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Robust Distance Metric Learning
via Bayesian Inference

Dong Wang and Xiaoyang Tan

Abstract— Distance metric learning (DML) has achieved great
success in many computer vision tasks. However, most existing
DML algorithms are based on point estimation, and thus are
sensitive to the choice of training examples and tend to be over-
fitting in the presence of label noise. In this paper, we present
a robust DML algorithm based on Bayesian inference. In par-
ticular, our method is essentially a Bayesian extension to a
previous classic DML method—large margin nearest neighbor
classification and we use stochastic variational inference to
estimate the posterior distribution of the transformation matrix.
Furthermore, we theoretically show that the proposed algorithm
is robust against label noise in the sense that an arbitrary point
with label noise has bounded influence on the learnt model. With
some reasonable assumptions, we derive a generalization error
bound of this method in the presence of label noise. We also show
that the DML hypothesis class in which our model lies is probably
approximately correct-learnable and give the sample complexity.
The effectiveness of the proposed method1 is demonstrated with
state of the art performance on three popular data sets with
different types of label noise.

Index Terms— Distance metric learning, bayesian inference,
label noise, generalization error.

I. INTRODUCTION

THE performance of many computer vision tasks,
e.g., face retrieval, kinship verification and object

classification strongly rely on the metric that used to measure
the distances or similarities between data. For this reason,
a lot of recent work has shown the interest of distance metric
learning (DML) [2]–[9]. Most of these methods aim to learn
a Mahalanobis distance metric which pulls together samples

Manuscript received June 29, 2017; revised November 11, 2017; accepted
December 3, 2017. Date of publication December 11, 2017; date of current
version January 5, 2018. This work was supported in part by the National
Science Foundation of China under Grant 61672280, Grant 61373060, and
Grant 61732006, in part by the National Key Research and Development Pro-
gram of China under Grant 2017YFB0802300, in part by Jiangsu 333 Project
under Grant BRA2017377, in part by the Pre-Research Fund of EDD, Qing
Lan Project, and in part by the Funding of Jiangsu Innovation Program for
Graduate Education under Grant KYLX15_0320. The associate editor coor-
dinating the review of this manuscript and approving it for publication was
Prof. Xiaochun Cao. (Corresponding author: Xiaoyang Tan.)

D. Wang is with the Department of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

X. Tan is with the Department of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106,
China, and also with the Collaborative Innovation Center of Novel Soft-
ware Technology and Industrialization, Nanjing 211106, China (e-mail:
x.tan@nuaa.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2782366
1A MATLAB implementation of this method is made available at

http://parnec.nuaa.edu.cn/xtan/Publication.htm

from the same class while pushing away those from different
classes.

Although DML has achieved great success, one emerging
challenge of DML is label noise [10] which may lead to
serious performance deterioration [11]. Those examples with
error labels could come from many sources, but one of the
most common sources is due to the fact that nowadays people
popularly use crowdsourcing or other techniques to harvest
data from internet, especially in the field of computer vision
and machine learning [12].

To address this issue, many robust DML methods have been
proposed. One type of methods is adding a regularizer to the
objective of DML [13]–[18]. However, although regularizer
helps to avoid overfitting when the training set is small or cor-
rupted with feature noise, it helps less in the presence of
label noise. This is due to that the effect of label noise is
much bigger than feature noise, and with increasing amount of
training data the influence of the regularizer becomes weaker.
Another type of methods is using various label noise tolerant
loss functions to improve the robustness against label noise,
such as: robust Fisher discriminant analysis [19], L1-norm
distance metric learning [20], robust neighborhood compo-
nent analysis [21]. However, those objectives are usually
nonconvex or nonsmooth which would largely increase the
computation cost and therefore can not be applied to big
dataset. Furthermore, all these methods are based on point
estimation, and thus are sensitive to the choice of training
examples and tends to be over-fitting especially when training
set is small and/or noisy.

Bayesian learning is also good choice for robust learn-
ing [22], [23]. Yang et al. [24] presents a Bayesian DML
model which takes the prior distribution of the transformation
matrix into account and estimate the posterior distribution via
variational inference. This method can achieve state-of-the-art
performance under small sample size. However, it models each
sample independently by pairwise constraint, which limits its
efficiency in learning.

In this work, we follow [24] to learn a robust DML model
via Bayesian inference. Our method is essentially a Bayesian
extension to a previous classic DML method — LMNN
(large margin nearest neighbor classification [1]). In stead of
using pairwise constraints as in [24], we adopt the popular
large margin constraint to obtain a more robust distance
metric. To apply this method on big dataset, we present
an efficient training approach based on stochastic variational
inference (SVI) [25]. We also conduct thorough theoretical
analysis on the proposed method, showing that it is robust
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against label noise as any point with label noise has bounded
influence on the learnt model. Although a few theoretical
results of the regularized loss minimization framework exit
in literatures (e.g., [13], [26]–[28]), the effect of label noise
on the generalization error is usually missing in such analysis.
We derive a generalization error bound of the proposed method
and show that the DML hypothesis class of our model is
PAC-learnable in the presence of label noise. This is dif-
ferent from previous VC-dimension based analysis on label
noise [29]–[31] which mainly focus on classification with
bounded loss (0-1 loss) and has not been applied on the issue
of distance metric learning.

In what follows we first give the formulation of the proposed
Bayesian BLMNN method and detail the SVI training process
in Sec. II. We then give a thorough theoretical analysis of the
proposed method in Sec. III and demonstrate its effectiveness
on three real-world datasets in Sec. VI. We conclude this paper
in Section. VII.

II. THE PROPOSED METHOD

A. Preliminary

Assuming that we have a dataset of N data points in RD ,
denoted as {(xi , yi )| i = 1, 2, . . . , N}, where yi is the label of
the i -th data point xi . In distance metric learning, we aim
to learn a Mahalanobis matrix—A ∈ RD×D using some
form of supervision information. Mahalanobis distance metric
measures the squared distance between two data points xi and
x j as follows,

d2
i j = (xi − x j )

T A(xi − x j ) (1)

Note that A � 0 is a positive semi-definite matrix and can
be decomposed to U · U T (U = [u1, u2, . . . , uM ] ∈ RD×M ,
M ≤ D). Let yi j = 1 indicates a similar pair with yi = y j ,
and yi j = 0 a dissimilar pair.

