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a b s t r a c t

Motivated by the successes of large margin principle in classification learning, the maxi-
mum margin clustering method (MMC) received intensive attention recently. It seeks a
decision function and cluster labels for data simultaneously such that a supervised SVM
trained on the label-assigned data could achieve the maximum margin. MMC assigns a
unique cluster label for each instance. However, in real applications, the data distributions
from different clusters are usually overlapped, and thus an instance might belong to multi-
ple clusters with certain probabilities. Several soft clustering methods, which make use of
soft membership assignment, have been developed in literature and lead to better data par-
tition than their label-assignment counterparts. It motivates us to develop a novel Soft
Large Margin Clustering (SLMC for short hereafter) method. SLMC enjoys the advantages
of both MMC and the soft clustering methods, i.e., on one hand, it possesses a decision
function with the maximal margin between clusters, and on the other hand, it accom-
plishes soft assignments for each instance to individual clusters to capture the nature of
data structure. Its algorithmic implementation follows an alternating iterative strategy,
in which each step in the iteration generates a closed-form solution, and the convergence
of the whole iteration process can be theoretically guaranteed. Experiments on both syn-
thetic and real datasets verify the effectiveness of SLMC.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Clustering is an unsupervised learning process, which aims to partition data into a set of non-overlapping groups such
that data within the same group are as similar as possible, whereas data belonging to different groups are as dissimilar
as possible [17,25]. In the past decades, various clustering methods have been developed in literature, typically including
K-means [12], spectral clustering [24] and mixture model [23], and they have been widely applied in many areas such as
data mining, image segmentation and image compression.

Recently, motivated by the superiority of large margin principle in classification learning [7,10,16], a novel large margin
clustering method named maximum margin clustering (MMC) [38] has been developed and received intensive attention in
machine learning community. MMC aims to seek the decision function and cluster labels for given data simultaneously so
that a supervised SVM trained on given data with the assigned labels would achieve the maximum margin. The optimization
problem formulated in MMC is a non-convex integer programming problem, and then relaxed to a corresponding
semi-definite programming (SDP) [6] problem with n2 variables (for a given dataset containing n instances). Finally, it can
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be solved by the commonly-used CSDP [5] or SeDumi [33] toolboxes with a high computational complexity of O(n6). Later,
several researchers proposed several variants of MMC [20,35–36,41–42] to reduce the high computation complexity. Valiz-
adegan et al. [35] developed a generalized maximum margin clustering method (GMMC) by reducing the variable number to
n, achieving a lower computation complexity of O(n4.5). Li et al. [20] developed a label generation-maximum margin cluster-
ing (LG-MMC) by converting the optimization problem of MMC into a multiple kernel learning problem [29–30], achieving a
computational complexity proportional to that of SVM, i.e., O(k�n3), where k is the iteration number. Zhang et al. [42] devel-
oped an iterative SVR/LS-SVM by replacing the hinge loss in MMC with the Laplacian/squared loss, reducing the complexity
to O(k�n3), the same order with that of SVR/LS-SVM [31,34]. Wang et al. [36] developed a cutting plane maximum margin
clustering approach (CPMMC) by first decomposing the MMC optimization problem into a set of convex sub-problems using
the constraint concave-convex program (CCCP) [32,40], and then solving each sub-problem by the cutting plane method. Fi-
nally, CPMMC achieves a linear-time complexity, i.e., O(k�s�n), where s is the number of non-zero elements in the given
data matrix.

In MMC and its variants, each instance is assigned to just one cluster. However, such a cluster label assignment could be
inadequate when the data distributions are overlapping. For example, some instances might be equally distant from two or
more clusters, and consequently belong to multiple clusters with different memberships [13,25]. Moreover, a cluster label
assignment can not truly reflect the different degrees of an instance belonging to individual clusters, since it assigns the in-
stance to a single cluster as long as the instance is more similar to the cluster than the others. In fact, researchers have con-
sidered this issue, and attempted to improve the label-assignment clustering methods by using the soft membership
assignment. Finally they developed a series of soft clustering methods [19,22,26], for instance, the most well-known fuzzy
c-means (FCM) [4,26] clustering from K-means (KM) clustering [21]. Such soft (or soft-membership-assignment) clustering
methods can reflect cluster structure in a more natural way, and indeed provide better and more meaningful data partition
than the corresponding label-assignment ones [11].

In this paper, aiming to exert the benefits of soft clustering in large margin clustering, we develop a novel clustering
method referred to as Soft Large Margin Clustering (SLMC for short hereafter). SLMC seeks the decision function and soft
cluster memberships (for data to individual clusters) simultaneously with the cluster centers fixed to the given cluster enco-
dings in the output space. SLMC enjoys the advantages of both MMC and the soft clustering methods, i.e., on one hand, it
possesses a decision function with the maximal margin between clusters, on the other hand, it accomplishes soft assign-
ments for each instance to individual clusters to capture the real data structure. Its algorithmic implementation follows
an alternating iterative strategy, and the whole iteration process can be theoretically guaranteed to converge [14]. Following
iterative LS-SVM [42], SLMC adopts the squared loss function so that each step in the iteration generates a closed-form solu-
tion, and the formulation of SLMC can straightforwardly be extended to the multi-class cases. Finally, the effectiveness of
SLMC is verified by empirical comparisons with MMCs, and also KM and FCM as the baselines. Moreover, the convergence
of the iterative solving process for SLMC is also empirically demonstrated.

