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Abstract. In recent studies, it has attracted increasing attention in
multi-frequency bands analysis for diagnosis of schizophrenia (SZ).
However, most existing feature selection methods designed for multi-
frequency bands analysis do not take into account the inherent struc-
tures (i.e., both frequency specificity and complementary information)
from multi-frequency bands in the model, which are limited to iden-
tify the discriminative feature subset in a single step. To address this
problem, we propose a multi-level multi-task structured sparse learn-
ing (MLMT-TS) framework to explicitly consider the common features
with a hierarchical structure. Specifically, we introduce two regulariza-
tion terms in the hierarchical framework to impose the common features
across different bands and the specificity from individuals. Then, the s-
elected features are used to construct multiple support vector machine
(SVM) classifiers. Finally, we adopt an ensemble strategy to combine
outputs of all SVM classifiers to achieve the final decision. Our method
has been evaluated on 46 subjects, and the superior classification results
demonstrate the effectiveness of our proposed method as compared to
other methods.

1 Introduction

Schizophrenia is the most common chronic and devastating mental disorders
affecting 1% of the population worldwide [1]. Until now, the pathological mech-
anism of schizophrenia remains unclear and there is no definitive standard in the
diagnosis of schizophrenia. While it has been reported that there is a significant
change in the structure, function and metabolism of the brain in schizophrenia
patients [2]. Moreover, some related studies have suggested that resting-state
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functional analyses are beneficial to achieve more complete information of func-
tional connectivity. In fact, most resting-state functional magnetic resonance
imaging (RS-fMRI) studies have examined spontaneous low-frequency oscilla-
tions (LFO) at a specific frequency band of 0.01-0.1Hz [3]. Therefore, we can use
the RS-fMRI data for whole-brain analysis in this study.

In addition, as the complexity of the schizophrenia itself, some studies have
reported mixed results even opposite conclusions [3], which may be due to the
different frequency bands used in these studies. Hence, it has been recognized
that neural disorder specific changes could be restricted to the specific frequency
bands recently. Also, more and more studies have indicated that taking the
high-frequency bands into consideration is helpful to measure the intrinsic brain
activity of schizophrenia. Therefore, in this study we decompose RS-fMRI LFO
into four distinct frequency bands based on prior work (slow-5(0.01-0.027Hz),
slow-4(0.027-0.073Hz), slow-3(0.073-0.198Hz), slow-2(0.198-0.25Hz)) [4].

To exploit potential information sharing among different frequency bands,
instead of treating each frequency band as a single-task classification problem,
multi-task learning (MTL) paradigm learns several related tasks simultaneously
to improve performance [5]. However, the main limitation of existing multi-task
works is that all tasks are considered in a single level, which may miss out some
relevant features shared between a smaller group of tasks. Meanwhile, it may
be not enough to model such complex structure information in schizophrenia
studies through a single level method.

Accordingly, in this paper, we propose a multi-level multi-task structured
sparse (MLMT-TS) learning method, to explicitly model the structure informa-
tion of multi-frequency data for diagnosis of schizophrenia. In our hierarchical
framework, `1,1-norm is brought to induce the sparsity and select the specific
features, meanwhile a new regularization term is introduced to capture the com-
mon features across different bands. Hence, contrary to the single level manner,
the hierarchical framework gradually enforces different levels of features sharing
to model the complex structure information efficiently.

2 Method

Data and Pre-Processing: In this study, we use 46 subjects in total from the
Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical
University. Among them, 23 are schizophrenia patients, and the rest 23 sub-
jects are normal controls (NC). All subjects RS-fMRI images were processed as
described in [3], and after preprocessing the fractional amplitude of LFO were
calculated using REST software1. Because the size of the RS-fMRI image is
61× 73× 61, the voxel-based analysis is too large and noisy to directly used for
disease diagnosis. Thus, we adopt a simple and effective way to extract more
relevant and discriminative features for neuroimage analysis and classification.
We first utilize the patch-based method with patch size 3×3×3 voxels to divide

1 http://www.restfmri.net
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Fig. 1. The framework of the proposed classification algorithm.

the whole brain into some candidate patches. Then, we perform the t-test on the
candidate patches and select the significant patch with the p-value smaller than
0.05. Finally, we calculate the mean of each patch, and treat it as the feature of
the selected patch.

