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ABSTRACT

Multi-atlas based label fusion methods have been successfully
used for medical image segmentation. In the field of brain
region segmentation, multi-atlas based methods propagate la-
bels from multiple atlases to target image by the similarity
between patches in target image and atlases. Most of exist-
ing multi-atlas based methods usually use intensity feature,
which is hard to capture high-order information in brain im-
ages. In light of this, in this paper, we endeavor to apply
high-order restricted Boltzmann machines to represent brain
images and use the learnt feature for brain region of inter-
esting (ROIs) segmentation. Specifically, we firstly capture
the covariance and the mean information from patches by
high-order Boltzmann Machine. Then, we propagate the la-
bel by the similarity of the learnt high-order features. We val-
idate our feature learning method on two well-known label
fusion methods e.g., local-weighted voting (LWV) and non-
local mean patch-based method (PBM). Experimental results
on the NIREP dataset demonstrate that our method can im-
prove the performance of both LWV and PBM by using the
high-order features.

Index Terms— Multi-atlas, Label fusion, High-order re-
stricted Boltzmann machines

1. INTRODUCTION

Automatic and accurate segmentation of Magnetic resonance
(MR) images is a critical step for pathology detection and
brain parcellation, etc. For example, for the task of diagnos-
ing Alzheimers disease, it needs medical expert to segment
hippocampus, which is highly related to this disease [1, 2],
from the MR images at the first step. However, it is time-
consuming with high labor intensity. Accordingly, it is nec-
essary to develop an accurate and automatic method for brain
segmentation.

Recently, multi-atlas based segmentation methods have
gained great success in segmenting brain into difference ROIs
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Generally, there are two main
steps (i.e., image registration and label fusion) for multi-atlas
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segmentation. Specifically, MR images will be warped onto
a common space in the first step, and then labels from differ-
ent atlases will be propagated to the target image to obtain its
corresponding final labels in the next step.

During last decade, numerous label fusion strategies have
been proposed for multi-atlas based segmentation. Specifi-
cally, majority voting (MV) [3] is the simplest one, by which
each atlas image is viewed equally when assigning its label to
the target image. More advanced strategy like local-weighted
voting (LWV) [4] method considers the patch-wise similar-
ity between the target and each atlas as the voting weight.
Moreover, in order to alleviate possible registration errors, the
non-local mean patch-based method (PBM) [9, 10] focuses on
propagating labels by using the similarity between the patch
from target image and atlas image within a certain neighbor-
hood. The results indicate that PBM can improve the accuracy
and robustness of the segmentation performance. In addition,
the sparse learning method (i.e., SPBM) [11, 12] is also used
for label fusion, where a small number of patches from mul-
tiple atlases are used for reconstructing the target patch.

Although much progress has been achieved, the above
methods only use the intensity information to describe MR
images, which neglect to take high-order information into
consideration. The mean-covariances Restricted Boltzmann
Machine model (mcRBM) [13], which can effectively cap-
ture high-order information, such as mean and covariance
information from images, simultaneously. Specifically, the
mcRBM has two sets of hidden units, one represents the
patch intensities (i.e., mean information) and the other one
represents pair-wise dependencies that depict the high order
information between patches intensities (i.e., covariance in-
formation). In our work, we firstly apply mcRBM model
to learn mean and covariance information from the image
patches, and then use the learnt high-order feature for multi-
atlas label fusion. We validate the learnt feature on two
well-known label fusion methods including LWV and PBM.
Experimental results on the NIREP data sets show our method
can improve the performance of both LWV and PBM by the
learnt feature.

The remainder of this paper is organized as follows. In
section 2, we present the feature learning process of mcRBM
and the label fusion method. In Section 3, we compare our
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proposed method with LWV and PBM . Finally, a brief con-
clusion is given in section 4.
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Fig. 1. Overview of our method.1) In the training stage, the
red squares represent the patches random sample from MRI
to train mcRBM model. 2) In the multi-atlas segmentation
stage, the green squares represent the target patch and the blue
patches represent the candidate patches selected from the at-
lases. And the blue rectangle represent the search neighbor-
hood.

2. METHOD

We show the flowchart of our method in Fig.1. Specifically,
it can be divided into two stages (e.g., training stage and seg-
mentation stage). In the training stage, we random sample
patches from atlases and target image to train the mcRBM
model offline. In the segmentation stage, we firstly convert
the intensity feature to the new feature space by the derived
mcRBM model in the training stage, and then adopt the label
fusion methods (e.g., PBM, LWV) to get the final label map
of the brain image. We will present the feature learning pro-
cess of mcRBM and the label fusion method in Section 2.1
and Section 2.2, respectively.

2.1. High-order feature learning

The mcRBM model [13] has two sets of hidden units, one
represents the mean information of patch and the other repre-
sents the covariance information of patch. Thus, the hidden
units can be used to capture both the mean and the pair-wise
dependencies between voxels. The mean intensities of the
visible units energy function is defined as:
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where h

c
k represents the k-th covariance hidden unit, C is the

connection weight matrix between visible units and filters,
and P is the connection weight matrix between filters and
hidden units. The final energy function is:
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The probability density function can be defined as:
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where Z is a normalized factor. The marginal distribution
over the visible units is P (v) =

∑

hc,hm P (v, hc, h
m). We

can solve this optimization problem by applying Contrastive
Divergence method[14].

2.2. Patch-based method for label fusion

Here, we use T to denote the label of the target image. La-
bel fusion aims to determine the label map LT for the target
image. We firstly register each atlas image and label maps
onto the target image space. We use A = {As |s = 1, ..., N}
and L = {Ls |s = 1, ..., N} to denote the N atlases and label
maps ,and use PT (y) and PAS

(x) to denote the patch centered
at the voxel y in the target image T and the patch centered at
voxel x in the atlas As, respectively. In addition, we denote
the neighborhood of voxel y on the atlases A as NA(y).