The rest of the paper is organized as follows. Section 2 introduces the related work. Section 3 presents the proposed SLMC
algorithm. Section 4 shows the empirical results and some conclusions are given in section 5.
2. Related work

Aiming to develop a soft large margin clustering method combining the advantages of both the large margin principle and
the soft clustering idea, we first briefly introduce the related work about maximum margin clustering and soft clustering in
separated sub-sections respectively.

2.1. Maximum margin clustering

Motivated by the large margin principle in classification learning, a large margin clustering method named maximum
margin clustering (MMC) has been developed. It seeks the decision function and cluster labels for given data simultaneously
so that the margin between clusters is maximized [38]. Specifically, given a dataset X ¼ fxign

i¼1 where each xi 2 Rd, then with
a decision function f(x) = wT/(x) (the threshold b in f(x) has been omitted here since it can be added implicitly by augmenting
each instance with a one-valued element), the optimization problem of MMC can be formulated as
minyi
minw;ni

1
2
kwk2 þ k

2

Xn

i¼1

ni

s:t: yiw
T/ðxiÞP 1� ni; ni P 0

yi 2 f�1;þ1g; i ¼ 1 . . . n

ð1Þ
where the variables {n1. . .nn} are introduced as the error-tolerances for given instances, k is a trade-off parameter balancing
between the margin maximization and data clustering, /(�): Rd ! Rd0 is a non-linear kernel mapping from the original input
space to a higher dimension feature space or Reproducing Kernel Hilbert Space (RKHS), in which instances from different
clusters are more likely to be linearly separable, and w 2 Rd0 is a weight vector for features in the feature space. Note that
though formally using the kernel mapping /(�), we actually do not need to formulate it explicitly. Specifically, if all calcu-
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lations between instances in the algorithm can be expressed by dot products, we can replace those dot products by a repro-
ducing kernel, i.e., K(xi,xj) = /(xi)T/ (xj) rather than explicitly formulate /(�), which is the so-called ‘‘kernel trick’’[7,10]. More-
over, in order to prevent problem (1) from a trivial solution, or an infinite margin for which all instances are assigned to a
single cluster, or the outliers are simply separated from the rest instances, the authors imposed a constraint – l 6 eTy 6 l to
(1), where l is a constant controlling the balance between clusters and e 2 Rn is an all-one vector.

For a multi-class (or multi-cluster) case, multi-class MMC [39] borrows the design idea from multi-class SVM [9]. Specif-
ically, it defines a decision function fkðxÞ ¼ wT

k/ðxÞ for each of the C clusters, and finally assigns instance x to the class with
the maximum classification score, i.e., ŷ ¼ arg max

k¼1...C
fkðxÞ. The optimization problem of the multi-class MMC can be formulated

as
min
yi

min
wk ;ni

1
2

XC

k¼1

kwkk2 þ k
2

Xn

i¼1

ni

s:t:wT
yi
/ðxiÞ þ dyi ;r �wT

r /ðxiÞP 1� ni; ni P 0

8i ¼ 1 . . . n; r ¼ 1 . . . C

ð2Þ
where dyi,r = 1 if yi = r and 0 otherwise.
Clearly, the MMCs prescribe each instance to belong to a single cluster, whereas our SLMC allows each instance to belong

to more than one cluster with the corresponding soft memberships. Moreover, it can be directly extended to the multi-class
cases.

2.2. Soft (fuzzy) clustering

A class of clustering methods can be formulated as the minimization of some objective function [8], such as the well-
known and widely-used K-means clustering (KM) [21]. As a clustering method based on label assignment, KM requires each
instance to belong to exactly one cluster, whereas in real applications, data distributions from different clusters are usually
overlapped, and thus each instance might belong to more than one cluster with different memberships [25]. As a result, to
better capture the real data structure, Bezdek [4] developed the corresponding fuzzy c-means clustering (FCM) method by
using the soft membership assignment, i.e.,
min
XC

k¼1

Xn

i¼1

um
kiðxi � vkÞ2

s:t:
XC

k¼1

uki ¼ 1

0 6 uki 6 1;8k ¼ 1 . . . C; i ¼ 1 . . . n

ð3Þ
where vk denotes the center for the kth cluster, uki denotes the soft membership of instance xi to the kth cluster, and m (>1)
denotes the fuzzier or weight exponent for the cluster memberships. Through allowing each instance to belong to multiple
clusters with the corresponding soft memberships, FCM and its variants can indeed provide better and more meaningful data
partitions than their corresponding label-assignment ones [11].

Minimizing the objective function in (3) is equivalent to minimizing the trace sum of the fuzzy within-cluster scatter
matrices [15], as a result, FCM actually seeks the cluster centers and fuzzy cluster memberships for data in data space so that
the within-cluster compactness is minimized.

In this paper, we incorporate the benefits of soft clustering into large margin clustering learning and present a new soft
large margin clustering method detailed in the next section.

3. Soft large margin clustering

In this section, we present the soft large margin clustering (SLMC) method, including its model formulation, problem
solution, data prediction and algorithmic description in separated sub-sections respectively.

