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Abstract: Instead of standard support vector machines (SVMs) that classify points to one of two disjoint half-spaces by solving a quadratic program, the plane classifier GEPSVM (Proximal SVM Classification via Generalized Eigenvalues) classifies points by assigning them to the closest of two nonparallel planes which are generated by their corresponding generalized eigenvalue problems. A simple geometric interpretation of GEPSVM is that each plane is closest to the points of its own class and furthest to the points of the other class. Analysis and experiments have demonstrated its capability in both computation time and test correctness. In this paper, following the geometric intuition of GEPSVM, a new supervised learning method called Proximal Support Vector Machine Using Local Information (LIPSVM) is proposed. With the introduction of proximity information (consideration of underlying information such as correlation or similarity between points) between the training points, LIPSVM not only keeps aforementioned characteristics of GEPSVM, but also has its additional advantages: (1) robustness to outliers; (2) each plane is generated from its corresponding standard rather than generalized eigenvalue problem to avoid matrix singularity; (3) comparable classification ability to the eigenvalue-based classifiers GEPSVM and LDA. Furthermore, the idea of LIPSVM can be easily extended to other classifiers, such as LDA. Finally, some experiments on the artificial and benchmark datasets show the effectiveness of LIPSVM.
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1. Introduction

Standard support vector machines (SVMs) are based on the structural risk minimization (SRM) principle and aim at maximizing the margin between the points of two-class dataset. For the pattern recognition case, they have shown their outstanding classification performance [
] in many applications, such as handwritten digit recognition [
,
], object recognition [
], speaker identification [
], face detection in images and text categorization [
,
]. Although SVM is a powerful classification tool, it requires the solution of quadratic programming (QP) problem. Recently, Fung and Mangasarian introduced a linear classifier, proximal support vector machine (PSVM) [
], at KDD2001 as variation of a standard SVM. Different from SVM, PSVM replaces the inequality with the equality in the defining constraint structure of the SVM framework. Besides, it also replaces the absolute error measure by the squared error measure in defining the minimization problem. The authors claimed that in doing so, the computational complexity can be greatly reduced without resulting in discernible loss of classification accuracy. Furthermore, PSVM classifies two-class points to the closest of two parallel planes that are pushed apart as far as possible. GEPSVM [
] is an alternative version to PSVM, which relaxes the parallelism condition on the PSVM. Each of the nonparallel proximal planes is generated by a generalized eigenvalue problem. Its performance has been showed in both computational time and test accuracy in [9]. Similar to PSVM, the geometric interpretation of GEPSVM is that each of two nonparallel planes is as close as possible to one of the two-class data sets and as far as possible from the other class data set. 
In this paper, we propose a new nonparallel plane classifier LIPSVM for binary classification. Different from GEPSVM, LIPSVM introduces proximity information between the data points into constructing classifier. As for so-called proximity information, it is often measured by the nearest neighbor relations lurking in the points. Cover and Hart [
] had firstly concluded that almost the half of the classification information is contained in the nearest neighbors. For the purpose of classification, the basic assumption here is that the points sampled from the same class have higher correlation/similarity (for example, they are sampled from an unknown identical distribution) than those from the different ones [
]. Furthermore, especially in recent years, many researchers have reported that most of the points of a dataset are highly correlated, at least locally, or the data set has inherent geometrical property (for example, a manifold structure) [
,
]. This issue explains the successes of the increasingly popular manifold learning methods, such as Locally Linear Embedding (LLE) [
], ISOMAP [
], Laplacian Eigenmap [
] and their extensions [
,
,
]. Although those algorithms are efficient for discovering intrinsic feature of the lower-dimensional manifold embedded in the original high-dimensional observation space, up to now many open problems still have not been efficiently solved for supervised learning, for instance, data classification. One of the most important reasons is that it is not necessarily reasonable to suppose that the manifolds in different class will be well-classified in the same lower-dimension embedded space. Furthermore, the intrinsic dimensionality of a manifold is usually unknown a priori and can not be reliably estimated from the dataset. In this paper, quite different from the aforementioned manifold learning methods, LIPSVM needs not consider how to estimate intrinsic dimension of the embedded space and only requests the proximity information between points which can be derived from their nearest neighbors.
We highlight the contributions of this paper. 
1) Instead of generalized eigenvalue problems in GEPSVM algorithm, LIPSVM only needs to solve standard eigenvalue problems. 

