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Abstract

Robust face image modeling under uncontrolled condi-
tions is crucial for the current face recognition systems in
practice. One approach is to seek a compact representation
of the given image set which encodes the intrinsic lower
dimensional manifold of them. Among others, Local Lin-
ear Embedding (LLE) is one of the most popular method
for that purpose. However, it suffers from the following
problems when used for face modeling: 1) it is not robust
under uncontrolled conditions (e.g., the underlying images
may contain large appearance distortions such as partial
occlusion or extreme illumination variations); 2) a fixed
neighborhood size is used for all the local patches with-
out considering the actual distribution of samples in the
input space; 3) the modeled local structures may not con-
tain enough discriminative information which is essential
to the later recognition stage. In this paper, we introduce
the Sparse Locally Linear Embedding (SLLE) to address
these issues. By replacing the most-expressive type crite-
rion in modeling local patches in LLE with a most-sparse
one, SLLE essentially finds and models more discriminative
patches. This gives higher model flexibility in the sense of
less sensitiveness to incorrect model and higher robustness
to outliers. The feasibility and effectiveness of the proposed
method is verified with encouraging results on a publicly
available face database.

1. Introduction
In practice, it is usually necessary to observe and ana-

lyze the potential distribution of very high-dimensional data
(e.g, face images or web pages). Dimensionality Reduction
(DR) approach is frequently used for that purpose by map-
ping the high-dimensional data onto another (usually low-
dimensional) space while preserving the essential informa-
tion contained in the original space. Classical methods for
this include PCA ,ICA, LDA, LPP[9], NPE[8] and so on.

The transformations defined by these, however, are linear in
nature, while other DR methods use nonlinear transforms
such as SOM [11], LLE [17][19],HLLE[6],LTSA[25] and
ISOMAP [21], giving more flexibility in data modeling.

In machine learning literatures, those methods whose
transformations (either linearly or nonlinearly) have extra
capability to preserve the spatial consistency between input
space and output space are usually called manifold methods
– most of the aforementioned nonlinear DR methods (e.g.,
SOM[11], LLE[17], ISOMAP[21]) belong to this category.
Among others, the LLE (Locally Linear Embedding [17])
method, which provides a closed-form (hence efficient) so-
lution to extract the intrinsic lower dimensional manifold
for a given data set in high dimensional space, is chosen
to demonstrate the idea of this paper. The LLE method
starts by finding the local structures of high dimensional
sample space in terms of local patches1, each of which is
then modeled with a linear combination of a set of neigh-
borhood points. Note that this step is commonly found in
many other manifold methods such as HLLE[6] and LPP
[9] and is crucial for the performance of these algorithms.
The local patches can be regarded as a way to characterize
the local spatial distribution of sample space and hence con-
tain essential regularity of it. By employing such regular-
ity, one may find a way to obtain a compact representation
of original data and it is at this point that different mani-
fold methods begin to diverge. In LLE, this is done with
a MDS[4]-like method which arranges the local patches in
lower-dimensional space with global consistency. The ma-
jor advantage of LLE lies in its conceptually simplicity and
its efficiency and effectiveness for many practical applica-
tions such as face images modeling, an important task in
face recognition[20].

However, there are also some drawbacks of LLE which
are not well-addressed: 1), LLE uses a most-expressive cri-
terion (i.e., least squares) to model local patches, assuming

1Note that here the term patch refers to a set of points close to each
other, rather than a local region in a image.
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that good local patches are available everywhere in the in-
put space and can be found with a k-nearest neighbor clas-
sifier (kNN) with a fixed k value. Unfortunately, real world
data is usually distributed in a sparse and non-uniform man-
ner in the high dimensional space, hence the samples con-
stituting a patch are unlikely distributed in a perfect small
region; 2), the aforementioned mechanism of LLE to find
and model the local structures also tends to be sensitive to
outliers such as face images whose appearance is largely
distorted by extreme illumination changes or partial occlu-
sions. The existence of such unwelcome data would im-
pose great challenges on both the kNN local patch finder
and the least square regression-based patch encoder - both
of them are key components of LLE but are not robust by
themselves. Previously this problem was addressed by us-
ing some robust statistical technique to ”filter out” the noise
neighbors before graph embedding [3]; 3) last but impor-
tantly, the most-expressive type neighborhood relationship
supposed to be preserved by LLE embedding is not very
suitable for the task of classification since this may actually
enlarge the within-class variations when the samples from
different classes are overlapping (c.f., Fig. 1, bottom right).
There are some work [16] trying to improve this but un-
der a rather strong assumption that class labels of samples
are given, preventing it from employing a large amount of
cheap unlabeled data.