3.1. Model formulation

Given a dataset X ¼ fxign
i¼1 where xi 2 Rd. Let f(x)=wT/(x) denote a decision function for a C-cluster clustering, where

w2Rd’�C is a weight matrix. Then the prediction for each instance xi is made by ŷi ¼ arg max
k¼1...C

fkðxiÞ, where fk(xi) denotes the

kth component of f(xi). Let U=[uki]C�n denote the soft partition matrix, in which each entry uki2[0,1] represents the soft mem-
bership of xi to the kth cluster. Let {l1,. . .lC} denote the given encodings for the C clusters respectively, where each lk2RC (cor-
responding to the kth class) is encoded by the commonly-used one-of-C rule, i.e., the kth entry of lk is set to 1 and the rest are
0, "k=1. . .C. For simpler optimization and direct extension to multi-cluster cases, we adopt the squared loss function as in
iterative LS-SVM [42], and formulate the optimization problem of SLMC as
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min
uki

min
w

1
2 kwk

2 þ k
2

XC

k¼1

Xn

i¼1

um
kikwT/ðxiÞ � lkk2

s:t:
XC

k¼1

uki ¼ 1

0 6 uki 6 1;8k ¼ 1 . . . C; i ¼ 1 . . . n:

ð4Þ
Different from FCM seeking a set of cluster centers and soft memberships for data in the data space, SLMC actually per-
forms clustering in the output space by adopting the classification learning principle. Specifically, SLMC anchors the cluster
centers to the predefined encodings for the C clusters, which is analogous to the predefined encodings for class labels in clas-
sification learning, and seeks both the decision function (as done in MMCs [38,42]) and the soft memberships for data in the
output space. Moreover, different from MMC, SLMC allows each instance to belong to multiple clusters with the correspond-
ing soft memberships through introducing the soft learning principle, consequently, it is more suitable to handle ambiguous
cluster assignments than MMC, and can reflect the degrees of instances belonging to individual clusters by such soft
memberships.

From (4), it is easily observed that SLMC maximizes the margin between clusters in the output space by minimizing the
first term of the objective function [34]. Moreover, SLMC minimizes the sum of distances between given instances and the
cluster centers in the output space (or more specifically, distances between the classification scores for given instances and
cluster encodings) weighted by the corresponding fuzzy memberships, thereby, it minimizes the fuzzy within-cluster scatter
in the output space simultaneously.

Note that though the one-of-C rule is adopted here to encode the lks in SLMC, some other encoding strategies, such as the
regular simplex vertices encoding [1], can also be adopted for designing each lk, but it is not the focus of this paper.

3.2. Problem solution

The optimization problem of SLMC is non-convex with respect to joint (w, u). In this paper, we propose to solve it using an
alternating iterative strategy to seek the decision function (w.r.t. the weight matrix w) and the soft memberships for data
respectively. Each step in the iteration generates a closed-form solution.

With fixed soft memberships, the optimization problem of SLMC for the decision function can be rewritten as
min
w

1
2
kwk2 þ k

2

XC

k¼1

Xn

i¼1

um
kikwT/ðxiÞ � lkk2 ð5Þ
Obviously, it is a quadratic convex problem (w.r.t. w with fixed ukis) and formally similar to LS-SVM. According to the
Representer Theorem [2], the minimization of (5) can yield a solution of the form f ðxÞ ¼

Pn
i¼1aiKðxi; xÞ, where each

ai 2 RC�1, thus (5) can be translated into
min
a

J1ðaÞ ¼ trðaKaTÞ þ k
XC

k¼1

trððaK� LkÞÛkðaK� LkÞTÞ ð6Þ
where a ¼ ½a1;a2 . . .an� 2 RC�nis the Lagrange multiplier matrix, K is the kernel matrix over the given data, each Lk is a C�n
matrix with the kth row being an all-one vector, and the rests being all-zero vectors, Uk denotes the kth row of U, andÛkde-
notes a diagonal matrix with the diagonal elements equaling to the squaredd values of the entries in Uk.

Setting the derivative of J1 w.r.t. a to zero, we have
@J1=@a ¼ aKþ k
XC

k¼1

ðaK� LkÞÛkKT ¼ 0 ð7Þ
which leads to a closed-form solution as
a ¼
XC

k¼1

LkÛkKTð
XC

k¼1

KÛkKT þ kKÞ�1 ð8Þ
Next, with a fixed decision function (corresponding to w or a), the optimization problem for the soft memberships can be
reformulated as
min
uki

XC

k¼1

Xn

i¼1

um
kikwT/ðxiÞ � lkk2

s:t:
XC

k¼1

uki ¼ 1

0 6 uki 6 1;8k ¼ 1 . . . C; i ¼ 1 . . . n:

ð9Þ
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Through adopting the Lagrange multiplier method, (9) can be rewritten as
J2ðukiÞ ¼
XC

k¼1

Xn

i¼1

um
kikf ðxiÞ � lkk2 �

Xn

i¼1

cið
XC

k¼1

uki � 1Þ ð10Þ
Likewise, setting the derivative of J2 w.r.t. each uki to zero, we have
@J2=@uki ¼ mkf ðxiÞ � lkk2um�1
ki � ci ¼ 0 ð11Þ
finally we have a closed-form solution as
uki ¼ ðci=mkf ðxiÞ � lkk2Þ
1

m�1 ð12Þ
Further, combining the constraint
PC

k¼1uki ¼ 1, we have
uki ¼
1=kf ðxiÞ � lkk2=ðm�1Þ

XC

k¼1

1=kf ðxiÞ � lkk2=ðm�1Þ
ð13Þ
where k2{1. . .C}, i2{1. . .n}.
3.3. Data prediction

Interestingly, prediction for each given instance in SLMC can be performed by not only the decision function but also the
soft cluster membership, which is a major difference between SLMC and previous clustering methods such as MMC. Specif-
ically, for any instance xi, its cluster assignment made by the decision function is ŷi ¼ arg max

k¼1...C
fkðxiÞ, and its cluster label pre-

dicted by the soft cluster memberships is ~yi ¼ arg max
k¼1...C

uki. Those two predictions are always consistent by the following
proposition.