The Large Margin Nearest Neighbor (LMNN) method aims
to learn a distance metric by which similar pairs should be
separated from dissimilar pairs with a margin:

L =
∑

i j l∈S

max(1 + d2
i j − d2

il , 0) + Creg‖A‖2
F (2)

where Creg is a hyper-parameter, and the training set S contains
|S| independent triplets (i jl) satisfying yi j (1 − yil ) = 1, 1 +
d2

i j − d2
il > 02 and j, l ∈ Ni where Ni denotes the set of

neighbors of xi .

B. Bayesian LMNN

In Bayesian modeling, we need introduce a prior distribution
p(A) for the transformation matrix A, and define the likeli-
hood function p(S|A), then estimate the posterior distribution
p(A|S) given the training data S. For the Bayesian LMNN
model, we can choose a Gaussian prior for the parameter A,

2In LMNN, those perfect triplets that satisfying yi j (1 − yil ) = 1, 1 + d2
i j −

d2
il ≤ 0 don’t need to be trained, therefore we simply throw them away from

the training set S.

and define the likelihood function according to the large
margin principle [1] as,

p(S|A) =
∏

(i j l)∈S

p(xi , x j , xl , yi , y j , yl |A)

= C
∏

(i j l)∈S

exp
{
−2 · max(1 + d2

i j − d2
il , 0)

}
(3)

where C is a normalizing constant. With Bayes rule, the poste-
rior distribution of the distance metric parameters A satisfies
p(A|S) ∝ p(S|A)p(A), which is the product of likelihood
function p(S|A) and prior distribution p(A). In what follows,
we give the details of our schemes on how to deal with these
distributions in the context of robust distance metric learning.

To work with Bayesian inference, we use a number of
Gaussian distributions to approximate each single likelihood
([32], see appendix A for details):

p(xi , x j , xl , yi , y j , yl |A)

=
∫ ∞

0

1√
2πλi j l

exp

{
−1

2

(1 + d2
i j − d2

il + λi j l )
2

λi j l

}
dλi j l

(4)

where λi j l is an induced parameter. And we reformulate the
distance function d2

i j in a linear form, that is

d2
i j = tr[A(xi − x j )(xi − x j )

T ]
= γ T xi j (5)

where the new variables γ and xi j are respectively the
vectorized version of matrix A and (xi − x j )(xi − x j )

T .
To this end, our objective boils down to find the optimal γ ,
and in what follows, we will replace the likelihood function
p(xi , x j , xl , yi , y j , yl |A) (eq. (3)) with its equivalent form
p(xi , x j , xl , yi , y j , yl |γ ).

C. Training via Stochastic Variational Inference

To estimate the posterior distribution of parameter γ ,
a proper prior distribution is also needed. In this work we
use the Gaussian prior: p(γ ) = N (γ |μ0, V0). Moreover,
since the parameter γ is coupled with λi j l in the likeli-
hood (eq. (4)), we adopt a factorized variational distribution
q(γ, λ) = q(γ )

∏
i j l q(λi j l ) to approximate the groundtruth

distribution p(γ, λ|S, μ0, V0). Our objective is therefore to
minimize the KL distance between the variational distribution
q(γ, λ) and the groundtruth distribution p(γ, λ|S, μ0, V0),

In standard VI (please see Appendix B for details), to train
the Bayesian LMNN model, we need iteratively update γ̄ and
λ̄i j l until converged. However, Variational Inference (VI) is
not a scalable algorithm, because in each iteration we must
update all local variational variables (i.e. λi j l ) before updating
global parameter (i.e. γ̄ ). Moreover, due to that the dimension
of parameter γ is D2, the computation cost of computing the
inverse of the covariance matrix is o(D6), which is too large
to train on big dataset. In [24] Yang et al. presented an eigen
approximation-based method which learns a diagonal matrix
instead of a full matrix A, so as to reduce the computation
cost to o(D3).
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To address this issue, we use stochastic variational infer-
ence (SVI) [25] to train the BLMNN model, which allows
to update global parameter immediately after updating any
one of the local variables. Moreover, with some mathematical
manipulation, the computation cost in each step can decrease
to o(D2) from o(D6).

Formally, denote q(γ t ) = N (γ t |γ̄ t , V t
γ ) as the distribution

of γ learnt in the t-th step. In each step, we randomly choose
a triplet (i j l) and compute the variational parameter λi j l ,
which is actually a generalized inverse Gaussian distribu-
tion (GIG) [32],

q∗(λi j l ) = GIG(λi j l |1

2
, 1, (1 + (γ̄ t−1)T xi j l)

2) (6)

λ̄i j l = 1 + |1 + (γ̄ t−1)T xi j l | (7)

where for convenience we denote:

xi j l = xi j − xil (8)

We then introduce an intermediate distribution q(γ ′) =
N (γ ′|γ̄ ′, V ′

γ ) which is calculated as:

V ′
γ = (V −1

0 + |S|xi j lλ
−1
i j l x T

i j l)
−1

γ̄ ′ = V ′
γ [V −1

0 μ0 − |S|xi j l (1 + λi j l
−1)] (9)

where |S| is the number of triplets. Let us choose V0 = δ2 I
and follow the Matrix Inversion Lemma,3 then we have

V ′
γ = δ2 I − δ2b−1

i j l xi j l x
T
i j l

γ̄ ′ = μ0 − ci j l xi j l (11)

where

bi j l = δ−2|S|−1λi j l + ‖xi j l‖2
2

ci j l = δ2|S|(1 + λi j l
−1) + b−1

i j l x T
i j lμ0

− δ2b−1
i j l |S|‖xi j l‖2

2(1 + λi j l
−1) (12)

We then update q(γ t ) = N (γ t |γ̄ t , V t
γ ) by,

γ̄ t = (1 − ρt )γ̄
t−1 + ρt γ̄

′

V t
γ = (1 − ρt )V t−1

γ + ρt V ′
γ (13)

where the sequence of step sizes ρt needs to satisfy:

ρt > 0,
∑

t

ρt = ∞,
∑

t

ρ2
t < ∞ (14)

Hence, one can see that the computational cost of learning
the parameter A (or γ ) is o(|S|D2) which is the same as
standard LMNN. The whole pipeline of the training procedure
is summarized in Alg. 1.