In this paper, we propose an improved LLE method
named SLLE (Sparse Locally Linear Embedding) to ad-
dress these issues. The idea of SLLE is to replacing the
most-expressive type criterion of modeling local patches in
LLE with a most-sparse one. The sparse representation is
well known in the literatures of signal representation theory
[1] and is regarded as an important way to encode the do-
main knowledge, thus being helpful to improve the general-
ization capability of a given model [23]. To obtain a sparse
patch representation, we merge the procedure of patch find-
ing and patch modeling into one single step, which is equiv-
alent to solving a standard linear programming problem
with L1 penalty. While this can be efficiently solved using
many existing optimization packages, we show in this pa-
per that this simple modification also leads to several ben-
efits: 1) Due to the nature of sparseness constraints, local
patches with higher discriminative capability are naturally
found and compactly modeled (c.f., Fig. 1), which is essen-
tial for good recognition performance even when data la-
bels are absent; 2) the modeling of local structures becomes
more robust against outliers and more adaptive to complex
nonlinear data; 3) since the tasks of patch finding and patch
modeling is done in one single step instead of being treated
separately, our algorithm is more conceptually clear than
LLE; and 4) the idea of modeling most-sparse patches in-
stead of most-expressive ones is quite general and can be
naturally extended to other similar manifold methods like

LPP[9], HLLE[6], and LTSA[25].
In a recent independent study, Yan and Wang [24] pro-

posed a similar method to ours, where they treat the L1-
minimization based graphic construction as a parameter-
free method for semi-supervised learning. However, we
note that the degree of sparsity may have significant influ-
ence on the performance of the algorithm (c.f . Fig. 6(a)
left). More importantly, the L1 minimization based objec-
tive function may not always lead to correct solutions, and
we propose a method with gaussian matrix transformation
to address this problem.

The paper is organized as follows: in section 2, the origi-
nal LLE algorithm is briefly reviewed and then we introduce
our SLLE method in section 3. In section 4 we present the
experimental results and conclude this paper in Section 5.

2. Local Linear Embedding
Suppose that there are N samples yi, i = 1, .., N, yi ∈

RD, from a smooth manifold in the high dimensional space.
LLE assumes that in the local sense, a point is always
located on a hyper-plane, so that any point can be ex-
pressed by a combination of its neighbor points. In the low-
dimensional space, LLE preserves the neighborhood rela-
tions learned in the high-dimensional space through keep-
ing the above linear coefficients.

In particular, LLE first finds N local patches by comput-
ing k (a fixed value through all patches) neighbors for every
sample. Then the objective function of reconstruction is

ε(W ) =
N∑

i=1

k∑

j=1

‖yi −
∑

j,j 6=i

Wijyj‖2 (1)

i.e., the neighborhood reconstruction error ε(W ) is defined
to be the sum of difference between each point and its
neighbors over the training set. The weight Wij represents
the reconstruction contribution to the i-th point of the j-th
point and if yj is not among the k neighborhood of the yi,
Wij = 0. In order to maintain the translation invariance,∑

j Wij = 1 should be met. The reconstruction matrix W
are sought by minimizing the error function ε(W ), which
is a standard least squares regression problem and can be
solved with gradient descent method.