2) With introducing this proximal information into constructing LIPSVM, we expect that the so-developed classifier is to be robust to outliers. 
3) In essence, GEPSVM is derived by a generalized eigenvalue problem through minimizing a kind of Rayleigh quotient. For the two real symmetric matrices appearing in GEPSVM criterion, if both are positive semi-definite or singular, an ill-defined operation will be yielded due to floating-point imprecisions. So, GEPSVM adds a perturbation to one of the singular (or semi-definite positive) matrix. Although the authors also claimed that this perturbation acts as some kind of regularization, the real influence in this setting of regularization is not yet well understood. In contrast, LIPSVM need not to care about the matrix singularity due to adoption of a similar formulation to the Maximum Margin Criterion (MMC) [
], but it is worthwhile noting that MMC just is a dimensionality reduction method rather than a classification method.
4) The idea of LIPSVM is applicable to a wide range of binary classifiers, such as LDA. 
The rest of this paper is organized as follows. In Section 2, we review some basic work about GEPSVM. Mathematical description of LIPSVM will appear in section 3. In Section 4, we extend this design idea of LIPSVM to LDA. And in Section 5, we provide the experimental results on some artificial and public datasets. Finally, we conclude the whole paper in Section 6.
2. A brief review on GEPSVM algorithm
GEPSVM [9] algorithm has been validated that it is effective for binary classification. In this section, we briefly illustrate its main idea. 

Given a training set of two pattern classes
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, i = 1, 2 with Ni n-dimensional patterns in the ith class. Throughout the paper, superscript “T” denotes transposition, and “e” is a case-dependent dimensional column vector whose entries are all ones. Denote the training set by a N1(n matrix A (Ai, the ith row of A, corresponds to the ith pattern of Class 1) and the N2(n matrix B (Bi has the same meaning of Ai), respectively. GEPSVM attempts to seek two non-parallel planes (eq (1)) in n-dimensional input space respectively,
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where 
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 mean the weight and threshold of the given ith plane. The geometrical interpretation, each plane should be closest to the points of its own class and furthest from the points of the other class, leads to the following optimization problem,
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where ( is a nonnegative regularization factor, and ||.|| means the 2-norm. Let

 G: = [A e]T[A e] + (I ,

     H: = [B e]T[B e],   z: =[wT  r]T ，                                         (3)

then, w.r.t the first plane of (1), formula (2) becomes:
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where both matrices G and H are positive semi-definition when ( =0. Formula (4) can be solved by the following generalized eigenvalue problem


  G z = ( H z  (z ( 0).                                                     (5)
When either of G and H in eq (5) is a positive definite matrix, the global minimum of (4) is achieved at an eigenvector of the generalized eigenvalue problem (5) corresponding to the smallest eigenvalue. So in many real-world cases, a regularization factor ( must be set to a positive constant, especially in some Small Size Sample (SSS) problems. The 2nd plane can be obtained with a similar process.

Under the foresaid optimization criterion, GEPSVM attempts to estimate planes in input space for the given data, that is, each plane is generated or approximated by the data points of its corresponding class. In essence, the points in the same class are fitted using a linear function. However, in the viewpoint of regression, it is not quite reasonable to take an outlier (a point far from the most samples) as a normal sample in data fitting methodology when outliers are present. Furthermore, the outliers usually conduct erroneous data information, even misguide a fitting. So they can heavily affect fitting effect in most cases as shown in Fig. 1 where two outliers are added. Obviously, the plane generated by GEPSVM is heavily biased due to presence of the two outliers. Therefore, in this paper, we attempt to define a new robust criterion to seek the planes which not only substantially considers original data distribution, but also can be resistant to outliers (see red dashed lines in Fig. 1, which are generated from LIPSVM). 
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Fig.1 The planes learned by GEPSVM and LIPSVM, respectively. The red (dashed) lines come from LIPSVM, and the black (solid) ones, from GEPSVM. Data points in Class 1 are symbolize with “o”, and in Class 2, with “□”. Those symbols with additional “+” stand for marginal points (k2-nearest neighbors to Class 1) in Class 2. The two points, far away from most of data points in Class 1, can be thought as outliers. It is also illustrates the intra-class graph and its connected relationship of data points in Class 1. 