Proposition 1 Predictions for each given instance by the decision function and soft cluster membership are always
consistent.

Proof: For an arbitrary instance xi, its cluster label predicted by the decision function is ŷi ¼ arg max
k¼1...C

fkðxiÞ, thus

xi 2 Xkimplies that fkðxiÞ > fjðxiÞ;8j ¼ 1 . . . C; j–k, where Xk denotes the set of instances belonging to the kth cluster. At the
same time, its cluster label predicted by the soft cluster membership is ~yi ¼ arg max

k¼1...C
uki, thus from (13), xi 2 Xkimplies that

kf ðxiÞ � lkk2
< kf ðxiÞ � ljk2, thenf ðxiÞT lk > f ðxiÞT lj, or equivalently, fkðxiÞ > fjðxiÞ; 8j ¼ 1 . . . C; j–k. As a result, the prediction con-

ditions for xi 2 Xk by the decision function and soft cluster membership are equivalent, and thus the predictions for xi by the
decision function and soft cluster membership are consistent. j

However, if the top-two cluster scores for xi are equal, i.e., fk(xi)=ft(xi) and fk(xi)>fj(xi), 8j ¼ 1 . . . C; k–t; j–k; j–t, then the
corresponding two cluster memberships for xi are equal as well, i.e., uki=uti and uki>uji, 8j ¼ 1 . . . C; k–t; j–k; j–t. In this case,
xi can be assigned to either cluster (between the kth and tth ones) by the decision function or the label memberships, how-
ever, we can always assign xi to the cluster with the smaller or larger numbering (between k and t) to guarantee the desired
consistency.
Table 1
The algorithm description of SLMC

Input X— the input data
k — the regularization parameter
e — the iteration stop parameter
r — the kernel parameter
Maxiter — the maximum number for iteration
Output f(x) — the decision function
U— the soft partition matrix for given data
Procedure
Obtain the initial U by FCM;
Set the initial objective function value to infinity, i.e., J0=INF;
For k=1. . .Maxiter
Update a by (8), and f(x) by the Represent theorem with obtained a;
Update U by (13);
Update the objective function vaule Jk;
If |Jk-Jk-1| <eJk-1

Break, return f(x) and U;
Endif
Endfor
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3.4. Algorithmic description

The optimization of SLMC follows an alternating iterative strategy. The iteration starts from an initial soft partition matrix
learned by a simple soft clustering method such as FCM (analogous to iterative LS-SVM starting from an initial cluster labels
learned by KM). The iteration terminates when |Jk-Jk-1| <eJk-1, where Jk is the objective function value at the kth iteration, and
e is a pre-defined threshold. The algorithm description of SLMC is given in Table 1.

Proposition 2 The sequence {J(at, ut)} obtained in the above algorithm w.r.t. SLMC converges.
Proof: First, the sequence of the objective function values generated by the above algorithm decreases monotonically. In

fact, the objective function J(a, u) is biconvex [14] in (a, u). Specifically, with fixed ut, the objective function is convex
in a, thus the optimal a⁄ can be obtained by minimizing J(a, ut), or equivalently optimizing (5). Now set at+1=a⁄, then
J(at+1, ut) = J(a⁄, ut) 6 J(at, ut). Simultaneously, with current at+1, the objective function is convex in u, thus the
optimal u⁄ can be obtained by minimizing J(at+1, u), or equivalently optimizing (9). Now set ut+1=u⁄, then J(at+1, ut+1) =
J(at+1, u⁄) 6 J(at+1, ut). Finally, J(at+1, ut+1) 6J(at+1, ut) 6J(at, ut), 8t2N. Hence, the consequence {J(at, ut)} decreases
monotonically.

Further, since the objective function is non-negative, thus lower-bounded, as a result, the sequence {J(at, ut)} converges.

4. Experiment

In this section, we verify the effectiveness of SLMC over both synthetic and real UCI datasets. Sub-section 4.1 describes the
experimental setups, sub-section 4.2 and 4.3 show the experimental results.