Now we need a mapping to transform all the high-
dimensional data to a low-dimensional manifold in a non-
linear manner, with the requirement that the spatial consis-
tency between the two spaces should be preserved. One
simple way to do this is to align each local patch within an-
other global coordinate system with lower dimensionality.
Mathematically, the alignment can be achieved by seeking
a nonlinear mapping with constraints that the local mod-
els learned in the high dimensional space are invariant to
some particular affine transformations on points within each
patch, such as translation, scaling and rotating. Actually



this is also the only hint LLE uses to find the locations of
the high dimensional points in the output space. In particu-
lar, denote each image of yi as xi ∈ Rd, where d (d < D)
is the dimensionality of the output space. Then the images
xi, i = 1, ..., N can be obtained by minimizing the follow-
ing loss function,

ε(x) =
N∑

i=1

‖xi −
∑

j

Wijxj‖2 (2)

where W is the reconstruction matrix learned in the input
space. This boils down to solving a simple eigen problem
for matrix M = (I −W )(I −W )′ (I is the identity matrix)
[17],[19] and keeping the bottom d eigenvectors except the
one with zero eigenvalue as the coordinates for the output
space.

3. Sparse Local Linear Embedding
As mentioned before, due to the use of a fixed k value

to model all the local areas, the traditional LLE becomes
sensitive to noise and outliers when the input manifold is
sparse and complicated. In this section, a local area mod-
eling method based on sparse representation is introduced
to overcome these problems. The idea is to adopt a most-
sparse criterion instead of a most-expressive one to model
the regions of interest, each of which consists of the small-
est set of points (called support points here) best approxi-
mating the given prototype. One difference between SLLE
and LLE is that to find the support points, we don’t restrict
the candidates in the range of k neighborhood but allow the
algorithm to find them (and their weights) adaptively among
the whole training set.

3.1. Sparse Representation

Suppose that the relationship between a face image y ∈
RD and a set of training images A could be modeled with a
linear model y = Aw [23], where A is a matrix consisting
of N column-wise training vectors and w is the linear com-
bination vector of interest. Since the dimensionality of face
data is usually far greater than the number of samples (i.e.,
D > N ), the linear equation y = Aw has no exact solution.
But an approximate solution can be sought by projecting y
into the column space of A using the least-squares method:

(l2) : ŵl2 = arg min
w
‖y −Aw‖2 (3)

The solution of the above equation is generally very
dense. In LLE, this issue is addressed by manually restrict-
ing the range of A. Alternatively, one can incorporate prior
knowledge in terms of regularization, by which the sparsity
of w is explicitly imposed. For example, the l0 pseudo-
norm term encourages a solution with minimal number of

non-zero elements, i.e.,

(l0) : ŵl0 = arg min
w
‖y −Aw‖22 + λ‖w‖0 (4)

where ‖w‖0 denotes l0 pseudo-norm of the vector w, and
λ is the regularization parameter. Note that once solved,
(4) provides both the support points and the corresponding
weights for y. Unfortunately, this is a difficult task as solv-
ing (4) is NP-hard [23].

According to the sparse representation theory [2],[5], if
y can be represented sparsely enough by the samples in A,
the above l0 minimization problem is strictly equivalent to
its l1-norm counterpart,

(l1) : ŵl1 = arg min
w
‖y −Aw‖22 + λ‖w‖1 (5)

where ‖w‖1 is usually called lasso penalty in the statisti-
cal literatures [18] and makes the solution nonlinear for y.
Lots of packages are available (e.g., L1-Magic) to solve
this quadratic programming problem. Moreover, from a
Bayesian perspective, Eq.(5) encodes our prior belief w
should be sparse in the basis of A and solving it gives a
posterior belief for the values of w [18],[15],[22].

In experiments, however, we’ve found that the solution
of (5) may not be stable - sometimes we simply cannot find
the needed sparse solutions for certain images. This sug-
gests that for real world data, the base matrix (A) may not
always meet the sparse conditions[1, 2], which states that,
to ensure that Eq.(5) has a sparse solution, A must conform
to the so-called RIP (restricted isometry property,[2]) condi-
tion. Unfortunately, the computational complexity involved
in verifying the RIP of any matrix is too high.