In what follows, we detail our LIPSVM.
3. Proximal Support Vector Machine Using Local Information (LIPSVM)
In this section, we introduce our novel classifier LIPSVM, which contains the following two steps.
In the first step, constructing the two graphs characterize the intra-class denseness and the inter-class separability respectively. Each vertex in the graphs corresponds to a sample of the given data, as described in many graph-based machine learning methods [13]. Due to the one-to-one correspondence between “vertex” and “sample”, we will not strictly distinguish them hereafter. In the intra-class graph, an edge between a vertex pair is added when the corresponding sample pair is each other’s k1-nearest neighbors (k1-NN) in the same class. In the inter-class graph, the vertex pair, whose corresponding samples come from different classes, is connected when one of the pair is a k2 -NN of the other. For the intra-class case, the points in high density regions (hereafter we call them interior points) have more chance to become nonzero-degree vertexes; while the points in low density regions, for example, outliers, become more likely isolated vertexes (zero-degree). For the inter-class case, the points in the marginal regions (marginal points) have more possibility to become nonzero-degree vertexes. Intuitively, if a fitting plane of one class is far away from the marginal points of the other class, at least in linear-separable case, this plane may be far away from the rest. 
In the second step, only those nonzero-degree points are used to training classifier. Thus, LIPSVM can restrain outlier to great extent (see Fig.1). 
The training time cost of LIPSVM is from the two aspects: One is from selection of interior points and marginal points, and the other from the optimization of LIPSVM. The following analysis indicates that LIPSVM performs faster than GEPSVM: 1) LIPSVM just requires solving a standard eigenvalue problem, while GEPSVM needs to solve a generalized eigenvalue problem; 2) After finishing samples selection, the size of the selected samples used to training LIPSVM is smaller than that of the GEPSVM.. For example, in Fig.1, the first plane (the top dash line of Fig.1) of LIPSVM is closer to the interior points of Class 1 and faraway from the marginal points of Class 2. Accordingly, the training set size of LIPSVM is smaller than that of GEPSVM.
In the next subsection, we firstly derive the linear LIPSVM. Then, we develop its corresponding nonlinear one with kernel tricks. 
3.1 Linear LIPSVM
Corresponding to Fig.1, the two adjacent matrices of each plane are respectively denoted by S and R and defined as follows:
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where 
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denotes a set of the k1-nearest neighbors in the same class of the sample
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 a set of data points composed of k2-nearest neighbors (k2-NN) in the different class of the sample 
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 is added to the corresponding graph. As a result, a linear plane of LIPSVM can be produced from those nonzero-degree vertexes. 

3.1.1 Optimization criterion of LIPSVM
 Analogously to GEPSVM, LIPSVM also tries to seek two nonparallel planes as described in eq (1). With the similar geometric intuition of GEPSVM, we define an optimization criterion to determine the plane of Class 1 as follows: 
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By simplifying (8), we obtain the following expression:
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where the weight 
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For geometrical interpretability (see 3.1.3), we define the weights 
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where 
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Next we discuss how to solve this optimization problem.

3.1.2 Analytic Solution and Theoretical Justification
Define a Lagrange multiplier function based on the objective function (10) and equality constraints (9) as follows:
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Setting the gradients of L with respect to w1 and r1 equal to zero gives the following optimality conditions:
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Simplifying (14) and (15), we obtain the following simple expression with matrix form:
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, the optimal solution to the above optimization problem is obtained from solving the following eigenvalue problem after substituting eq (17) into (16).      
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  Left multiplying eq. (16) by 
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  When 
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 is an eigenvalue of the real symmetrical matrix 
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In this situation, r1 can not be solved through (16) and (17). So instead, we directly define r1 with the intra-class vertexes as follows:
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An intuition for the above definition is from that a fitting plane/line passing through the center of the given points has less regression loss in a sense of MSE [
].
Next, importantly, we will prove that the optimal normal vector w1 of the first plane is exactly an eigenvector of the aforementioned eigenvalue problem corresponding to a smallest eigenvalue (Theorem 2).
Theorem 1.  Let
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Theorem 2. The optimal normal vector w1 of the first plane is exactly the eigenvector corresponding to smallest eigenvalue of the eigen-equation derived from objective (8) subject to constraint (9). 