4.1. Experimental setups

In our experiments, we compare SLMC with MMC [38–39], in which the SDP problem is solved by the YALMIP [18] and
SeDuMi [28] toolboxes. We also compare SLMC with an improved-version of MMC called iterative LS-SVM [42], since iter-
ative LS-SVM has much lower computation complexity and usually better clustering performance than MMC. Moreover, LS-
SVM also adopts the squared loss function and alternating iterative solving strategy as in SLMC, thus is exactly the label-
assignment counterpart of SLMC. The optimization problem of iterative LS-SVM is formulated as follows,
min
yi2f�1;1g

min
w

1
2
kwk2 þ k

2

Xn

i¼1

kwT/ðxiÞ � yik
2 ð14Þ
Besides, we also compare SLMC with KM and FCM. For non-linear KM and FCM, we adopt the RBF kernel, and define the
cluster centers in the data space, i.e.,
min
XC

k¼1

Xn

i¼1

um
kik/ðxiÞ � /ðvkÞk2 ð15Þ
where uki 2 f0;1g for KM and uki 2 ½0;1� for FCM.
Following [36,38,42–43], we adopted both linear and RBF kernels in the experiments, and set the regularization and ker-

nel parameters by exhaustive search from the grids {0.1, 0.5, 1, 5, 10} and {0.25r0, 0.5r0, r0, 2r0, 4r0}, respectively, where r0

is the average distance between all instance pairs. We performed each method for 20 runs, kept the performance with the
best kernel and parameters setting in each run, and finally reported the average in all runs.

Since the true class labels are already provided in evaluating the clustering performances, we adopt clustering accuracy
(CA) [38,42] as the main performance index. Specifically, we first remove the class labels for the given instances, and perform
clustering with the cluster number set to the given class number. Then we assign each cluster the majority label within it,
and evaluate the clustering accuracy by measuring the consistency between the predicted cluster labels and the given class
labels, i.e.,
CA ¼ 1
N

XC

k¼1

max
t¼1...C

TðCk; LtÞ ð16Þ
where Ck and Lt denote the kth cluster and tth class respectively, and T(Ck, Lt) represents the number of instances belonging to
the tth class and assigned to the kth cluster. As a result, a larger clustering accuracy indicates a better clustering
performance.

Moreover, we also adopt three fuzzy validity indices for more comparisons between (fuzzy) SLMC and FCM, i.e., partition
coefficient (PC) [4], partition entropy (PE) [3], and Xie-Beni index (XB) [27,37]. Specifically, the partition coefficient is de-
fined by
PC ¼ 1
n

XC

k¼1

Xn

i¼1

u2
ki ð17Þ
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1/C6PC61, and a larger PC value indicates a better clustering performance, corresponding to a clustering partition with
more definite clustering partition or memberships. The partition entropy is defined by
Table 2
The att

Class

Mea
Cova

Num
PE ¼ �1
n

XC

k¼1

Xn

i¼1

ukilog2uki ð18Þ
06PE6log2C, and a smaller PE value indicates a better clustering performance, corresponding to a clustering partition
with more definite clustering memberships. The Xie-Beni index is a performance index considering both cluster compact-
ness and separation. It was originally proposed with m=2 [37], and then modified as
XB ¼

XC

k¼1

Xn

i¼1

um
kikxi � vkk2

nmin
i;j
kv i � v jk2 ¼ Jðu; vÞ=n

SepðvÞ ð19Þ
where J(u, v) and Sep(v) measure the cluster compactness and separation respectively [27]. A smaller XB value indicates a
better clustering performance. Since the clustering occurs in the kernel space in our experiments, we re-formulate the XB
in the kernel space as
XBU ¼

XC

k¼1

Xn

i¼1

um
kik/ðxiÞ � /ðvkÞk2

nmin
i;j
k/ðv iÞ � /ðv jÞk2 ð20Þ
We abuse the notation XB for XB/ hereafter for simplicity, and apply the RBF kernel to (20), finally we have
XB ¼

XC

k¼1

Xn

i¼1

um
kið1� exp

kxi�vkk
2

�2r2 Þ

nmin
i;j
ð1� exp

kvi�vjk
2

�2r2 Þ
ð21Þ
where r is the band width of the RBF kernel.

4.2. Synthetic dataset

Since the correct cluster number may be unknown in real application, we use a 2d synthetic dataset for demonstrating
how SLMC performs with different settings of cluster number in this sub-section. However, in experiments over the real
datasets in the next sub-section, we directly set the cluster number to the given class number following Refs. [36,38,42–43].
ributes of the synthetic dataset

1 (�) 2 (⁄) 3 (o) 4 (e)

n (0, 0) (0, 1.5) (1.6, 0) (1, 1.5)
riance 0:2 0

0 0:2

� �
0:1 0
0 0:1

� �
‘ 0:2 0

0 0:2

� �
0:1 0
0 0:1

� �

ber 100 100 100 100

-1.5 -0.5 0.5 1.5 2.5 3.5
-1.5

-0.5

0.5

1.5

2.5

Fig. 1. The distribution of the synthetic dataset
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The synthetic dataset is generated from four Gaussian distributions, one for each cluster. Table 2 gives the attributes of
the dataset, and Fig. 1 further displays the distribution.