3Matrix Inversion Lemma:

(P + U Q−1U T )−1 = P−1 − P−1U(Q + U T P−1U)−1U T P−1 (10)

Algorithm 1 Bayesian LMNN

D. Prediction

For prediction we are interested in the posterior distribution
of the point-to-point distance d2

i j for a new couple of data (i, j)
according to the learnt distribution of γ , which is a Gaussian
distribution as shown above. Particularly, according to eq. (5)
we have,

d2
i j ∼ N (d2

i j |d̄i j , σ
2
i j )

d̄i j = (xi j )
T γ̄

σ 2
i j = (xi j )

T Vγ xi j (15)

where γ̄ and Vγ are the learnt parameters via Alg. 1.
If a K-Nearest Neighbor or a kernel machine is adopted as

the classifier, we just need to compute the similarity of any
two data points rather than the whole distribution. In these
cases, one could simply use the MAP (maximum a posterior)
value—d̄i j to estimate the d2

i j .

III. THEORETIC ANALYSIS

In this section, we will give a thorough analysis of the
proposed method, including the robustness against label noise,
the generalization error and the sample complexity in the
presence of label noise.

A. Robustness Against Label Noise

In real-world applications, there may exit various types of
label noise [11] and in this work, we focus on the type with
the following property,

Definition 1 (Label Noisy Triplet): A triplet (i jl) of data
points are called label noisy triplet if (1) j, l ∈ Ni (Ni denotes
the set of neighbors of xi ), (2) yi j (1 − yil) = 1 and (3) in the
input space d2

i j − d2
il ≥ Cd , where Cd > 0 is a threshold.

Intuitively, in a local area of some feature space, the distance
between similar points d2

i j in a triplet should be smaller or at
least not much bigger than that of dissimilar points d2

il ,
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Fig. 1. Illustration of label noisy triplets. The color of a data point indicates
its class label, while a data point with a green circle indicates that it is with
label noise. (A) is a normal triplet with the distance between similar points d2

i j
smaller than that of dissimilar points d2

il ; (B) is a noisy triplet in which the
label of l is wrong; (C) is also a noisy triplet that the label of anchor point i
is wrong and thus there are many dissimilar points around it.

otherwise the triplet would be regarded as containing points
with label noise. Fig. 1 gives an illustration of this idea, where
samples i and j have the same class label while the class labels
of j and l are different.

Furthermore, a good DML algorithm should have the robust-
ness property that adding an arbitrary label noisy data to the
training set would not largely change the learnt model. More
formally:

Definition 2 (β-Robustness Against Label Noise): Let S be
a training set and z′ a label noisy data.4 Then a learning
algorithm A is β-robust against label noise if the hypothesis
it returns with training set S and {S, z′} (denoted as γ̄ S , γ̄ S,z′

respectively) satisfy:

‖γ̄ S − γ̄ S,z′‖2 ≤ β (16)

Note that this definition focuses on the maximum effect of one
label noisy data to a learning algorithm, therefore it does not
care whether or not the training set S is clean. In the following,
we begin with two lemmas to show that the proposed learning
algorithm (Alg. 1) owns this type of robustness.

Lemma 1: Assume the distance metric parameter γ̄ satisfies
γ̄ ∈ RM and ‖γ̄ ‖∞ ≤ B , then a label noisy triplet (i jl),
as defined in Definition. 1, should satisfy ‖xi j l‖2 ≥ Cd√

M B
.

where xi j l is given by eq. (8). (please see Appendix C for
details of this proof.)

Lemma 2: When using Alg. 1 to train a BLMNN model
on a big dataset (|S| → ∞), the learnt model γ̄ (γ̄ ∈ RM

and ‖γ̄ ‖∞ ≤ B) is not sensitive to those label noisy triplets
(i jl) with ‖xi j l‖2 � 0. Furthermore, let f (xi j l ) denote the
change of ‖γ̄ ‖2 by a triplet (i jl) in one training step, that is
f (xi j l) = ‖γ̄ t − γ̄ t−1‖2, then we have

f (xi j l ) ≤ 2
√

M B + 3

‖xi j l‖2
(17)

(please see Appendix D for details of this proof.)
Fig. 2 illustrates the graph of function f (xi j l) in a simple

case of M = 2 and B = 1. The figure explicitly shows how xi j l

influences the magnitude of parameter γ̄ . We see that f (xi j l)

is "active" only in a small region around �0. In other words,
γ̄ ′ (in eq. (9)) is not sensitive to those (i jl) whose ‖xi j l‖2 is
large.

4In the LMNN based algorithms, z (or z′) indicates a triplet.

Fig. 2. Illustration the graph of function f (xi j l ) in a simple case of
dim(γ̄ ) = 2 and B = 1.

We summarize this result in the following theorem:
Theorem 1: Alg. 1 is a β-robust algorithm to learn an

optimal model from the hypothesis class H = {γ̄ |γ̄ ∈ RM and
‖γ̄ ‖∞ ≤ B}, that adding an arbitrary label noisy triplet z′ into
the training set S, its effect on the learnt model— ‖γ̄ S−γ̄ S,z′‖2
is bounded with certain β. (please see Appendix E for details
of this proof.)

Note that LMNN is not a label noise robust algorithm. From
eq. (2) we can get:

∂L

∂γ
=

∑

i j l

xi j l + 2Cregγ (18)

where the magnitude of the gradient could be largely increased
by label noisy triplets with ‖xi j l‖2 � 0. This also illustrates
that point estimation is sensitive to label noise.

B. Generalization Error in the Presence of Label Noise

With the robustness property of our method, we derive a
generalization error bound of the DML hypothesis class H =
{γ̄ |γ̄ ∈ RM and ‖γ̄ ‖∞ ≤ B}.

For convenience, we denote LD(γ̄ S) = Ez∼D[L(γ̄ S, z)] as
the generalization error on distribution D, in which γ̄ S ∈ H is
learnt on a noisy training set S = {SC , SN } where we denote
SC as the clean subset that only containing normal triplets
while SN as the label noisy subset that containing those label
noisy triplets. We also let γ̄ SC , γ̄ SN be the model learnt on the
clean subset SC and the label noisy subset SN respectively.