Proof:  we rewrite eq. (10) (equivalent to objective (8)) as follows:

    Let 
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Simplifying the above expression and representing it in matrix form, we obtain
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1) When 
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, substituting eq. (18), (19) and (9) into (23), we get the following expression.
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  Thus, the optimal value of the optimization problem is the smallest eigenvalue of the eigen-equation (18). Namely, 
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Eq (25) is equivalent to the following expression:
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   Substituting (26) and (21) into (23), we obtain
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This ends our proof of the Theorem 2. #

3.1.3 Geometrical Interpretation 

According to the defined notations, eq (10) implies that LIPSVM only concerns those samples whose weights (.dl or fm) are greater than zero. For example, 
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. As a result, the points of a training set of LIPSVM are selectively generated by the two NN matrices S and R, which can lead LIPSVM to robustness due to eliminating or restraining effect of outliers. Fig.1 gives an illustration in which the two outliers in Class 1 are eliminated during selecting samples process. Similarly, 
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. In most cases, the number of marginal points is far less than that of the given points. Thus, the number of the samples used to train LIPSVM can be reduced. Fig. 1 also illustrates those marginal points as marked “+”. Since the distance of a point 
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. So, the goal of training LIPSVM is to seek the plane 
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 as close to the interior points in Class 1 as possible and as faraway from the marginal points in Class 2 as possible. This is quite consistent with the foresaid optimization objective.
Similarly, the second plane for the other class can be obtained. In the following, we are in a position to describe its nonlinear version.
3.2 Nonlinear LIPSVM (Kernelized LIPSVM)

In real world, the problems encountered can not always effectively be handled using linear methods. In order to make the proposed method able to accommodate nonlinear cases, we extend it to the nonlinear counterpart by well-known kernel trick [
,
]. These non-linear kernel-based algorithms, such as KFD [
,
,
], KCCA [
], and KPCA [
,
], usually use the “kernel trick” to achieve their non-linearity. This conceptually corresponds to first mapping the input into a higher-dimensional feature space (RKHS: Reproducing Kernel Hilbert Space) with some non-linear transformation. The “trick” is that this mapping is never given explicitly, but implicitly induced by a kernel. Then those linear methods can be applied in this newly-mapped data space RKHS [
,
]. Nonlinear LIPSVM also follows this process. 
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 stands for an arbitrary Mercer kernel, for any n-dimensional vectors x and y, which maps them into a real number in R. A frequently used kernel in nonlinear classification is Gaussian with the expression 
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  Similarly, we consider the following kernel-generated nonlinear plane, instead of the aforementioned linear case in input space. 
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  Due to the k1-NN and k2-NN relationship graphs and matrices (denoted by 
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 ), we consider the following optimization criterion instead of the original one in the input space as (8) and (9) with an entirely similar argument.
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  With an analogous manipulation to the linear case, we also have the following eigen-system (when
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. Specification about the parameters is completely analogous to linear LIPSVM. 