The correct cluster number of the synthetic dataset is 4, however, we performed performance comparison with the clus-
ter number set to 3, 4, 5 and 6, respectively. Table 3 gives the clustering accuracies of the four compared methods, and the
bod value in each column indicates the best cluster accuracy obtained for each cluster number. Table 4 gives the PC, PE and
Table 3
Clustering accuracies of KM, FCM, iter_LSSVM and SLMC

Cluster number 3 4 5 6

KM 0.7000 0.9125 0.8850 0.8775
FCM 0.7100 0.9225 0.9075 0.9050
ITER_LSSVM 0.7100 0.9275 0.9175 0.9250
SLMC 0.7125 0.9375 0.9300 0.9325

Table 4
PC, PE and XB performances of FCM and SLMC

Cluster number FCM SLMC

PC PE XB PC PE XB

3 0.6918 0.8171 0.1192 0.7115 0.7970 0.0978
4 0.6653 0.9532 0.1700 0.6743 0.9428 0.1653
5 0.6035 1.1593 0.2367 0.6253 1.0156 0.2354
6 0.5453 1.3639 0.3976 0.5579 1.2557 0.3879
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Fig. 2. The clustering results of SLMC with the cluster number set to (a) 3, (b) 4, (c) 5 and (d) 6, respectively
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XB performances of FCM and SLMC, in which the bold values in each row indicate the better performances for each cluster
number, and Fig. 2 displays the clustering results of SLMC under different settings of clustering number (The clustering re-
sults of the other three methods are not displayed here due to their visual similarities with those of SLMC). From Tables 3 and
4, we can observe that with different settings of cluster number, SLMC obtains the best clustering accuracies among those
compared methods, and achieves better PC, PE and XB performances than FCM.

4.3. Real datasets

In this sub-section, we report the results on 18 UCI datasets. Sub-section 4.3.1 describes the datasets adopted for com-
parison, section 4.3.2 analyzes the value for the fuzzier m in SLMC, section 4.3.3 gives the comparison results, and section
4.3.4 empirically reveals the convergence of SLMC.

4.3.1. Datasets description
We evaluate the performance of SLMC over 18 UCI datasets, whose attributes are respectively described in Table 5,

including the total number of instances, number of features, number of classes, and number of instances in individual classes
(in the brackets). For the optdigits and pendigits datasets, we focus on the pairs which are difficult to distinguish [35,42], i.e., 3
versus 8, 3 versus 9, and 8 versus 9. For nominal features in datasets such as lenses, hepatitis, heart and arrhythmia, we simply
treated them as numeric ones for all compared methods, which would not influence the fairness for comparison.

4.3.2. Analysis on the fuzzier m in SLMC
In this sub-section, we analyze the influence of m on the performance of SLMC. Specifically, we exhibit the performances

of SLMC with respect to different values of m from [1.5,2,2.5,3,3.5,4,4.5,5] over the 18 datasets in Fig. 3 below.
From Fig. 3, we can make several observations as follows,

j Fig. 3 (a) shows the CA performances of SLMC with respect to different m values. From Fig. 3 (a), we find that SLMC
achieves the best average CA performance over all 18 datasets when m is set to 2, as a result, we set m to 2 in our whole
experiments.

j Fig. 3 (b) and (c) shows the PC and PE performances of SLMC with respect to different m values respectively. From those
figures, we can find that the PC performances descend as m ascends, and the PE performances ascend as m ascends, since a
larger m in SLMC usually corresponds to a less definite cluster partition. However, it is not the case for the arrhythmia
dataset, corresponding to the PC curve at the bottom of Fig. 3 (b) and the PE curve at the top of Fig. 3 (c), since now
the obtained ukis are all close to 0.5 even when m is as small as 1.5.

j Fig. 3 (d) shows the XB performances of SLMC with respect to different m values. We can observe that when m is large,
SLMC usually yields a large XB performance, in this case, the obtained ukis would be close to 0.5, corresponding to a single
sample mean in the data space.

4.3.3. Performance comparison
In this sub-section, we first compare SLMC (m=2) with MMC and iterative LS-SVM in terms of clustering accuracy, along

with FCM and KM as the baselines. The comparison results are given in Table 6, in which each row gives the clustering per-
formances (including the average accuracy and variance over 20 independent runs) over each dataset. However, since the
SDP formulation of MMC is quite expensive in terms of both time and memory [42], we only provide its results on the first
Table 5
The attributes of UCI datasets used

Dataset # Instance # Feat. # Class (# instance in individual classes)

Lenses 24 4 3 (4, 5, 15)
Soybean 47 35 4 (10, 10, 10, 17)
Echocardiogram 132 12 2 (89, 43)
Hepatitis 155 19 2 (32, 123)
Wine 178 13 3 (59, 71, 48)
Glass 214 10 6 (70, 76, 17, 0, 13, 9, 29)
Heart 270 13 2 (150, 120)
Ecoli 336 8 6 (143, 77, 52, 35, 20, 5, 2, 2)
Ionosphere 351 34 2 (225, 126)
Optdigits89 354 64 2 (174, 180)
Optdigits38 357 64 2 (183, 174)
Optdigits39 363 64 2 (183, 180)
Arrhythmia 452 279 13 (245, 44, 15, 15, 13, 25, 3, 2, 9, 50, 4, 5, 22)
Austra 690 14 2 (307, 383)
Pendigits89 1438 16 2 (719, 719)
Pendigits38 1438 16 2 (719, 719)
Pendigits39 1438 16 2 (719, 719)
Image Segment 2310 19 7 (330, 330, 330, 330, 330, 330, 330)
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Fig. 3. The (a) clustering accuracy (b) partition coefficient (c) partition entropy and (d) Xie-Beni index of SLMC with respect to different values of fuzzier m
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Table 6
The clustering accuracies of compared methods on 18 UCI datasets