Then the generalization error LD(γ̄ S) can be decomposed
as:

LD(γ̄ S) = LD(γ̄ SC ) + (LD(γ̄ S) − LD(γ̄ SC )) (19)

where the first term LD(γ̄ SC ) is the generalization error of
the model γ̄ SC learnt on clean data, while the second term
LD(γ̄ S) − LD(γ̄ SC ) indicates the effect of label noise. Note
that in standard LMNN (as eq. (2)), the first term can be
upper bounded [13], [33], but the second term may be very
big or even unbounded. However, in our method, this error
can also be bounded, and we have the following theorem:
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Theorem 2: Let L be a CL -lipschitz loss function as given
in eq. (2), then on any training set S with noise level ξ (ξ =

|SN |
|SC |+|SN | ), with probability of at least 1−δ, the generation error
of γ̄ S in H = {γ̄ |γ̄ ∈ RM and ‖γ̄ ‖∞ ≤ B} via Alg. 1 is:

LD(γ̄ S) ≤ LS(γ̄ S) + 2CLCd√|SC | + Cβ
ξ

1 − ξ
+ Cm

√
2 ln(2/δ)

|SC |
(20)

where LS(γ̄ S) is the empirical error of model γ̄ S on
training set S, and we define Cβ = CLβ|SC |, Cm =
maxγ̄∈H,(i j l)∼D L(γ̄ , xi j l ). (please see Appendix F for details
of this proof.)

We also derive a similar bound for LMNN by adding a
constraint to the data that each triplet (i jl) should satisfy
‖xi j l‖2 ≤ CR√

M B
, which bounds the worst case of label noise.

Then the generalization error of LMNN (eq. (2)) is:

LD(γ̄ S) ≤ LS(γ̄ S) + 2CLCR√|S| + Cm

√
2 ln(2/δ)

|S| (21)

Compare the two bounds in eq. (20) and eq. (21), one can
see that when the noise level ξ is very small, the bound of
our method can be much tighter than LMNN. This is because
that Cβ

ξ
1−ξ → 0 and the L2 norm of clean triplets ‖xi j l‖2 is

usually much smaller than label noisy ones, i.e., Cd � CR .

C. Sample Complexity in the Presence of Label Noise

With the robustness of our method, we also show the
PAC-learnability of hypothesis class H = {γ̄ |γ̄ ∈ RM and
‖γ̄ ‖∞ ≤ B} under label noise and we give the sample
complexity. Here the definition of PAC-learnability follows
from [30],

Definition 3 (PAC-Learnability in the Presence of Label
Noise): A hypothesis class H is PAC-learnable in the presence
of label noise if there exists a noise level ξH ∈ (0, 1),
a function nH N (ε, δ, ξH ) : (0, 1)3 → N and an algorithm A,
such that for any ε, δ ∈ (0, 1), and for all distribution D on Z ,
when running the learning algorithm on |S| ≥ nH N (ε, δ, ξH )
i.i.d. examples generated by D with noise level ξ ≤ ξH ,
the algorithm returns a hypothesis γ with the property that,
with probability of at least 1 − δ (over the choice of the
examples), |LD(γ̄ S) − LD(γ̄ ∗)| ≤ ε, where γ̄ ∗ is the optimal
hypothesis on D.

The following theorem shows that H = {γ̄ |γ̄ ∈ RM &
‖γ̄ ‖∞ ≤ B} with Alg. 1 is PAC-learnable in the presence of
label noise.

Theorem 3: A hypothesis class H is PAC-learnable in the
presence of label noise if there exists a learning algorithm A
satisfying: (a) H is PAC-learnable via A without label noise.
(b) A is β-robust against label noise. Furthermore, the sample
complexity is,

nH N (ε, δ, ξH ) = nH (ε − Cβ
ξH

1 − ξH
, δ) · 1

1 − ξH
(22)

where Cβ = CLβ|SC |. (please see Appendix G for details of
this proof.)

Therefore, for any ε ∈ (Cβ
ξH

1−ξH
, 1), δ ∈ (0, 1), when run-

ning the algorithm A on |S| ≥ nH N (ε, δ, ξH ) i.i.d. examples

generated by D with noise level ξ ≤ ξH , we have, with
probability of at least 1 − δ, |LD(γ̄ S) − LD(γ̄ ∗)| ≤ ε.

This implies that 1) as the noise level ξH → 0 and
the training set size |S| → ∞, the learnt model γ̄ S can
approximate the optimal model γ̄ ∗ (on H) at a very small
error ε; and 2) the noise level ξH that the algorithm can tolerate
must be smaller than ε

Cβ+ε due to εN < ε.
As the sample complexity nH (ε, δ) of H in the clean data

case is CS · ε−dH where CS and dH are positive constants that
depend on H and the confidence 1 − δ. Under noise level ξ ,
the sample complexity can increase to nH (ε, δ) ·exp(dH Cβξ).
(please see Appendix G for details.) Hence, one can see that
with the robust learning algorithm, the DML hypothesis class
is PAC-learnable in the presence of label noise, but the sample
complexity can be largely raised by label noise.

D. Summary

We consider a more complicated type of label noise depend-
ing on the feature space. We show that our Bayesian method
is naturally robust against this type of label noise. Note that
this type of label noise is more general than that considered
in [34], in which several types of label noise can all be
considered as special cases. Although previous work has given
some theoretical results of the regularized loss minimization
problem, e.g., [13], [26]–[28], they do not consider the effect
of label noise. The theoretical results in this work show that
a robust DML algorithm should down weight those data with
label noise, our work can be seen as a useful complement to
them under such conditions.

IV. OTHER VARIANTS OF LMNN

To further investigate the robustness of our variational Bayes
based BLMNN model, we compare it with two other variants
of LMNN, one is weighted-LMNN, the other is sampling
based BLMNN.

A. Weighted LMNN

Weighted-LMNN (wLMNN) is a variant of LMNN by
introducing the normalization mechanism:

L =
∑

i j l∈S

wi j l · max(1 + d2
i j − d2

il , 0) + Creg‖A‖2
F (23)

where the weight wi j l = 1
|d2

i j −d2
il |

indicates the possibility of

a triplet (i jl) to be label noise. This model is also optimized
via gradient descend as standard LMNN. In the experiments,
we would show that also with the weighting mechanism,
its performance is still not as good as our method, which
illustrates that the robustness of Bayesian framework is more
than the data normalization.

B. Sampling Based BLMNN

Besides VI, another option to train the BLMNN model is
to use MCMC/Gibbs sampling as in [35],

γ̄ =
∫

γ
γ · p(γ |S)dγ ≈ 1

C

T∑

t=1

γt · p(S|γt) (24)
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where γt is sampled from the prior distribution p(γ ) =
N (γ |μ0, V0). The normalizing constant C can also be esti-
mated as:

C =
∫

γ
p(S|γ )p(γ )dγ ≈

T∑

t=1

p(S|γt ) (25)

However, despite the simpleness, the sampling approach is not
robust as the SVI based training. Note that p(S|γt )p(γt ) can
be regarded as the probability we select γt as γ̄ . Noisy triplets
would decrease the probability of finding the optimal γ̄ . More
importantly, the effect of label noise could be very big or even
unbounded.