3.3 Links with previous approaches
Due to its simplicity, effectiveness and efficiency, LDA is still a popular dimensionality reduction in many applications such as handwritten digit recognition [
], face detection [
,
], text categorization [
] and target tracking [
]. However, it also has several essential embarrassments such as singularity of the scatter matrix in SSS case and the problem of rank limitation. To attack these limitations, in [41], we have previously designed alternative LDA (AFLDA) by introducing a new discriminant criterion. AFLDA overcomes the rank limitation and at the same time, mitigates the singularity. Li and Jiang [20] exploited the average maximal margin principle to define a so-called Maximum Margin Criterion (MMC) and derived alternative discriminant analysis approach. Its main difference from LDA criterion is to adopt the trace difference instead of the trace ratio between the between-class scatter and the within-class scatter, as a result, bypassing both the singularity and the rank limitation. In [13], Marginal Fisher Analysis (MFA) establishes a similar formulation of the trace ratio between the two scatters to LDA but further incorporates manifold structure of the given data to find the projection directions in the PCA transformed subspace. Doing so avoids the singularity. Though there are many methods to overcome the problems, their basic philosophy are similar, thus, we just mention a few above here. Besides, these methods are largely dimensionality reduction, despite of different definitions for the scatters in the objectives while in order to perform classification task after dimensionality reduction, they all use the simple and popular nearest neighbor and thus are generally also viewed as an indirect classification method. In contrast, SVM is a directly-designed classifier based on the SRM principle by maximizing the margin between the two-class given data points and has been shown superior classification performance in most real cases. However, SVM requires solving a QP problem. Unlike its solving as described in section I, PSVM [8] utilizes 2-norm and equality constraints and only needs to solve a set of linear equations for seeking two parallel planes. While GEPSVM [9] relaxes this parallelism and aims to obtain two nonparallel planes from two corresponding generalized eigenvalue problems, respectively. However, it also encounters the singularity problem for which the authors used the regularization technique. Recently, Guarracino and Cifarelli gave a more flexible setting technique for the regularization parameter to overcome the same singularity problem and named so-proposed plane classifier  as ReGEC [
，
]. ReGEC seeks two planes simultaneously just from a single generalized eigenvalue equation (the two planes correspond respectively to the maximal and minimal eigenvalues), instead of two equations in GEPSVM. In 2007, an incremental version of ReGEC, termed as I-ReGEC[
], is proposed, which first performed a subset selection and then used the subset to train ReGEC classifier for performance gain. A common point of these plane-type classifiers in overcoming the singularity all adopt the regularization technique. However, for one thing, the selection of the regularization factor is a key to performance of solution and still open up to now. For another thing, the introduction of the regularization term in GEPSVM unavoidably departs from its original geometricism partially. A major difference of our LIPSVM from them is no need of regularization due to that the solution of LIPSVM is just an ordinary eigen-system. Interestingly, the relation between LIPSVM and MMC is quite similar to that between GEPSVM and regularized LDA [
]
LIPSVM is developed by fusing proximity information so as to not only keep the characteristics, such as geometricism of GEPSVM, but also possess its own advantages as described in Section I. Extremely, when the number of NN, k, takes large enough, for instance, set k=N, all the given data points can be used for training LIPSVM. As far as geometrical principle, i.e. each approximate plane is as closest to data points of its own class as possible and as furthest to points of the other class as possible, the geometricism of LIPSVM is in complete accordance with that of GEPSVM. So, with the inspiration of MMC, LIPSVM can be seen as a generalized version of GEPSVM. 
4. A byproduct inspired by LIPSVM
  LDA [
] has been widely used for pattern classification and can be analytically solved by its corresponding eigen-system. Fig.2 illustrates a binary classification problem and the data points of each class are generated from a non-Gaussian distribution. The solid (black) line stands for the LDA optimal decision hyperplane which is directly generated from the two-class points, while the dashed (green) line is obtained by LDA only with those so-called marginal points. 
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Fig.2 Two-class non-Gaussian data points and their discriminant planes generated by LDA. Symbol “o” stands for those points in Class 1, while “□” is for Class 2. The marginal points, marked “x”, come from aforementioned inter-class relationship graphs. The solid (black) line is a discriminant plane obtained by LDA with all training samples, while for the dashed (green) one, obtained by LDA only with those marginal points. 

From Fig.2 and the design idea of LIPSVM, a two-step LDA can be developed through using those interior points or marginal points in the two classes. Firstly, select those nonzero-degree points of k-NN graphs from training samples; secondly, train LDA with the selected points. Further analysis and experiments are discussed in Section 5. 

In what follows, we turn to our experimental tests and some comparisons.
5. Experimental Validations and Comparisons

 To demonstrate the performance of our proposed algorithm, we report results on one synthetic toy-problem and UCI [
] real-world datasets in two parts: 1) comparisons among LIPSVM, ReGEC, GEPSVM and LDA; 2) comparisons between LDA and their variants. The synthetic data set named “CrossPlanes” consists of two-class samples generated respectively from two intersecting planes (lines) plus Gaussian noise. In this section, all computational time was obtained on a machine running Matlab 6.5 on Windows xp with a Pentium IV 1.0GHz processor and 512 megabytes of memory.
5.1 Comparisons among LIPSVM, ReGEC, GEPSVM and LDA 
In this subsection, we test the foresaid classifiers with linear and Gaussian kernel, respectively.

