8 85.75 ± 2.3 84.00 ± 3.0 84.20 ± 2.0 87.00 ± 2.2
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(2) LRNeCA versus SemiLRCCA: LRNeCA wins all cases. PRNeCA versus SemiCCA:
PRNeCA wins all cases and improves over 6 % on nine cases.

(3) NeCA family versus CCA family: NeCA family wins all cases.

5.6 Multiple Feature Handwritten Digit Database (MFD)

According to the first five feature sets of MFD, we construct five views: Fou, Fac, Kar, Pix
and Zer. We don’t consider the sixth feature set Mor, sine it only has 6 dimensions. We
select two views from the five views as views x and y respectively, and so there are ten view
combinations. Fifty samples of each class are selected for training and the rest for testing at
random. Table 4 reports the accuracies averaged over 20 independent rounds, for the subspace
dimensionality that provided the highest accuracy. During every round, we randomly choose
10 % of the each class’s training samples as paired data.

From the Table 4 (in which the best performances are bolded), we can obtain the following
observations:

(1) NeCA versus CCA: NeCA achieves better classification accuracy on 16 out of the 20
cases (view combinations 10 × 2 cases/combination) and NeCA improves over 20 and
10 % on 3 and 6 cases respectively.

(2) LRNeCA versus SemiLRCCA: LRNeCA wins 19 cases and improves over 3 % on 8
cases. PRNeCA versus SemiCCA: PRNeCA wins all cases and improves over 3 % on
eight cases.

(3) NeCA family versus CCA family: NeCA family wins 19 cases.

5.7 Yale Database

In this experiment, we use the cropped 32 × 32 images which can be considered as the first
view. To construct multi-view data, we provide another two representations of each image:
(1) one from down-sampling to 16 × 16 pixels as the second view, since images in differ-
ent resolutions can provide information at different levels; (2) the other from Local Binary
Pattern Code (LBPC) [33] as the third view. So there are three view combinations in total
for views x and y. To deal with the small sample size problem, each view is preprocessed by
PCA with 98 % energy kept ratio.

The face images are divided into different training and test sets, and the training set
is sub-partitioned into paired and unpaired sets. Concretely, eight images of each indi-
vidual are randomly selected for training and the rest for testing; two groups of experi-
ments are performed, where p (= 2 and 3, respectively) samples in the training set are
selected as the paired data and the rest as the unpaired. Table 5 reports the accuracies aver-
aged over 20 independent trials, for the subspace dimensionality that provided the highest
accuracy.

From the Table 5 (in which the best performances are bolded), we can obtain the following
observations:

(1) NeCA versus CCA: NeCA achieves better classification accuracy on all 12 cases and
improves over 4 % on 9 cases.

(2) LRNeCA versus SemiLRCCA: LRNeCA wins 10 cases and equals 2 cases. PRNeCA
versus SemiCCA: PRNeCA win all cases and improves over 4 % on eight cases.

(3) NeCA family versus CCA family: NeCA family wins 10 cases and equals 2 cases.

123



Neighborhood Correlation Analysis 349

Table 4 The average classification accuracies across 20 runs on MFD and the corresponding standard devi-
ations