V. IMPLEMENTATION DETAILS

A. Tapering

One problem with the procedure of iterated estimating
of distance metric learning using the stochastic variational
inference is the lack of assured positive definiteness. This
issue is usually addressed in the literature by 1) regularizing
the distance metric matrix with some restriction on its energy
(e.g., choosing a proper prior distribution) or 2) performing
some kind of matrix shrinking or denoising such that its
behavior can be stabilized. One representative technique of
the latter category is by tapering some elements of a matrix
to zero if they are beyond a certain range [36]. This can
be implemented, for example, by doing a coordinate-wisely
multiplication over it with a positive definite symmetric matrix.
In this work, after getting the learnt metric A (or γ ) from
Algorithm. 1, we decompose A into U�U T via eigen decom-
position where U = [u1, u2, . . . u D] are the eigen vectors and
� = diag[r1, r2, . . . rD] are the eigen values. Then we taper
the elements ri < 0 of � to zero, and define the new metric
A′ = ∑

ri >0 ri ui uT
i . Then A′ is the final obtained PSD metric.

B. Parameter Setting

Parameter settings are mainly related to variational infer-
ence, including the parameters of the prior distribution
N(γ |μ0, V0) and local variational approximation parameters
λi j l (eq. (7)). We set μ0 to ε�1 where �1 is all 1’s vector and
ε is a small scalar (e.g. 0.01). This choice of μ0 is equivalent
to initialize BLMNN with PCA. Besides, we set V0 to δ I ,
where δ is also a small value (e.g. 0.01). This helps to preserve
the stability of γ (eq. (9)), one important property related to
overfitting. Then we initialize λi j l with eq. (7).

VI. EXPERIMENTS

A. Settings

Our experiments are conducted on three real-world datasets,
i.e. the MNIST dataset [43], the ImageNet dataset [44] and
the MS-Celeb dataset [45]. To verify the effectiveness of the
proposed method, we take the Principal Component Analy-
sis [37] (PCA) method as a baseline since it is an unsupervised
method that is completely irrelevant to the issue of label
noise, and compare the proposed Bayesian LMNN (denoted
as BLMNN) method with three types of methods:

1) State of the art DML methods: including Neighbor-
hood Component Analysis (NCA) [38], Metric Learning
for Nearest Class Mean (NCM) [39], Diversity Reg-
ularized Metric Learning (DDML) [40], Large Scale
Similarity Learning (LSSL) [5], Geometric Mean Metric
Learning (GMML) [41], Distance Metric Learning With
Latent Variables (LADF) [8] and Distance Metric With
Label Consistency (MLLC) [42]

2) Robust DML methods: including L1-norm distance
metric learning (L1-DML) [20], pairwise constrained
Bayesian DML [24] (BML), robust neighborhood com-
ponent analysis (RNCA) [21]

3) Variants of LMNN: including LMNN [1] and its
too variants: weighted-LMNN (as eq. (23), denoted as
wLMNN) and the sampling based BLMNN (as eq. (24),
denoted as BLMNN(S)).

To ensure fair comparison, we first use PCA to project
all the data into a 100-dim subspace and force all these
methods to learn full rank transformation matrix. The classifier
we use is 3-NN. In addition, the performance of all the
compared methods is based on the original implementation
kindly provided by the corresponding authors, and the related
hyper-parameters are fine-tuned through cross-validation.

B. Handwritten Digit Recognition With Random Label Noise

The MNIST dataset [43] is a popular benchmark for the
task of handwritten digit recognition. We randomly sample
3000 examples (300 images per class) as training set and
use the standard MNIST test set (10K images) as test set.
We use an unsupervised feature extractor — CSVDDNet [46]
to extract feature representation for each image, and we inject
5% to 30% random label noise by randomly flipping the labels
of a given portion of data points, while keeping the test sets
clean. Each experiment is repeated for ten times, and both the
mean and the standard deviation of the classification accuracy
are reported. To evaluate the performance of the compared
methods, we also conducted pairwise one-tail statistical test
under significance level 0.05.

Tab. I shows how these algorithms perform under random
label noise. When there is no label noise, almost all DML
methods help to make an improvement in accuracy. However,
it can be seen that the performance of all the methods declines
with the increasing of noise level. This is due to that label
noise can mislead DML algorithms in a way that it pulls
data from different class together while keeps those from
the same class away. When label noise ≥ 15%, there is
a statistically significant difference between the second best
performer and our BLMNN method at a significance level
of 0.05. Particularly, we have the following observations:

1) Comparison With the State of the Art DML Algo-
rithms: One can see that the state of the art DML meth-
ods (such as LSSL, GMML, LADF and MLLC) achieve
very good performance when the data are clean. How-
ever their performance decreases significantly with increas-
ing number of data points with label noise injected,
which shows that those DML methods are not robust
against label noise in general. And in these difficult cases,
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TABLE I

CLASSIFICATION PERFORMANCE (%) ON MNIST DATASET WITH VARYING DEGREE OF LABEL NOISE. (THE ASTERISKS INDICATE A STATISTICALLY
SIGNIFICANT DIFFERENCE BETWEEN THE SECOND BEST PERFORMER AND THE PROPOSED METHOD AT A SIGNIFICANCE LEVEL OF 0.05)

the proposed method significantly outperforms the compared
ones.

2) Comparison With Robust DML Algorithms: Our
BLMNN method outperforms all the robust DML methods
compared here, such as L1-DML, Robust NCA, and BML,
especially when label noise ≥ 20%. This reveals that the
Bayesian estimation method is more robust than point esti-
mation (L1, RNCA) under high level label noise. In addition,
the observation that BLMNN outperforms BML illustrates the
benefits of large margin constraints for metric learning, which
allows our method to effectively exploit the local structure of
data.

3) Comparison With Variants of LMNN: The performance
of our BLMNN also outperforms LMNN and its two variants
as the noise level increases. This shows that our Bayesian
extension to the LMNN is meaningful. And the robustness is
main from the Variational Bayes framework rather than the
weighting/normalization mechanism. In addition, we see that
the variational training version of BLMNN works significantly
better than the sampling version (i.e., BLMNN(S)) consis-
tently. As pointed out in Section 4, one possible reason is that
the triplets with label noise could have big negative influence
on the quality of MCMC/Gibbs sampling.