Multi-Level Multi-Task Structured Sparse Learning Model: The frame-
work of the proposed method is illustrated in Fig. 1. After the patch-based multi-
frequency bands features are extracted from the RS-fMRI data, our multi-level
multi-task structured sparse (MLMT-TS) method is used to select the more rele-
vant and discriminative features. The features are selected in an iterative fashion:
It starts with a low level where sharing features among all tasks are induced,
and then gradually enhances the incentive to share in successive levels. How-
ever the specific features of different bands are induced with a high level, then
the incentive is gradually decreased. In addition, we also need to note that the
learned coefficient matrix corresponding to each level is forwarded to the next
hierarchy for further leaning in the same manner. In such a hierarchical manner,
we gradually select the most discriminative features in order to sufficiently uti-
lize the complementary and specific information of multi-frequency bands. Then,
the selected features are used to train SVM classifiers for schizophrenia disease
classification. Finally, we adopt an ensemble classification strategy, a simple and
effective classifier fusion method, to combine the outputs of different SVM clas-
sifiers to make a final decision. In the following, we explain in detail how the
MLMT-TS feature selection method works.

Assume that there are M supervised learning tasks corresponding to the
number of frequency bands. And the training data matrix on m-th task from N
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training subjects is denoted by Xm = [xm,1,xm,2, . . . ,xm,N ]T ∈ RN×d, and Y =
[y1, y2, . . . , yN ]T ∈ RN as the response vector from these training subjects, where
xm,n is the feature vector of the n-th subject and the corresponding class label
is yn. Denote the coefficient matrix as W = [w1, . . . ,wM ] ∈ Rd×M , where wm ∈
Rd is a linear discriminant function for task m, and we assume the bias term b
is absorbed into W. As mentioned above, the coefficient matrix is forwarded to
subsequent learning to share more structure information. Hence, we decompose
the coefficient matrix into H components where each hierarchy can capture the
level-specific task group structure features. Specifically, the coefficient matrix W
can be defined as

W =

H∑
h=1

Wh (1)

where Wh = [wh,1, . . . ,wh,M ] ∈ Rd×M is the coefficient matrix, which is cor-
responding to the h-th level, and wh,m is the m-th column of Wh in the h-th
level. Then the objective function for MLMT-TS feature selection method can
be written as:

minW

M∑
m=1

1

2
‖Y −Xm

H∑
h=1

wh,m‖22 +Rt(W) +Rs(W) (2)

where Rt(W) and Rs(W) are the structure regularization term and the `1,1-
norm regularization term, respectively, which are defined as follows

Rt(W) =

H∑
h=1

λh

M∑
p<q

‖wh,p −wh,q‖2 (3)

and

Rs(W) =

H∑
h=1

βh‖Wh‖1,1 (4)

In Eq. (3), we impose a `2-norm on the pairwise difference among the column
vectors, which encourages each pair of columns to share some smaller group
features. In Eq. (4), ‖Wh‖1,1 =

∑d
i=1 ‖wi

h‖1 is the sum of `1-norm of the rows
in matrix Wh. The `1,1-norm is used to encourage sparsity of the coefficient
matrix Wh as well as select the specific features corresponding to each frequency
band. And λh and βh are positive constants used to balance the feature sharing
and specific features selection. Particularly, λh controls the strength of sharing
features and βh controls the sparsity of the coefficient matrix. In this study, we
assume a descending order for information sharing from the high-level to the
first one, however the sparsity of the matrix Wh is gradually increasing from
the low level to the high one. Hence, we set λh = λh−1/σ and βh = βh−1×σ for
h ≥ 2 with constant σ > 1. It is worth noting that, when β1 = 0, our method
will reduce to the multi-level task grouping method (MLMT-T) [6]. Also, when
λ1 = 0, our method will reduce to a multi-level Lasso method (MLMT-S). Below,
we will develop a new method for optimizing the objective function in Eq. (2).
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Optimization Algorithom: To optimize the objective function in Eq. (2), we
propose a top-down iterative scheme, where the problem (2) is decomposed into
several sub-problems consistent with the levels, which is described as follows:

minWh

M∑
m=1

1

2
‖Y −Xmwh,m‖22 + λh

M∑
p<q

‖wh,p −wh,q‖2 + βh‖Wh‖1,1 (5)