CCA and its variants NeCA and its variants

CCA SemiLRCCA SemiCCA NeCA LRNeCA PRNeCA

1

Fac 79.54 ± 2.6 81.90 ± 3.4 79.55 ± 2.7 76.00 ± 3.9 82.27 ± 3.4 80.93 ± 4.3

Fou 41.17 ± 4.9 64.98 ± 3.1 65.32 ± 2.9 64.85 ± 3.6 69.39 ± 2.8 68.25 ± 2.6

2

Fac 79.39 ± 2.8 84.57 ± 1.5 80.01 ± 2.3 80.76 ± 2.9 84.69 ± 2.9 81.49 ± 3.0

Kar 56.23 ± 3.7 81.87 ± 2.0 80.26 ± 2.3 78.96 ± 3.2 83.22 ± 2.1 82.99 ± 2.4

3

Fac 79.15 ± 2.7 83.87 ± 2.7 80.10 ± 2.2 79.97 ± 3.3 84.19 ± 2.6 82.23 ± 3.6

Pix 72.13 ± 4.3 75.35 ± 3.1 82.21 ± 2.1 69.73 ± 3.1 81.19 ± 2.0 84.31 ± 2.3

4

Fac 69.45 ± 3.7 82.69 ± 2.5 73.94 ± 3.7 76.29 ± 3.1 81.96 ± 3.3 77.37 ± 3.4

Zer 58.99 ± 3.5 67.97 ± 2.2 63.11 ± 2.9 68.47 ± 2.8 69.24 ± 2.7 68.85 ± 2.7

5

Fou 62.79 ± 4.1 66.48 ± 2.6 64.15 ± 4.3 64.11 ± 3.3 69.80 ± 3.1 67.18 ± 3.2

Kar 59.72 ± 4.2 75.81 ± 4.2 77.94 ± 2.7 74.17 ± 2.8 79.56 ± 3.2 80.10 ± 2.6

6

Fou 63.43 ± 3.3 64.49 ± 3.6 64.60 ± 2.3 65.80 ± 2.8 68.61 ± 2.4 67.67 ± 2.9

Pix 67.35 ± 4.6 72.77 ± 2.1 76.01 ± 2.7 63.07 ± 3.0 76.89 ± 2.4 78.47 ± 3.5

7

Fou 49.09 ± 5.1 63.69 ± 2.6 62.04 ± 3.3 62.03 ± 3.6 66.31 ± 2.4 64.72 ± 3.5

Zer 62.60 ± 3.6 66.18 ± 2.6 64.92 ± 1.8 65.61 ± 3.5 68.27 ± 2.5 66.96 ± 2.1

8

Kar 79.61 ± 2.0 82.41 ± 1.9 84.37 ± 2.0 81.23 ± 2.5 85.30 ± 2.2 85.73 ± 2.2

Pix 80.27 ± 2.3 83.05 ± 1.8 83.25 ± 1.5 73.88 ± 2.0 85.57 ± 2.0 84.17 ± 2.4

9

Kar 47.87 ± 3.7 77.11 ± 3.7 72.62 ± 3.8 72.39 ± 4.5 78.67 ± 3.3 74.88 ± 3.5

Zer 63.45 ± 3.9 67.17 ± 3.2 64.54 ± 2.6 67.26 ± 3.4 69.55 ± 2.7 67.49 ± 3.0

10

Pix 60.74 ± 4.1 74.03 ± 2.8 73.09 ± 5.0 62.73 ± 4.2 76.69 ± 2.6 75.30 ± 3.9

Zer 65.35 ± 2.6 67.63 ± 3.2 65.82 ± 2.7 68.81 ± 3.2 69.29 ± 3.0 68.91 ± 3.4

5.8 Impaction of Different Paired Ratio on the Performance of NeCA and CCA

In this subsection, we perform experiments on MFD for analyzing the impact of different
paired samples ratio on NeCA and CCA. The classification accuracies averaged over that of
the two view (views x and y) are employed for comprehensive analyzing the performance of
the two methods, since they both are two-view learning methods.

Figure 3 shows the comparisons of the classification accuracies of CCA and NeCA with
different proportion of paired samples. Here, we mainly consider the following four view
combinations: Fac and Fou, Fac and Kar, Fou and Zer, Kar and Zer.

123



350 X. Zhou et al.

Table 5 The average classification accuracies across 20 runs on yale and the corresponding standard devia-
tions

CCA and its variants NeCA and its variants

CCA SemiLRCCA SemiCCA NeCA LRNeCA PRNeCA

p = 2

1

32 × 32 68.22 ± 8.4 74.22 ± 5.9 67.56 ± 8.1 71.78 ± 8.0 74.44 ± 5.8 72.44 ± 6.9

16 × 16 68.44 ± 6.9 75.11 ± 6.9 69.78 ± 7.8 74.00 ± 6.7 76.33 ± 4.1 74.67 ± 6.6

2
32 × 32 66.89 ± 8.9 74.44 ± 5.9 70.22 ± 7.1 70.89 ± 6.0 76.00 ± 6.3 73.33 ± 6.2

LBPC 71.78 ± 9.8 82.00 ± 6.8 67.33 ± 8.8 76.67 ± 9.0 82.89 ± 6.3 77.33 ± 9.2

3
16 × 16 68.44 ± 6.0 76.22 ± 6.7 72.22 ± 7.9 74.67 ± 6.4 76.22 ± 6.3 74.44 ± 6.4

LBPC 71.78 ± 9.8 82.00 ± 6.3 67.78 ± 8.5 76.67 ± 9.0 82.89 ± 6.3 75.56 ± 9.2

p = 3
1

32 × 32 71.11 ± 7.3 77.11 ± 7.4 72.67 ± 6.7 75.11 ± 6.9 77.33 ± 6.9 76.44 ± 6.3

16 × 16 72.44 ± 7.3 77.56 ± 7.0 71.56 ± 6.5 76.67 ± 6.2 78.22 ± 5.6 75.78 ± 5.3

2
32 × 32 69.56 ± 7.3 77.33 ± 6.6 76.22 ± 9.4 73.33 ± 6.7 79.33 ± 7.0 77.11 ± 8.7

LBPC 75.78 ± 9.4 83.33 ± 5.9 70.44 ± 6.3 77.11 ± 7.3 83.56 ± 5.8 77.33 ± 8.3

3
16 × 16 72.67 ± 6.7 79.33 ± 5.8 74.22 ± 9.9 77.33 ± 6.3 79.33 ± 5.8 76.22 ± 3.3

LBPC 77.11 ± 8.8 82.89 ± 6.3 72.00 ± 8.4 78.22 ± 7.2 83.11 ± 6.3 76.77 ± 7.4

According to the Fig. 3, we can obtain the following observations:

(1) With the increase of the paired samples ratio, the classification accuracies of CCA and
NeCA are also improving generally.