  Table 1 shows a comparison of LIPSVM versus ReGEC, GEPSVM, LDA. When a linear kernel is used, ReGEC has two regularization parameter δ1 and δ2, while each of GEPSVM and LIPSVM has a single parameter: δ for GEPSVM and k for LIPSVM
.  Parameters δ1 and δ2 were selected from {10i|i= -4,-3… 3, 4}, δ and C were selected from the values {10i|i=-7,-6… 6, 7}, and k of NN in LIPSVM was selected from {2, 3, 5, 8} by using 10 percent of each training set as a tuning set. According to the suggestion [9],  the tuning set of GEPSVM was not returned to the training fold to learn the final classifier once the parameter was determined. When facing singularity of both augmented sample matrices, a small disturbance, such as ηI, will be added to the G in ReGEC. In addition to reporting the average accuracies across the 10 folds, we also performed paired t-tests [
] in comparing LIPSVM to ReGEC, GEPSVM and LDA. The p-value for each test is the probability of the observed or a greater difference assumption of the null hypothesis that there is no difference between test set correctness distributions. Thus, the smaller the p-value, the less likely that the observed difference resulted from identical test set correctness distributions. A typical threshold for p-value is 0.05. For example, the p-value of the test when comparing LIPSVM and GEPSVM on the Glass data set is 0.000 (< 0.05), meaning that LIPSVM and GEPSVM have different accuracies on this data set. Table 1 shows that GEPSVM, ReGEC and LIPSVM significantly outperform LDA on the CrossPlanes. 
  Table 1. Linear Kernel LIPSVM, ReGEC, GEPSVM and LDA, 10-fold average testing correctness (Corr) (%) and  their standard deviation (STD), p-values, average 10-fold training time (Time, sec.).  
	Dataset

m×n
	LIPSVM
Corr ± STD

-

Time (s)
	ReGEC

Corr ± STD 

p-value

Time (s)
	GEPSVM
Corr ± STD 

p-value

Time (s)
	LDA
Corr ± STD 

p-value

Time (s)

	Glass

214×9
	87.87±1.37
-

0.0012
	80.46±6.01*

0.012

0.0010
	63.28±4.81*
0.000
0.0072
	91.029±2.08

0.131
0.0068

	Iris23

100×4
	95.00±1.66
-

0.0011
	90.00±4.00
0.142

0.0008
	93.00±3.00

0.509
0.0055-
	97.00±1.53

0.343
0.0006

	Sonar

208×60
	80.43±2.73

-

0.0150
	67.14±5.14*
0.001

0.0043
	76.00±2.33

0.200
0.0775
	71.57±2.07*
0.016
0.0037

	Liver

345×6
	72.48±2.48
-

0.0013
	66.74±3.67
0.116

0.0019
	59.13±2.03*
0.002
0.043
	61.96±2.59*
0.021
0.0009

	Cmc

1473×8
	92.64±0.51
-

0.0020
	75.52±3.88*
0.000

0.0028
	66.52± 1.02*
0.000

0.0199-
	67.45±0.65*
0.000
0.0020-

	Check

1000×2
	51.60±1.30
-

0.0009
	51.08±2.34
0.186

0.0007
	50.35±1.25

0.362
0.0098
	48.87±1.43

0.229
0.0013-

	Pima

746×8
	76.04±1.11
-

0.0070
	74.88±1.70
0.547

0.0034
	75.95±1.12

0.912
0.0537
	76.15±1.30

0.936
0.0021

	Mushroom

8124×22
	80.12±3.21

-

6.691
	80.82±1.87
0.160

8.0201
	81.10±1.38

0.352

9.360
	75.43±2.35

0.138

6.281

	CrossPlanes
200×2
	96.50±1.58

-

0.0008
	95.00±1.00
0.555

0.0201
	96.50±1.58

1.000

0.0484
	53.50±17.33*

0.000

0.0160


   The p-values were from a t-test comparing each algorithm to LIPSVM. Best test accuracies are in bold. An asterisk (*) denotes a significant difference from LIPSVM based on p-value less than 0.05, and underline number means minimum training time. Data set Iris23 is a fraction of UCI Iris dataset with versicolor vs. virginica. 
Table 2 reports a comparison among the four eigenvalue-based classifiers using a Gaussian kernel. The kernel width-parameter σ was chosen from the value {10i|i = -4,-3… 3, 4} for all the algorithms. The tradeoff parameter C for SVM was selected from the set {10i|i = -4,-3… 3, 2}, while the regularization factors δ in GEPSVM and δ1, δ2 in ReGEC were all selected from the set {10i|i = -4,-3… 3, 4}. For KFD [24], when the symmetrical matrix N was singular, the regularization trick was adopted by setting N=N+ηI, where η (>0) was selected from {10i|i = -4,-3… 3, 4}. I is an identity matrix with the same size of N. The k in the nonlinear LIPSVM is the same as that in its linear case. Parameter selection was done by comparing the accuracy of each combination of parameters on a tuning set consisting of a random 10 percent of each training set. On the synthetic data set CrossPlanes, Table 2 reports that LIPSVM, ReGEC and GEPSVM are also significantly outperform LDA.
Table 2. Gaussian Kernel LIPSVM, ReGEC
, GEPSVM, SVM and LDA, 10-fold average testing correctness (Corr) (%) and their standard deviation (STD), p-values, average 10-fold training time (Time, sec.) 