Dataset KM FCM MMC Iterative LS-SVM SLMC

Lenses 0.5546±0.0015 0.5683±0.0039 0.6548±0.0021 0.6729±0.0039 0.6886±0.0018⁄
Soybean 0.7544±0.0064 0.7762±0.0017 0.7835±0.0039 0.8141±0.0078 0.8287±0.0026⁄
Echocardiogram 0.8349±0 0.8264±0 0.8372±0 0.8460±0 0.8836±0⁄
Hepatitis 0.6713±0.0004 0.6748±0 0.7756±0 0.7935±0 0.7935±0
Wine 0.7135±0 0.7027±0 0.7896±0 0.8081±0.0003⁄ 0.7681±0
Glass 0.5556±0.0006 0.5523±0 — 0.6501±0.0007 0.6567±0.0013
Heart 0.6189±0 0.6456±0.0008 — 0.6311±0.0001 0.6593±0.0004⁄
Ecoli 0.5385±0.0003 0.5917±0 — 0.7749±0.0006 0.7946±0⁄
Ionosphere 0.7124±0.0001 0.7173±0.0004 — 0.7392±0 0.7554±0⁄
Optdigits89 0.9313±0 0.9291±0.0002 — 0.9652±0⁄ 0.9602±0
Optdigits38 0.9568±0 0.9419±0 — 0.9794±0⁄ 0.9743±0
Optdigits39 0.9327±0 0.9451±0.0002 — 0.9842±0 0.9922±0⁄
Arrhythmia 0.3342±0 0.3695±0 — 0.5230±0 0.5465±0⁄
Austra 0.6670±0 0.6508±0⁄ — 0.6378±0 0.6330±0
Pendigits89 0.9483±0.0001 0.9426±0.0001 — 0.9731±0⁄ 0.9567±0
Pendigits38 0.9271±0.0002 0.9415±0.0003 — 0.9430±0 0.9642±0.0001⁄
Pendigits39 0.9155±0.0014 0.9230±0.0007 — 0.9580±0.0002 0.9691±0⁄
Image Segment 0.5251±0.0019 0.5419±0.0030 — 0.6490±0.0012 0.6473±0.0028
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5 (small-scale) datasets. In each row, the bold value indicates the best performance among all compared ones, and the per-
formance marked by ‘‘⁄’’ indicates that the corresponding method obtains the best performance with statistically significant
difference by t-test.

From Table 6, we can observe that SLMC performs the best over 12 out of the 18 datasets, and has statistically significant
superiority over 10 ones, thus SLMC is relatively effective in terms of CA. More specifically, compared with FCM, SLMC per-
forms better on 17 out of the 18 datasets, indicating the superiority of the large margin principle. On the other hand, com-
pared with iterative LS-SVM, SLMC performs better on 11 datasets, comparable on 1 datasets, and worse on only 6 datasets.
As a result, the assumption that each instance belongs to more than one cluster with the corresponding soft memberships is
usually more suitable to capture the real data distribution, and consequently, SLMC can usually achieve better CA perfor-
mances than the large margin clustering methods, including MMCs and iterative LS-SVM. Besides, we can also observe that
when SLMC performs worse than iterative LS-SVM (over datasets such as wine, optdigits89 and optdigits38 here), FCM also
performs worse than KM, and a major reason seems to be that the above assumption does not cater well for all cases.

Moreover, we also compare SLMC with FCM in terms of fuzzy indices PC, PE, and XB. The results are shown in Table 7, in
which each row gives the performances over each dataset, a bold value indicates the better performance between the two
compared methods according to some index, and a performance marked by ‘‘⁄’’ indicates that the corresponding method ob-
tains the better performance with statistically significant difference by t-test.

From Table 7, we can observe that when m is set to 2, the PC performances by SLMC are significantly larger (better) than
those by FCM on 16 out of the 18 datasets, and similarly, the PE performances by SLMC are significantly smaller (better) than
those by FCM on 17 datasets. Moreover, the XB performances by SLMC are significantly smaller (better) than those by FCM
over 9 datasets, and significantly larger (worse) than those by FCM over 9 datasets. As a result, SLMC usually achieves better
PC and PE performances, and comparable XB performances compared with FCM when m is set to 2.

It is also worth noting that the XB performances of FCM are much larger than those of SLMC over optdigits89, optdigits38,
and optdigits39, and a possible reason is the fixation of m to 2 in FCM. As can be seen in Table 8, FCM with m=1.5 can achieve
much better XB performances than FCM with m=2 over those three datasets, and when mP2 here, FCM actually yields a clus-
ter partition with each uki close to 0.5 (the PC and PE performances are close to 1/C and log2C respectively, where C=2 here).

4.3.4. Empirical demonstration for convergence of SLMC
Though having theoretically proved the convergence for the iterative solving process of SLMC by proposition 2, in this

sub-section, we also demonstrate it over 6 datasets as empirical justifications. However, since the observations are similar
Table 7
The comparison results between SLMC and FCM on 18 UCI datasets