For seeking the optimal value of Wh of the sub-problems which corresponds to
the h-th level, we can solve the problem by the smoothing proximal gradient
(SPG) method [6] fortunately. The problem solved by the SPG method takes
the form

minWh
F̃ (Wh) = f(Wh) + gµ(Wh) + βh‖Wh‖1,1 (6)

According to [6], we can rewrite the smoothed approximation function of gµ(·)
as

gµ(Wh) = λh

M∑
p<q

‖wh,p −wh,q‖2 = maxA∈Q〈CWT
h ,A〉 − µd(A) (7)

where C ∈ R
m(m−1)

2 ×m is a sparse matrix with each row having only two non-
zero entries, and A = (α1, . . . , αm(m−1)/2)T is the auxiliary matrix variable with
a closed and convex set domain Q ≡ {A|‖αj‖2 ≤ 1,∀j ∈ Nm(m−1)/2}. Then the
gradient of h(Wh) = f(Wh) + gµ(Wh) with respect to Wh can be computed as

∇Wh
h(Wh) = XT

m(Xmwh,m −Y) + (A∗)TC (8)

Hence, the generalized gradient update step of SPG algorithm is defined as

Wt+1
h = argminWh

1

2
‖Wh − (Ŵt

h −
1

L
∇h(Ŵt

h))‖22 +
βh
L
‖Wh‖1,1 (9)

where L is the Lipschitz constant which can be determined by numerical ap-

proaches, and Vh = Ŵt
h − 1

L∇h(Ŵt
h). According to [6], the closed-form solu-

tion for Wt+1
h is given as Wt+1,i

h = sign(vi)max(0, |vi|− βh

L ), where Wt+1,i
h and

vi represent the i-th row of the matrix Wt+1
h and Vh. In addition, according

to [6], instead of performing gradient descent based on Wh, we can compute the
following formulation as:

Ŵt+1
h = Wt+1

h + ηt+1(Wt+1
h − Ŵt

h) (10)

where ηt+1 = (1−θt)θt+1

θt
and θt+1 = 2

t+3 . Let D = maxA∈Qd(A) and W∗
h be

the optimal solution to Eq. (5). If the desired accuracy is ε, according to [6], the
SPG algorithm needs O(

√
2D/ε) iterations to converge.

3 Experiments

Experimental Setting: For method evaluation, we adopted leave-one-out
cross-validation (LOOCV) to estimate the classification performances of dif-
ferent methods. All parameters were learned by conducting LOOCV. Four
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classification performance including classification accuracy (ACC), sensitivity
(SEN), specificity (SPE), and the area under the receiver operating character-
istic (ROC) curve (AUC) were used. We compared the proposed method with
five different feature selection methods, including t-test, Lasso, MTL, and two
variants of the proposed method. The t-test and Lasso were used as feature s-
election methods in each frequency band while the MTL and the variants of
our method learned different frequency bands jointly. After that, the selected
features were feed to the SVM with ensemble strategy in the final classifica-
tion step. For all methods, the linear SVM implemented in LibSVM software2

was used as the classifier. The parameters λ1 and β1 in Eq. (2) and two vari-
ants were chosen from {2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23}, while the constant σ
was set to 1.2 as used in [6]. For the t-test method, the p-value was chosen
from {0.05, 0.02, 0.01}. The parameters for Lasso and MTL were also chosen
from {2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23}. The MTL method was implemented us-
ing SLEP package3. The hierarchy of our method is chosen by LOOCV on the
training data from a set [1, . . . , 10].