	Dataset
m×n
	LIPSVM
Corr ± STD

 -

Time (s)
	ReGEC

Corr ± STD 

p-value

Time (s)
	GEPSVM
Corr ± STD 

p-value

Time (s)
	LDA
Corr ± STD 

p-value

Time (s)

	WPBC
194×32
	77.51±2.48
0.0908
	76.87±3.63

0.381

0.1939
	63.52±3.51*
0.000
3.7370
	65.17±2.86*
0.001
0.1538

	Check

1000×2
	92.22±3.50

31.25
	88.10±3.92*

0.028

28.41
	87.43±1.31*

0.001

40.30
	93.38±2.93

0.514

24.51

	Ionosphere

351×34
	98.72±4.04
0.4068
	91.46±8.26*

0.012

0.8048
	46.99±14.57*
0.000
1.5765
	87.87±8.95*
0.010
0.6049

	Glass
214×9
	97.64±7.44

-

0.0500
	93.86±5.31

0.258

0.2725
	71.04±17.15*
0.002
0.5218
	89.47±10.29

0.090
0.1775

	Cmc

1473×8
	92.60±0.08
-

34.1523
	93.05±1.00

0.362

40.4720
	58.50±12.88*
0.011
57.2627
	82.74±4.60*
0.037
64.4223

	WDBC

569×30
	90.17±3.52

-

1.9713
	91.37±2.80

0.225

5.4084
	37.23±0.86*

0.000

5.3504
	92.65±2.36

0.103

3.3480

	Water

116×38
	79.93±12.56

-

0.1543
	57.11±3.91*

0.003

0.1073
	45.29±2.69*

0.000

1.3229
	66.53±18.06*

0.036

0.0532

	CrossPlanes

200×2
	98.75±1.64

-

0.2039
	98.00±0.00

1.00

1.9849
	98.13±2.01

0.591

2.2409
	58.58±10.01*

0.000

1.8862


The p-values were from a t-test comparing each algorithm to LIPSVM. Best test accuracies are in bold. An asterisk (*) denotes a significant difference from LIPSVM based on p-value less than 0.05, and underline number means minimum training time. 
5.2 Comparisons between LDA and its extensions
  In this subsection, we made comparisons on computational time and test accuracies among LDA and their extended versions. In order to avoid unbalanced classification problem, the extended classifiers, respectively named as Interior_LDA and marginal_LDA , were trained on two-class interior points and marginal points. Tables 3 and 4 report comparisons between LDA and its variants, respectively. 
Table 3. Linear kernel LDA and its variants: Interior_LDA and Marginal_LDA, 10-fold average testing correctness ±STD, p-value, average 10-fold training time (Time, sec.) 
	Dataset
m×n
	LDA 

Correctness ± STD

-
Time(seconds)
	Interior_LDA
Correctness ± STD 

p-value

Time(seconds)
	Marginal_LDA
Correctness ± STD 

p-value

Time(seconds)

	Glass

214×9
	91.03±6.58

-
0.202
	90.63±6.37

0.343

0.094
	92.13±4.78

0.546

0.005

	Sonar

208×60
	71.54±6.55

-
0.192
	71.21±8.33

0.839

0.072
	72.29±8.01

0.867

0.023

	Liver

345×6
	61.96±8.18

-
0.728
	67.29±6.45*

0.007

0.350
	64.86±7.80*

0.024

0.121

	Cmc

1473×8
	77.45±2.07

-
60.280
	77.92±2.34

0.178

25.227
	75.86±3.08

0.56

0.253

	Ionosphere

351×34
	84.92±6.74

-
0.867
	88.23±4.15

0.066

0.053
	85.80±6.21

0.520

0.023

	Check

1000×2
	48.87±4.43

-

0.0013
	51.62±5.98

0.254

0.0030
	52.01±4.32

0.130

0.0011

	Pima

746×8
	76.15±4.12
-

0.0021
	76.58±3.33

0.558

0.0010
	75.39±5.00

0.525

0.0005


The p-values were from a t-test comparing LDA variants to LDA. Best test accuracies are in bold. An asterisk (*) denotes a significant difference from LDA based on p-value less than 0.05, and underline number means minimum training time.
Table 4. Gaussian kernel LDA, Interior_LDA and Marginal_LDA, 10-fold average testing correctness±STD, p-value, average 10-fold training time (Time, sec.).