(2) When the paired sample proportion is low, NeCA performs much better than CCA.
This indicates that NeCA can effectively mitigate CCAs overfitting problem caused by
limited paired data.

5.9 Summary of Experimental Results

According to the experimental results on different types of datasets shown from Sect. 5.4 to
5.8, we have the following general observations:

(1) NeCA performs much better than CCA in general, stating that NeCA can effectively
mitigate overfitting caused by limited paired data and has more discriminative power
through the utilization of between-view neighborhood relationships. Moreover, this also
indicates that NeCA can make more sufficient use of the unpaired data to improve its
performance.

(2) NeCAs variants (LRNeCA and PRNeCA) respectively outperform their corresponding
CCAs variants (SemiLRCCA and SemiCCA) in most cases, which shows that NeCAs
variants really benefit from the exploitation for the unpaired data simultaneously in
single-view and two-view learning ways rather than only in the single-view learning
way in CCAs variants for the unpaired data.

123



Neighborhood Correlation Analysis 351

Fig. 3 Comparisons of the classification accuracies of CCA and NeCA with different proportion of paired
samples, where the classification accuracies are averaged over the ones of the two view (views x and y)

(3) When the paired sample proportion is low, NeCA performs much better than CCA
which indicates that NeCA can effectively mitigate CCAs overfitting problem caused
by limited paired data.

6 Conclusions and Future Work

In this paper, we have proposed a novel semi-paired variant of CCA named NeCA. It can
work with semi-paired data and take more sufficient advantage of the unpaired samples by
constructing the correlations between samples in one view and their between-view local
neighbors in the other view. As a result, NeCA can effectively mitigate CCAs overfitting
problem caused by limited paired data. Furthermore, considering that NeCA can use those
unpaired samples in a two-view leaning way, thus we further present its two regulariza-
tion versions (LRNeCA and PRNeCA) for better performance. Experimental results on four
different datasets show that NeCA family performs better than CCA family.

Our further works include: (1) Our NeCA is currently an unsupervised dimension reduc-
tion method. When supervised information can be available, incorporating class label infor-
mation into the NeCA for extracting more discriminative features will be considered. (2)
Though in this paper, we focus on dimension reduction in semi-paired scenario, when tar-
geted at a classification task, how to design a classifier directly under such a scenario is an
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interesting topic. (3) NeCA is currently a linear dimension reduction method. Actually, it can
easily be extended to work in a nonlinear feature space by the powerful kernel methods. (4)
Though NeCA is now still a two-view learning method, the extension to multi-view scenario
is straightforward by the pair-view combination. (5) Under semi-paired scenario, the con-
struction of between-view neighborhood relationships in NeCA can be applied to the work
[28] for establishing its between-view neighborhood relationships more faster and perhaps
more accurately.
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Appendix: Solving Optimization (15) Through Lagrange Multiplier Method

max
wx , wy

wT
x X SSmd Y T wy

s.t. wT
x X DRow X T wx = 1, wT

y Y DColY T wy = 1.

Defining its Lagrangian function as

L
(
wx , wy

) = wT
x X SSmd Y T wy − λx

2

(
wT

x X DRow X T wx − 1
)

−λy

2

(
wT

y Y DColY T wy − 1
)

.

Taking derivatives with respect to wx and wy respectively, we obtain

∂L
(
wx , wy

)

∂wx
= X SSmd Y T wy − λx X DRow X T wx = 0 (19.1)

∂L
(
wx , wy

)

∂wy
= Y

(
SSmd

)T
X T wx − λyY DColY T wy = 0 (19.2)

Subtracting the second equation premultiplied by wT
y from the first one premultiplied by wT

x ,
we have

wT
x X SSmd Y T wy − λxw

T
x X DRow X T wx − wT

y Y
(

SSmd
)T

X T wx + λyw
T
y Y DColY T wy

= λyw
T
y Y DColY T wy − λxw

T
x X DRow X T wx = 0,

which together with the constraints leads to λy − λx = 0. Now let λy = λx = λ, we have

X SSmd Y T wy = λX DRow X T wx (20.1)

Y
(

SSmd
)T

X T wx = λY DColY T wy (20.2)

As a result, we can recast the optimization problem (15) as the following GEP:
[

0 X SSmd Y T

Y (SSmd)T X T 0

] [
wx

wy

]
= λ

[
X DRow X T 0

0 Y DColY T

] [
wx

wy

]
.
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