Results and Disscussions: To illustrate the effectiveness of the proposed hi-
erarchical structure, Fig. 2 shows the change of ACC and AUC with different
numbers of hierarchies on the training data. It is observed that at the begin-
ning the use of more hierarchies benefits the classification performance. When
hierarchy reaches five, the method achieves the best performance. Then, the
performance becomes slightly worse for larger hierarchies. Because the upper
hierarchies learned from the proposed method tend to have a larger number
of small groups structure due to the setting for the regularization parameter
λh = λh−1/σ. And with the increases of hierarchy, all the hierarchies will con-
tain more group structure, which leads to capture more noisy information in
multi-frequency data. Therefore, we set the number of hierarchies to five in our
experiments.

We also show in Table 1 a comparsion of the proposed method with the
other competing methods and their ROC curves are given in Fig. 3. From the
results of SZ vs. NC classification in Table 1 and Fig. 3, we can observe three
main points. First, hierarchical methods generally achieve significantly better
performance, compared with the single level methods. It is worth noting that,
although MLMT-S method has not obtained the best performance in comparison
with MTL, it still outperforms the t-test and Lasso methods. In contrast to MTL,
MLMT-S only considers a single band and ignores the structure information. It
also reveals that taking the different frequency bands into account is beneficial
to improve predictions. Second, our proposed method which takes advantage of
the structure information performs much better than the other methods without
consider structure information in terms of classification accuracy, sensitivity and
AUC. Specifically, MLMT-TS achieves a classification accuracy of 93.48%, a
sensitivity of 95.65% and an AUC of 97.07%, while the best results of MLMT-S

2 https://www.csie.ntu.edu.tw/ cjlin/libsvm/
3 http://www.yelab.net/software/SLEP/
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Table 1. Classification performances with LOOCV of different methods

Methods ACC SEN SPN AUC
(%) (%) (%) (%)

t-test 63.04 73.91 52.17 78.07
Lasso 71.74 65.22 78.26 83.02
MTL 80.43 82.61 78.26 90.06
MLMT-S 73.91 82.61 65.22 85.01
MLMT-T 91.30 91.30 91.30 96.44
MLMT-TS (ours) 93.48 95.65 91.30 97.07

is 73.91%, 82.61% and 85.01%, respectively. Finally, MLMT-TS is slightly better
than the MLMT-T method, which shows that specific features corresponding to
each frequency band are significant to improve the classification performance.

The main finding of this study is the different contributions of LFO ampli-
tudes in the classification of schizophrenia. Fig. 4 depicts the identified biomark-
ers from the four frequency bands. The color of these biomarkers indicates the
contribution for identifying the schizophrenia. Specifically, key regions of cog-
nitive control networks, including the prefrontal cortex and anterior cingulate
cortex are found to contribute high weight for identifying schizophrenia in all
frequency bands. For example, the gyrus frontalis medius region is selected in
slow-5, slow-3 and slow-2. While core default mode network regions, which in-
clude precuneus, angular gyrus, and memory associated temporal regions, take a
central position in the classification of schizophrenia and patients within speci-
ficity but not all frequency bands. For example, in slow-2 default mode net-
work core regions, like precuneus, angular gyrus and middle temporal have high
weights, while for slow-3 regions in the frontotemporal network would be the core
biomarkers in classification. The results validate that taking both the specificity
and complementary information into account is helpful to improve the classi-
fication performance. And the effectiveness of the selected biomarkers can be
confirmed by previous reports in the literature [3, 4, 7].
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Fig. 4. The biomarkers identified by the proposed MLMT-TS method in different fre-
quency band.

4 Conclusion

In this study, we have developed a multi-level multi-task structured sparse
(MLMT-TS) feature selection framework for schizophrenia diagnosis, which
can make better use of the underlying specificity and structure information of
multi-frequency bands data. Experimental results on the multi-frequency bands
schizophrenia dataset showed that the hierarchical scheme was able to gradually
refine the information sharing in multiple steps. Compared with other methods,
consistently high performance demonstrates the efficacy of our proposed method.
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