C. Natural Image Classification With Simulated Label Noise

We also evaluate the performance of our method on
the ImageNet [44] dataset, which contains over 1.2 mil-
lion color images of totally 1,000 categories. We sample a
subset of 10,000 images from ILSVRC2012 (10 categories
with 1000 images per category) as the training set and use
the ILSVRC2012 validation set as test set by discarding
those out of the training categories. In this dataset, we do
not inject random label noise, instead we use a pretrained
model — ResNet-50 [47] (deep residual network) to simulate
realistic label noise. The top 1 classification accuracy of
ResNet-50 on the entire ILSVRC2012 training set is 88.0%.
Hence, these error predictions of ResNet-50 can be considered
as more realistic label noise. We also use ResNet-50 to extract
feature representation for both training and test data.

TABLE II

CLASSIFICATION PERFORMANCE (%) OF VARIOUS METHODS
WITH/WITHOUT LABEL NOISE ON THE IMAGENET DATASET

Tab. II gives the results. The We can see that if the
groundtruth of label information is used for model training,
our method performs slightly worse than the LMNN method.
However, if the label is assigned by ResNet-50, we see that
the performance of LMNN significantly reduces by by 6.6%,
while there is only 3.8% performance reduced in our method.
We emphasize that the latter case is much more interesting
than the former one in practice, as it provides an effective,
efficient, and automatic way to harvest a large amount of
information from internet with almost no cost. In this case,
as Tab. II shows, our BLMNN method achieves the best
performance.

D. Large Scale Face Retrieval With Realistic Label Noise

Besides evaluating the performance of our method with
random or simulated label noise, we also conduct an lager
scale image retrieval experiment with realistic label noise. The
dataset used is the big face dataset MS-Celeb-1M [45] which
contains about 10M images for 100K celebrities collected
by search engine from Internet. In this dataset, there are a
number of errors in the labels and the type of label noise
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Fig. 3. Learning curves of BLMNN and LMNN on MNIST dataset. (a), (b) are without label noise, while (c), (d) are with 30% label noise. An iteration
means a complete processing of all training examples.

TABLE III

FACE RETRIEVAL PERFORMANCE (MAP%) OF VARIOUS METHODS

WITH/WITHOUT LABEL NOISE ON THE MS-CELEB DATASET

is unknown. In the experiment, we sample a subset of 100K
images of 1200 persons, and we randomly split the training
and test images with ratio 9:1. The training set contains
nearly 20% label noise while the test set is clean. We use
the VGGFace model [48] to extract feature representation for
each image and then project them into a 100-dimensionality
space with PCA. Note that this VGGFace baseline is a state-
of-the-art model that achieves 97.4% accuracy on the LFW
dataset [49].

Table. III gives the results on the MS-Celeb dataset. One can
see that the mean average precision (mAP) of VGGFace base-
line is 82.23% under the label noise and 86.64% by removing
those label noisy points. When the training set is clean, the best
two algorithms among them are LMNN and our BLMNN, both
of which achieve 89.2% mAP. The other compared methods
can also outperform the VGGFace baseline. However, under
20% label noise, most of these methods are merely slightly
better than the VGGFace baseline, and LMNN even decreases
to 79.13% (from 89.25%). In this case, our BLMNN still
achieves 85.06% mAP which significantly outperforms the
other DML algorithms. This illustrates that our method can
effectively deal with realistic label noise on large scale dataset.

We have listed the training time of all methods in Table. III.
Note that the test/running time are the same for all methods as
they all work in subspaces with the same dimensionality. Our
computational advantage is established mainly with respect to
its non-Bayesian counterpart — LMNN. Actually, our method
only needs less than half of the training time (18 mins) of
the LMNN (49 mins), which is mainly due to that LMNN

mainly focuses on those difficult triplets that are possibly label
noise and need too much training efforts. Also notice that
the previous Bayesian metric learning — BML [24] is faster
than ours, this is because BML only learns a diagonal matrix
instead of a full matrix as general DML. Although doing this
can reduce the time complexity, it would possibly deteriorate
the performance. The results in Table. 1 to 3 all show that our
method significantly outperforms the BML method [24].

E. Discussions

To further investigate the behavior of our method, we con-
duct a serial of experiments on MNIST dataset. Unless specif-
ically pointed out, the experiment settings are the same as
Sec. VI-B.

1) Learning Curves: To further validate the robustness
of our method, we plot in Fig. 3 the learning curves of
both BLMNN and LMNN as the function of the number of
iterations. We do experiments on two settings: under no label
noise and under 30% label noise. Fig. 3(a) and Fig. 3(b)
show when training labels are clean, the training errors of
both BLMNN and LMNN will decrease with the iterations
going. But when training labels contain some errors, Fig. 3(c)
and Fig. 3(d) show that with the iterations going, the training
errors of LMNN keep decreases while their test errors tend to
rise at the same time, indicating that the point estimation based
method is easy to be overfitting under the condition of label
noise. Although some empirical tricks such as early stopping
can be adopted, the figure clearly shows that this is not an
issue for our BLMNN.

2) The Effect of Training Set Size: To evaluate the perfor-
mance of our method under small sample size, we conduct
another experiment by varying the number of training data
from 100 to 1000. In each setting, the label noise level is fixed
to 30%. Fig. 4 shows the results. When the training set is small,
both BLMNN and LMNN are easily affected by label noise.
As the training set size increases, the performance of both
BLMNN and LMNN increases. However, when the training
set size ≥ 600, the performance nearly does not increase.
Hence, one can see that the problem of label noise can not
be solved by merely adding more training data (with the same
noise level). This is consistent with Theorem. 2 (eq. (20)).

3) The Effect of Feature Dimension: Due to that we force
the transformation matrix A (∈ RD×D) to be full rank,
the number of parameters in all methods is D2. Thus the
dimension D can indicate the model complexity. To show
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Fig. 4. Performance of BLMNN and LMNN by varying the number of
training data on MNIST dataset.

Fig. 5. Performance of BLMNN and LMNN by varying the input dimen-
sionality (with PCA).

the performance of different hypothesis classes under label
noise, we conduct another experiment on MNIST dataset to
compare the performance of LMNN and BLMNN by varying
D from 20 to 120 under 30% random label noise. Fig. 5
shows the classification results on test set. One can see that as
the dimension D increases, the performance of LMNN first
increases (D ≤ 40) and then decreases (D > 40), which
indicates that LMNN is inclined to overfitting when applied
to complex hypothesis class. However, this is not an issue for
our BLMNN that even when the dimension increases to 120,
the performance is still improved.