There are several methods to address this problem. For
example, based on the observation that a Gaussian random
matrix can always meet the conditions [1, 2], one can first
transform the original image base A using a D×D Gaussian
random matrix Φ to a new random matrix Θ before solving
the optimization:

(l1∗) : ŵl1 = arg min
w
‖Φy − ΦAw‖22 + λ‖w‖1

= arg min
w
‖y′ −Θw‖22 + λ‖w‖1 (6)

where y′ = Φy and Θ = ΦA. Since Φ is invertible, the so-
lution ŵ′l1 of (6) is an approximation of ŵl1 obtained from
the original image base A. In particular, if Φy = ΦAw,
then Φ−1Φy = Φ−1ΦAw, which gives y = Aw, i.e., the
solution between (5) and (6) is exactly identical. When
Φy = ΦAw + ε, where ε is a approximating error vector
with zero mean and fixed variance, we have y = Aw+Φ−1ε
and hence ‖y − Aw‖2 = ‖Φ−1ε‖2. In practice, we are ac-
tually more interested in the later case since face images are
always distorted by some appearance changes ε.



Finally, we change the form of our objective function (6)
as follows to facilitate the computation,

(l1∗∗) : ŵl1 = arg min
w
‖y′ −Θw‖22 (7)

s.t.‖w‖1 ≤ τ (8)

and after the w is solved, we scale them so that 1 = 1T w.
The degree of sparseness of the solution is controlled by τ ,
which has a one to one correspondence with λ in (6) and can
be set using cross validation technique [7]. To solve (7), we
use a recently designed package named SLEP [13], which
combines Nesterov’s first-order black-box optimal method
with an efficient Euclidean projection (in linear time) [12]
for fast convergence.

3.2. Sparse Locally linear Embedding

By solving (7), we obtain a sparse representation of a
given point y, i.e., most elements of w vector will be ze-
ros. To exploit this advantage, we take the set of vectors in
A whose corresponding weight in w is not zero as the sup-
port points of y, and naturally these corresponding nonzero
weights model the contribution of each support point to the
local model indexed by y. In other words, simply by solving
(6), we get both the needed local regions and their models,
which is contrary to the scheme of LLE, where local regions
and their models are estimated separately.

In particular, for each face image yi ∈ RD, define
A/i , [y1, y2, ..., yi−1, yi+1, ..., yN ]. That is, the ma-
trix A/i is composed of all of the face images except the
vector yi. Then for each face image yi, we calculate its
sparse representation with A/i, and denote it as Ŵi =
[Wi,1,Wi,2, ..., Wi,(i−1),Wi,(i+1), ..., Wi,N ]T . Next, those
points in A/i with non-zero weight are chosen to be the sup-
port points of yi. Note that the patch defined in this way is
adaptively emerged from our sparse constraints. Figure 1
gives an illustration of support points found in this way and
those by LLE.

The following step is the same as that in LLE, i.e., pro-
jecting the points in high dimensional space into the lower
dimensional manifold 2. But before that we need to confirm
ourselves that the weight matrix obtained in our method is
invariant to certain affine transformation (translation, ro-
tation and scale) as well: 1) denote the translation vector
as t ∈ RD×1, then for any point yi ∈ RD , we have
yi +t ≈ ∑

j wjyj +t =
∑

j wjyj +
∑

j wjt =
∑

j(yj +t),
for j 6= i, and the constraint of

∑
j wj = 1 is used;

2)similarly, for any rotation and scaling matrix R, we have:
Ryi ≈ R

∑
j wjyj =

∑
j wjRyj =

∑
j wj(Ryj). In sum-

2In the implementation of this step, we regularize the M matrix (c.f.,
Section 2, also see [19]) by a small-valued constant matrix (i.e., ε I with
ε = 0.001) before doing eigen decomposition, which is usually not neces-
sary but we have found that this could generally stabilize the solution and
is beneficial to the performance.

mary, if the reconstruction error of yi by
∑

j wjyj is rela-
tively small, the weight matrix is approximately unchanged
when we translate, zoom or rotate the samples in a patch.
The complete SLLE algorithm is summarized in Table 13.