In the non-local strategy, the patch-based methods seek
multiple candidates in a certain neighborhood centered at the
target voxels. The multi-atlas patch-based method assume
that the target voxels should have the same label as the at-
las voxels if the local tissue shape or appearance is similar, In
PBM [9], the voting weights are calculated as follows:

w(y, xs,j) = exp
−||I(y)− I(xs,j)||

2
2

δ(y)
(5)

with
δ(y) = argmin

xs,j∈NA(y)

||I(y)− I(xs,j)||2 +ε

where I(y) and I(xs,j) represent the normalized intensity of
the patches PT (y) and PAS

(xs,j). || · ||2 is the L2 norm. ε is
a small constant. In our method we replace intensity with the
high-order descriptor. For all voxels y of the target image to
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be segmented, the label of voxel is determined by a weighted
label fusion of all labeled voxels inside the neighborhood of
voxel y:

l(y) =

∑N
s=1

∑

j∈NA(y) w(y, xs,j) ls,j
∑N

s=1

∑

j∈NA(y) w(y, xs,j)
(6)

where ls,j is the label given by the expert to voxel xs,jat the
jth voxel in atlas As. w(y, xs,j) is a weight between voxel y
and xs,j calculate by Eq.5. The final label is assigned to 1 or
0 by

L(y) =

{

1 l(y) ≥ 0.5
0 l(y) < 0.5

(7)

3. EXPERIMENTS

In this section, we evaluate the performance of the proposed
label fusion method on segmenting brain anatomical struc-
ture, i.e., regions of interest (ROIs), from the MR brain image
of NIREP database. We validate the learnt feature on two
well-known label fusion methods including LWV and PBM.

3.1. Dataset and experimental settings

The NIREP dataset [15] consist of 16 T1-weighted MR im-
ages, including 8 normal adult males and 8 females. The
16 MR images have been manually segmented into 32 ROIs.
The MR images were obtained in a General Electric Signa
scanner operating at 1.5 Tesla, using the following protocol:
SPGR/50, TR24, TE 7, NEX 1 matrix 256 192, FOV 24 cm.
For each of the ROIs, a Leave-One-Out cross-validation is
performed to test the segmentation on each LOO fold, 15 of
16 subjects are used as atlases and aligned onto the remaining
image (used as the target image). We use the Dice ratio to
assess label accuracy which measures the degree of overlap,
defined as:

Dice(A,B) =
2 |A ∩B|

|A|+ |B|
(8)

where the ∩ denotes the overlap between automatic segmen-
tations and ground truth, and | · | denotes the number of voxels
of the ROI.

We use the terms of mc-LWV and mc-PBM to denote the
methods of LWV and PBM, by which we apply mcRBM to
obtain the high-order feature, respectively. We perform a pre-
selection of the patches to reduce the computational time ac-
cording to the similarity of the two patches. There is a com-
mon parameter in our experiment, i.e., the size of 7×7×7
neighborhood search region is used for our experiments. And
in our experiments we fix patch size as 5×5×5 voxels for all
methods. We train mcRBM model with 256 factors, 256 co-
variance hidden units and 100 mean hidden units.

3.2. Experimental results on the NIREP dataset

We compare the segmentation results of different multi-atlas
label fusion algorithms on NIREP dataset. There are 32
ROIs in the NIREP dataset, for simplicity, we treat them
independently. Thus we have 32 independent binary seg-
mentation. For each segmentation, we set the label of a
voxel as 1 if it belongs to the ROI, and 0 otherwise. Ta-
ble 1 gives the average dice of the 32 ROIs. The mc-
LWV and mc-PBM achieve better segmentation results than
LWV and PBM, respectively. Compared with LWV, mc-
LWV improve the average dice ratio(mean±standard devi-
ation) from (61.58±7.22)% to (62.70±7.42)%. Compared
with PBM, mc-PBM improves the average dice ratio from
(75.19±5.28)% to (76.73±5.39)%. We can see that the fea-
ture learning by mcRBM model can improve the segmenta-
tion results. In Fig.2 we visually plot the segmentation results
of the LWV, mc-LWV, PBM and mc-PBM on L insula gyrus.
We also show the ground truth and original brain image for
comparison. As can see from Fig.2, mc-LWV, mc-PBM
achieve a better visual quality of segmentation results than
LWV and PBM, respectively. In supplemental material, we
shows the segmentation results on the 32 ROIs using LWV,
mc-LWV, PBM and mc-PBM. our proposed feature learning
methods can be improve the performance for both LWV and
PBM on all ROIs, respectively.

Table 1. Segmentation results of LWV, mc-LWV, PBM and
mc-PBM on NIREP dataset

Method Mean±Standard deviation(%)
LWV 61.58±7.22

mc-LWV 62.70±7.42
PBM 75.19±5.28

mc-PBM 76.73±5.39

4. CONCLUSION

In this paper, we use mcRBM to learn high-order feature for
multi-atlas segmentation. The learnt feature can both capture
the information of the voxel intensities and pair-wise depen-
dencies between voxel intensities. The segmentation results
show that our proposed mc-LWV and mc-PBM can achieve
up to 1.12% and 1.54% improvement over LWV and PBM on
NIERP dataset, respectively. These results demonstrate the
advantage of the newly learnt feature in the field of multi-
atlas segmentation. In future, we plan to use this model for
more segmentation task on medical image dataset and extend
it to build a Deep Belief Network (DBN) for learning deep
features.
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Fig. 2. Visual views on original image (a), ground truth (b) and segmentation result of LWV (c), mc-LWV(d), PBM (e) and
mc-PBM (f) algorithms on L insula gyrus
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