4) The Effect of Prior Distribution: To investigate the effect
of prior distribution p(γ |μ0, V0) = N(γ |ε�1, δ I ), we conduct
an experiment on MNIST dataset. Specifically, we vary the
value of δ from 10−4 to 102 but keeping the mean value
μ0 fixed at the same time. Note that a large value of δ
indicates that the prior tends to be more noninformative (i.e.,
higher uncertain) about the γ value. Fig. 6 shows how the
performance changes as a function of the degree of uncertainty
in prior. We can see that the prior is beneficial (but not the
dominant). The best performer is obtained by choosing δ in
the range 10−3 to 10−1.

5) Performance Under Small Noise Level: We also conduct
an experiment on MNIST dataset by varying the noise level
from 2% to 20%. Fig. 7 gives the results. It shows that the

Fig. 6. The effect of prior distribution.

Fig. 7. Performance of BLMNN and LMNN under small noise level on
MNIST dataset.

proposed BLMNN keeps the performance advantage over the
LMNN even from the very low noisy level.

VII. CONCLUSION

In this paper, we introduce a robust distance metric learning
model in the presence of label noise, in which we extend
a previous classic DML method — LMNN to its Bayesian
version. With the stochastic variational inference based train-
ing approach, our method can be easily applied to big noisy
dataset. With some assumptions, we show that our method
has a tighter generalization error bound in the regularized
loss minimization framework. Nowadays collecting a large
amount of data directly from internet has become a popular
method to address the issue of data shortage, and in this sense,
our method potentially provides a valuable solution to the
accompany annotation noise problem.

APPENDIX A

Gaussian Approximation to a Laplace Distribution L(x |0, σ ):

L(x |0, σ ) = 1

2σ
exp

{
−|x |

σ

}

=
∫ ∞

0

1√
2πβ

exp

{
− x2

2β

}
· 1

2
σ−2 exp

{
− β

2σ 2

}
dβ

(26)
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and because 2 × max(x, 0) = |x | + x , hence

exp {−2 · max(x, 0)}
= exp {−|x | − x}
=

∫ ∞

0

1√
2πβ

exp

{
− x2

2β
− x

}
· 1

2
exp

{
−β

2

}
dβ

= 1

2

∫ ∞

0

1√
2πβ

exp

{
−1

2

(x + β)2

β

}
dβ (27)

APPENDIX B

Derivation of the Approximation Distributions in Variational
Inference:

We use a factorized variational distribution q(γ, λ) =
q(γ )

∏
i j l q(λi j l) to approximate the groundtruth posterior

distribution p(γ, λ|Y, X, μ0, V0). That is:

min KL(q(γ, λ)||p(γ, λ|Y, X, μ0, V0)) (28)

Through standard variational inference techniques we get:

ln q∗(γ ) = E−γ [ln p(γ, λ, Y, X |μ0, V0)]
ln q∗(λi j l ) = E−λi jl [ln p(γ, λ, Y, X |μ0, V0)] (29)

For simplicity, we ignore the normalizing constant and focus
on the following unconstrained joint distribution:

p(γ, λ, Y, X |μ0, V0)

∝
∏

i j l∈S

1√
2πλi j l

exp

{
−1

2

(1 + γ T (xi j − xil ) + λi j l )
2

λi j l

}
·

× (2π)−
M
2 |V0|− 1

2 exp

{
−1

2
(γ − μ)T V −1

0 (γ − μ)

}
(30)

Plugging this into eq. (29), we obtain the respective approxi-
mation distributions of interest:

• For γ :

ln q(γ ) = −1

2

∑

i j l∈S

‖γ T (xi j − xil )‖2
2

λi j l

− 1

2

∑

i j l∈S

2(1 + λi j l )γ
T (xi j − xil )

λi j l

− 1

2
(γ − μ0)

T V −1
0 (γ − μ0) + const (31)

Then we get the distribution of γ :

q∗(γ ) = N (γ |γ̄ , Vγ ) (32)

Vγ = (V0
−1 +

∑

i j l

xi j lλ
−1
i j l x T

i j l)
−1 (33)

γ̄ = Vγ [V0
−1μ0 −

∑

i j l

xi j l (1 + λ−1
i j l )] (34)

where xi j l = xi j − xil :
• For λi j l :

ln q(λi j l) = −1

2

∑

i j l∈S

(1 + γ T (xi j − xil ))
2 + λ2

i j l

λi j l

− 1

2

∑

i j l∈S

log λi j l + const (35)

Then the distribution of λi j l is

q∗(λi j l ) = GIG(λi j l |1

2
, 1, (1 + γ̄ T xi j l )

2) (36)

λ̄i j l = 1 + |1 + γ̄ T xi j l | (37)

APPENDIX C

Proof of Lemma 1:
In the input space, we let d2

i j = μT
0 xi j (from eq. (5)), then as

in Definition. 1, a label noisy triplet (i jl) satisfies |d2
i j −d2

il | =
|μT

0 xi j l |≥ Cd . And we have,

‖xi j l‖2 ≥ ‖xi j l‖1√
M

≥ |μT
0 xi j l |√

M‖μ0‖∞
≥ Cd√

M B
(38)

APPENDIX D

Proof of Lemma 2:
As the training set |S| → ∞, the prior term V0 and μ0 in

eq. (9) can be ignored. Hence eq. (9) reduces to

V ′
γ = (|S|xi j lλ

−1
i j l x T

i j l )
+ (39)

γ̄ ′ = −Vγ [|S|xi j l(1 + λi j l
−1)] (40)

Set γ̄ to be γ̄ t−1, then compute λi j l with eq. (7) and plug it
into eq. (40), we have

γ̄ ′ = −(xi j l x
T
i j l )

+xi j l(2 + |1 + (γ̄ t−1)T xi j l |)
= −xi j l

‖xi j l‖2
2

(2 + |1 + (γ̄ t−1)T xi j l |) (41)

where the second equation of eq. (41) follows from the
property of the generalized inverse of xi j l x T

i j l :

(xi j l x
T
i j l)

+ = xi j l(x T
i j l xi j l)

−1(x T
i j l xi j l )

−1x T
i j l (42)

Recall that f (xi j l ) = ‖γ̄ t − γ̄ t−1‖2, then combine eq. (13)
we have

f (xi j l) = ρt‖γ̄ ′ − γ̄ t−1‖2 (43)

where

‖γ̄ ′‖2 = 1

‖xi j l‖2
(2 + |1 + (γ̄ t−1)T xi j l |) (44)