3.3. The ’Out-of-Sample’ Problem

In order to generalize an unseen sample, say ytest, we
first calculate its sparse representation ŵtest using the train-
ing set, then fix this weight vector and project the unseen
sample into the d-dimensional space by solving:

ε(xtest) = ‖xtest −Xŵtest‖2 (9)

where X is the d × N matrix consisting of projections of
samples in input space and xtest is corresponding coordi-
nate in the output space for ytest. The same strategy has
been adopted in [19].

4. Experiments
We evaluate the effectiveness of the proposed algorithm

on the AR database[14], which contains over 4,000 color
face images of 126 people’s faces (70 males and 56 fe-
males), including frontal view faces with different facial ex-
pressions, illumination conditions, and occlusions (with sun
glasses and scarf). There are 26 different images per person,
taken in two sessions (separated by two weeks), each ses-
sion consisting of 13 images.

4.1. Robust Face image Modeling

To verify the robustness of SLLE against large appear-
ance changes such as partial occlusions, we simulate a set
of faces gradually occluded by sunglasses using linear inter-
polation, as shown in Fig. 2, where the image size is scaled
to be 66 × 48 pixels (thus D=3168). This results in 50 vir-
tual images for a given subject and we also add another 5
random images as noise. We then model these face images
using LLE (with k=6) and SLLE, respectively. The dimen-
sionality of output space is set to be 3 in order to make it
feasible for visual examination of the face manifold. Fig. 3
gives the result. The figure clearly reveals that SLLE is
able to find good smooth manifold while leaving the out-
liers away from it. On the contrary, the manifold produced
by the LLE is not smooth.

To verify the ’out-of-sample’ ability of our method, we
project ten more new samples onto the manifold learned
by SLLE in the previous experiment, and check their lo-
cations in the low dimensional global coordinate (marked
as ’*’ symbol in Fig. 4). As the figure shows, these unseen
samples are perfectly embedded onto the manifold without
being distracted by the noise images.

3A Matlab implementation of SLLE is available at:
http://parnec.nuaa.edu.cn/xtan/paper/SLLEdemo.zip



Figure 1. Illustration of seven support faces (bottom row) for a given face image (left top) and the distribution of corresponding sparse
weights (upper row) using SLLE (left) and LLE (right), respectively. Note that the support faces found by SLLE with a most sparse
criterion are more discriminative than those by LLE with a most expressive criterion - five of seven faces with the same identity as the
prototype are correctly included in a SLLE patch.

Table 1. the SLLE algorithm(Sparse Linear Embedding)

The SLLE algorithm (Sparse Locally Linear Embedding)
1: Input: N samples A = [y1, y2, ..., yN ] ∈ RD×N , error ε,

and the dimensionality of output space d;
2: Normalize all the columns of A to have unit L2 norm;

(optional) Generate a Gaussian random array Φ ∈ RD×D, and let A′ = ΦA, y′ = Φy;
3:Let Â/i = [y′1, ..., y

′
i−1, y

′
i+1, ..., y

′
N ] ∈ RD×N ;

3.1) Solve the minimizing L1 norm problem Eq.(7) to obtain a weight vector wi for
each sample y′i; ;

3.2) Set wi = [wi,1, wi,2, ..., wi,(i−1), 0, wi,(i+1), ..., wi,N ];
4:Repeat step 3 for each sample;
5:Solve ε(X) =

∑
i ‖xi −

∑
j wijxj‖22 to get the low dimensional representation of

each face image in A.

Figure 2. An illustration of simulated training samples with sunglasses.

4.2. Recognition on the face Manifold

To illustrate the benefits of most sparse criterion in the
task of pattern recognition with SLLE as an unsupervised
feature extractor, we conduct another series of experiments
on the AR dataset. In particular, the first 7 images in the first
session of each subject are used for training and those in
the second session for testing. Hence we have 1400 images
covering various variations from expression, illustration and
time changes (c.f., Fig. 5). Although many advanced clas-
sifiers such as SVM can be used, here we adopt a simple
nearest neighbor classifier with cosine distance for recogni-
tion.