Dataset FCM SLMC

PC PE XB PC PE XB

Lenses 0.4231±0 1.3912±0 0.7338±0⁄ 0.9909±0⁄ 0.0387±0⁄ 0.8137±0
soybean 0.4755±0 1.4064±0 1.7399±0 0.9940±0⁄ 0.0303±0⁄ 0.5670±0⁄
Echocardiogram 0.7014±0 0.6677±0 0.3715±0 0.9994±0⁄ 0.0032±0⁄ 0.1374±0⁄
Hepatitis 0.7266±0 0.6252±0 0.3316±0 0.9998±0⁄ 0.0011±0⁄ 0.0401±0⁄
Wine 0.7909±0 0.5488±0 0.1257±0⁄ 0.9997±0⁄ 0.0018±0⁄ 0.1527±0
Glass 0.7370±0 0.7726±0 0.0583±0⁄ 0.9997±0⁄ 0.0022±0⁄ 0.1628±0
Heart 0.7126±0 0.6493±0 0.2562±0 0.9997±0⁄ 0.0015±0⁄ 0.0355±0⁄
Ecoli 0.7271±0 0.8277±0 0.0504±0⁄ 0.9928±0⁄ 0.0322±0⁄ 0.0537±0
Ionosphere 0.6512±0 0.7522±0 0.7117±0 0.9998±0⁄ 0.0010±0⁄ 0.5329±0⁄
Optdigits89 0.5005±0 0.9993±0 105.2974±62.1058 0.9920±0⁄ 0.0275±0⁄ 0.8281±0⁄
Optdigits38 0.5006±0 0.9991±0 93.3301±52.0919 0.9957±0⁄ 0.0158±0⁄ 0.7546±0⁄
Optdigits39 0.5004±0 0.9995±0 187.0511±129.1753 0.9978±0⁄ 0.0181±0⁄ 0.5996±0⁄
Arrhythmia 0.0770±0 3.6998±0 1080.6331±214.7289⁄ 0.0769±0 3.7004±0 1504.2701±198.3129
Austra 0.9995±0⁄ 0.0136±0 0.0021±0⁄ 0.9974±0 0.0064±0⁄ 0.0044±0
Pendigits89 0.6400±0 0.7816±0 0.4468±0⁄ 0.9920±0⁄ 0.0275±0⁄ 0.8370±0
Pendigits38 0.7419±0 0.5795±0 0.2242±0⁄ 0.9992±0⁄ 0.0031±0⁄ 0.2473±0
Pendigits39 0.6235±0 0.8062±0 0.6712±0 0.9984±0⁄ 0.0054±0⁄ 0.2056±0⁄
Image Segment 0.3807±0 1.9633±0 0.4571±0.0071⁄ 0.8215±0⁄ 0.6505±0⁄ 2.0826±0

Table 8
The performances over optdigits89, optdigits38, and optdigits39 with m from {1.5, 2, 2.5}

dataset Optdigits89 Optdigits38 Optdigits39

m 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

CA 0.9049 0.9008 0.9003 0.9405 0.9419 0.9444 0.9449 0.9451 0.9327
PC 0.6379 0.5005 0.5004 0.6566 0.5006 0.5003 0.5445 0.5005 0.5003
PE 0.7833 0.9992 0.9995 0.7517 0.9991 0.9995 0.9339 0.9993 0.9996
XB 1.6137 105.2974 94.7401 1.3532 93.3301 84.6727 6.1745 187.0511 125.1963
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Fig. 4. The average objective function values and clustering accuracies of SLMC in the first 20th iterations, as well as the average iteration numbers on (a)
Lenses (b) Hepatitis (c) Wine (d) Heart (e) Optdigits38 and (f) Optdigits39
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over all 18 datasets, we simply use 6 ones as representatives. Specifically, we provide the objective values and clustering
accuracies of SLMC in the first 20 iterations, as well as the average number of iterations in Fig. 4. In Fig. 4, the reported results
are all average ones over 20 independent runs, and in each run, only the results corresponding to the best parameters and
kernel combinations contribute to the final results.
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From Fig. 4, we can observed that the objective function value decreases monotonically with the increase of the iterative
number, and the iterations all terminate within 20 rounds, which demonstrates that the iterative solving process of SLMC is
indeed convergent, and the convergence speed is acceptable as that of FCM. Moreover, the clustering accuracy tends to in-
crease with the growth of the iterative number, demonstrating that SLMC can achieve better performance than its initializer
FCM. However, it can also be observed that the clustering accuracy does not increase monotonically, which indicates that
early termination might occur in SLMC, as a result, some heuristic terminative strategy for SLMC is one of our future works.
5. Conclusion

In this paper, we develop a new soft large margin clustering method referred to as soft large margin clustering (SLMC for
short), which combines the advantages of both the large margin principle and the soft clustering idea. SLMC possesses a deci-
sion function with the maximal margin between clusters, and at the same time, accomplishes soft assignments for each in-
stance to individual clusters to reflect the nature of given data. The resulting optimization problem of SLMC is solved using
an alternating iterative strategy, in which each step has a closed-form solution. The convergence for the iterative solving pro-
cess has been theoretically proved, and empirically demonstrated as well. The formulation of SLMC can directly be extended
to the multi-class cases. Experiments on several real datasets demonstrate its competitiveness compared with both FCM and
MMCs.

In the future, there are still some worth-studying issues summarized as follows:

� In this paper, the cluster centers in the output space (or cluster encodings) are simply encoded by the one-of-C rule, while
some other encoding strategies can also be adopted, or those cluster centers can also be optimized in the learning phase.
Thereby, we will investigate how the cluster encoding manner affects the performance of SLMC in our future work.
� We will study the application of SLMC to unbalanced clustering problem by, e.g., enforcing balance constraints among

multiple clusters.
� We will seek for a heuristic termination strategy for SLMC such that the ‘‘optimal’’ clustering accuracy can be achieved.
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