≤ 1

‖xi j l‖2
(3 + |(γ̄ t−1)T xi j l |) (45)

≤ 1

‖xi j l‖2
(3 + ‖γ̄ t−1‖∞‖xi j l‖1) (46)

≤ 1

‖xi j l‖2
(3 + √

M‖γ̄ t−1‖∞‖xi j l‖2) (47)

≤ √
M B + 3

‖xi j l‖2
(48)

and

‖γ̄ t−1‖2 ≤ √
M‖γ̄ t−1‖∞ ≤ √

M B (49)

Then, we obtain the final result,

f (xi j l) ≤ ‖γ̄ ′‖2 + ‖γ̄ t−1‖2 (50)

≤ 2
√

M B + 3

‖xi j l‖2
(51)

where we have discarded the step size ρt due to ρt ≤ 1.
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APPENDIX E

Proof of Theorem 1:
Combine the results in Lemma. 1 and Lemma. 2, we get:

f (xi j l) ≤
√

M B(2Cd + 3)

Cd
(52)

Furthermore, we follow the same assumption of [50] that the
influence of one single label noisy triplet z′ should decrease
as the size of training set S increases, then we get the result
in eq. (16), where

β = Cγ

|S| ·
√

M B(2Cd + 3)

Cd
(53)

where Cγ is a constant that related to the number of training
steps and the hypothesis class. Note that in eq. (53) we relate
β to training set size |S| to facilitate the following theoretic
analysis.

APPENDIX F

Proof of Theorem 2:
Due to that the generalization error LD(γ̄ S) can be decom-

posed as:

LD(γ̄ S) = LD(γ̄ SC ) + (LD(γ̄ S) − LD(γ̄ SC )) (54)

We first derive the first term LD(γ̄ SC ) that training the model
on clean data. The objective of the our method is:

max
q(γ )

Llb = Eq(γ ) log
p(S|γ )p(γ )

q(γ )
(55)

where Llb is a lower bound of L = log p(S|γ )p(γ )
We assume that without label noise, the learnt posterior

distribution q(γ ) (as the variational training converges) is
approximately equal to the groundtruth posterior distribution
p(γ |S), that is: KL(q(γ )||p(γ |S)) ≈ 0. This is due to that the
clean/normal triplets are usually easily to fit, then the MAP
parameter γ̄ of Alg. 1 can be regarded as a minima of eq. (2).
Hence, the generalization error of LMNN and our method are
approximately equal when learning on a clean data set, that is

LD(γ̄ SC ) ≤ LSC (γ̄ SC ) + 2CLCd√|SC | + Cm

√
2 ln(2/δ)

|SC | (56)

where each normal triplet satisfies ‖xi j l‖2 ≤ Cd√
M B

(according to Definition. 1 and Lemma. 1). This result is
from [33].

The second term, that the effect of label noise can be
bounded as:

|LD(γ̄ SC ) − LD(γ̄ SC ,SN )|
≤ |LD(γ̄ SC ) − LD(γ̄ SC ,z′

1)| + |LD(γ̄ SC ,z′
1)

− LD(γ̄ SC ,z′
1,z′

2)| . . . + |LD(γ̄
SC ,z′

1,z′
2,...z

′|SN |−1)

−LD(γ̄ SC ,SN )| (57)

where SN = {z′
1, z′

2, . . . , z′|SN |} and each z′
i is a label noisy

triplet. Then with eq. (16) and the CL -Lipschitz continuity of

loss function L, we get,

|LD(γ̄ SC ) − LD(γ̄ S)|
≤ Cβ(

1

|SC | + 1

|SC | + 1
+ . . . + 1

|SC | + |SN | − 1
)

< Cβ
|SN |
|SC | = Cβ

ξ

1 − ξ
(58)

where Cβ = CLβ|S| in which |S| varies from |SC | to |SC | +
|SN | − 1 (eq. (57) to eq. (58)). Furthermore, we have

LSC (γ̄ SC ) ≤ LS(γ̄ S) (59)

This is due to that

LSC (γ̄ SC ) ≤ LSC (γ̄ S) + LSN (γ̄ S) = LS(γ̄ S) (60)

where S = {SC , SN }. Then combine eq. (56), eq. (58) and
eq. (59), we get eq. (20). Note that if we simply assume
‖xi j l‖2 ≤ CR√

M B
for all (i jl) (including those label noisy ones),

then eq. (56) becomes:

LD(γ̄ S) ≤ LS(γ̄ S) + 2CLCR√|S| + Cm

√
2 ln(2/δ)

|S| (61)

which can be regarded as the generalization error bound of
LMNN under label noise.

APPENDIX G

Proof of Theorem 3:
As presented in Appendix F, without label noise, finding

the MAP parameter γ̄ via Alg. 1 is almost equivalent to
minimizing the regularized loss in eq. (2). Hence, H is
PAC-learnable via Alg. 1 [33] without label noise, and there
exists a function nH (ε − εN , δ) that on |SC | ≥ nH (ε − εN , δ),
(0 < εN < ε) clean examples, we have, with probability of
at least 1 − δ, |LD(γ̄ ∗ − LD(γ̄ SC ))| ≤ ε − εN . To show the
learnability in the presence of label noise, we need to upper
bound |LD(γ̄ ∗) − LD(γ̄ S)| which can be decomposed into,

|LD(γ̄ ∗) − LD(γ̄ S)|
≤ |LD(γ̄ ∗) − LD(γ̄ SC )| + |LD(γ̄ SC ) − LD(γ̄ S)| (62)

Given eq. (58), we let εN = Cβ
ξ

1−ξ , then we get the sample
complexity

nH N (ε, δ, ξH ) = nH (ε − Cβ
ξH

1 − ξH
, δ) · 1

1 − ξH
(63)

where the additional term 1
1−ξH

= |SC |+|SN |
|SC | is due to the fact

that nH only counts the number of clean data.
As the sample complexity nH (ε, δ) of H in the clean data

case is CS · ε−dH where CS and dH are positive constants that
depend on H and the confidence 1 − δ. Under noise level of
ξ , the sample complexity can increase to

nH N (ε, δ, ξ) = CS · ε−dH · (1 − Cβξ

ε(1 − ξ)
)−dH · 1

1 − ξ

≥ CS · ε−dH · (1 − Cβξ)−dH

≥ CS · ε−dH · exp(dH Cβξ)

= nH (ε, δ) · exp(dH Cβξ) (64)
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