We first investigate the functional relationship between
recognition rates and the degree of sparseness, which is
done by testing the recognition performance using a vali-
dation set with various values of τ (c.f. Eq.(7)). A simi-
lar procedure was performed for LLE to choose the best k
value. Note that although we need to experimentally set a
suitable parameter value for τ (as for k in LLE ), its mean-
ing is quite different from the parameter k in LLE - even a
fixed τ would generally lead to different patch size for ev-
ery sample in the input space. To give a concrete correspon-
dence between the value of τ and the degree of sparseness
on this dataset, we also evaluate the degree of sparseness at



(a) (b)

Figure 3. The face manifold respectively modeled with LLE and SLLE on AR with partial occlusions when there exists noise: (a) LLE and
(b) SLLE.

Figure 5. Some AR samples from one subject. Left: training images; Right: test images.

Figure 4. Illustration of the ’Out-of-Sample’ capability of SLLE:
unseen face images are well embedded into the previously learned
manifold (blue points - training data, red * symbol denotes the
location of the new face images)

a grid of values of τ between [0,4], following [10],

sparseness(w) =

√
N − (

∑ |wi|)/(
√∑

w2
i )√

N − 1
(10)

where N is the dimensionality of w. This function equals
unity if and only if w contains only a single non-zero com-

ponent, and takes a value of zero if and only if all compo-
nents are equal.

Fig. 6(a) gives the functional relationship between recog-
nition performance and the value of τ and Fig. 6(b) gives the
corresponding degree of sparseness for each value of τ . Al-
though these figures reveal that a range of τ values higher
than 2.5 is preferred, it remains unclear why setting a looser
bound on ‖w‖1 (usually yielding larger patch size) is better
than a tighter one in SLLE - for LLE, a k value higher than
10 has little influence on performance on this dataset.

Then we make a close comparison between our method
and LLE, PCA under different feature dimension (settings:
for SLLE, τ = 3.4 (degree of sparseness = 0.6) and for
LLE, k = 10). Fig. 7 shows the experimental results. Fig. 7
reveals that LLE only performs marginally better than PCA
when the feature dimension is larger than 200 (correspond-
ing to about 97% PCA energy), while its performance is
much worse than PCA when the feature dimension is below
200. Considering that no spatial relationship between sam-
ples are preserved in PCA while local structures of sample
space are explicitly modeled in LLE, these results are some-
what surprising. One possible explanation is that the most-
expressive criterion actually enlarge the within-class vari-
ation in complicated situation - by inspecting Fig. 1 (bot-
tom right), one can find that the resulting support faces of
LLE for a given face have similar illumination variations
to the prototype but their identities are quite different. By
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Figure 6. Experimental results on AR: (a) Recognition rates under different degree of sparseness value τ in SLLE; (b) The correspondence
between the degree of sparseness and τ .

contrast, the support faces selected by SLLE using most-
sparse criterion contain more images with the same identity
as that of the face to be modeled (c.f., Fig. 1 bottom left).
This leads to the remarkable performance improvement of
SLLE - on average over 15% better than that of LLE. Fur-
thermore, Fig. 7 reveals that the performance of SLLE be-
gins to converge at low dimension of 67, compared to 100
for PCA and 200 for LLE, respectively. We also compare
our method with other popular manifold methods besides a
completely supervised method (FLDA [7]) and achieve fa-
vorable results (Table 2) consistently. From these, we con-
clude that the most sparse criterion is useful to extract dis-
criminative features for an unsupervised learning algorithm
such as LLE to improve its performance in a classification
task.

5. Conclusion

In this paper, a robust face manifold embedding method
named SLLE is proposed. The method adopts a most-sparse
criterion rather than a most-expressive one to model the lo-
cal spatial structures in high dimensional space. We show
that this simple modification increases the discriminative
power of traditional LLE algorithm when data labels are
absent, making it behave more flexibly and more robustly
when dealing with complex data such as face images. Note
that since finding local patches is crucial and common in
many manifold methods such as LPP[9], NPE[8], HLLE[6],
and LTSA[25], the extension to these methods is straight-
forward.
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Figure 7. Comparative recognition rates with different feature di-
mension for various methods on the AR dataset.
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