	Dataset
m×n
	LDA 

Correctness ± STD

-
Time(s)
	Interior_LDA
Correctness ± STD 

p-value

Time(s)
	Marginal_LDA
Correctness ± STD 

p-value

Time(s)

	Pima

746×8
	66.83±4.32

-
6.354  
	63.46±6.45

0.056

2.671
	65.10±6.60

0.060

0.478

	Ionosphere

351×34
	91.55±6.89

-
0.658   
	89.78±3.56

0.246

0.052
	73.74±7.24*

0.000

0.019

	Check

1000×2
	93.49±4.08

-
15.107  
	92.54±3.30

0.205

10.655
	86.64±3.37*

0.001

0.486

	Liver

345×6
	66.04±9.70

-
0.641  
	64.43±8.52

0.463

0.325
	57.46±9.29*

0.012

0.092

	Monk1

432×6
	66.39±7.57

-
1.927
	68.89±8.86

0.566

0.381
	65.00±9.64

0.732

0.318

	Monk2

432×6
	57.89±8.89

-
1.256 
	57.60±8.76

0.591
0.420
	67.89±8.42

0.390

0.186

	Monk3

432×6
	99.72±0.88

-
1.276
	99.72±0.88

1.000

0.243
	98.06±1.34*

0.005

0.174


The p-values were from a t-test comparing LDA variants to LDA. Best test accuracies are in bold. An asterisk (*) denotes a significant difference from LDA based on p-value less than 0.05, and underline number means minimum training time.
Table 3 says that for linear case, LDA and its variants have insignificant performance difference on most data sets. But Table 4 indicates that a significant difference exists between nonlinear LDA and Marginal_LDA. Furthermore, compared to its linear one, as described in [24], the nonlinear LDA is more likely prone to singular due to higher (even infinite) dimensionality in kernel space.
5.3 Comparison between LIPSVM and I-ReGEC
As mentioned before, the recently-proposed I-ReGEC [40] also involves a subset selection and is much related to our work. However, it is worth to point out several differences between LIPSVM and I-ReGEC: 1) I-ReGEC adopts an incremental fashion to find the training subset while LIPSVM does not, 2) I-ReGEC is sensitive to its initial selection as the authors declared, while ours does NOT involve such selection and thus does not suffer from such a problem; 3) I-ReGEC seeks its two nonparallel hyperplanes from one single generalized eigenvalue problem with respect to all the classes, while LIPSVM does it from corresponding ordinary eigenvalue problem with respect to each class；4）I-ReGEC does not take underlying proximity information between data points into account in constructing classifier while LIPSVM just does.
  In what follows, we give a comparison of their classification accuracies using Gaussian kernel and tabulate the results in Table 5 (where I-ReGEC results are directly copied from [40])
Table 5 Test accuracies of I-ReGEC and LIPSVM with Gaussian kernel
	dataset
	I-ReGEC

Test accuracy
	LIPSVM

Test accracy

	Banana
	85.49
	86.23

	German
	73.50
	74.28

	Diabetis
	74.13
	75.86

	Bupa-liver
	63.94
	70.56

	WPBC*
	60.27
	64.35

	Thyroid
	94.01
	94.38

	Flare-solar
	65.11
	64.89


Table 5 says that in 6 out of the 7 datasets, the test accuracies of LIPSVM are better than or comparable to those of I-ReGEC.
6. Conclusion and Future Work
In this paper, following the geometrical interpretation of GEPSVM and fusing the local information into the design of classifier, we propose a new robust plane classifier termed as LIPSVM and its nonlinear version derived by so-called kernel techniques. Inspired by the MMC criterion for dimensionality reduction, we define a similar criterion for designing LIPSVM (classifier) and then seek two nonparallel planes to respectively fit the two given classes by solving the two corresponding standard rather than generalized eigenvalue problems in GEPSVM. Our experimental results on most public datasets used here demonstrate that LIPSVM obtains statistically comparable testing accuracy to the foresaid classifiers. However, we also notice that due to the limitation of the current algorithms in solving larger scale eigenvalue problem, LIPSVM also inherits such a limitation. Our future work includes that how to go further for solving real large classification problems unfitted in memory, for both linear and nonlinear LIPSVM. We also plan to explore some heuristic rules to guide the parameter selection of KNN. 
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