
Pattern Recognition 86 (2019) 134–142 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Bayesian denoising hashing for robust image retrieval 

Dong Wang, Ge Song, Xiaoyang Tan 

∗

Department of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 

a r t i c l e i n f o 

Article history: 

Received 8 December 2017 

Revised 2 August 2018 

Accepted 9 September 2018 

Available online 10 September 2018 

Keywords: 

Image retrieval 

Denoising hashing 

Probabilistic model 

Variational Bayes 

a b s t r a c t 

Learning to hash is one of the most popular techniques in image retrieval, but few work investigates 

its robustness to noise corrupted images in which the unknown pattern of noise would heavily deteri- 

orate the performance. To deal with this issue, we present in this paper a Bayesian denoising hashing 

algorithm whose output can be regarded a denoised version of the input hash code. We show that our 

method essentially seeks to reconstruct a new but more robust hash code by preserving the original in- 

put information while imposing extra constraints so as to correct the corrupted bits. We optimized this 

model in variational Bayes framework which has a closed-form update in each iteration that is more 

efficient than numerical optimization. Furthermore, our method can be added at the top of any original 

hashing layer, serving as a post-processing denoising layer with no change to previous training procedure. 

Experiments on three popular datasets demonstrate that the proposed method yields robust and mean- 

ingful hash code, which significantly improves the performance of state-of-the-art hash learning methods 

on challenging tasks such as large-scale natural image retrieval and retrieval with corrupted images. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

With the popularization of high-pixel camera phones and the

explosive growth of the Internet, massive images have flooded our

daily lives. Image retrieval, i.e., finding images containing the same

object or scene as in a query image, has attracted much attention

from both academia and industry in recent years. And for this task,

the semantic gap between low-level content and higher-level con-

cepts remains the major challenge for all current approaches that

rely on visual similarity for judging semantic similarity [1] . Tra-

ditional methods extracting visual content from images are mainly

based on statistical information at the pixel level, e.g., [2–7] . Al-

though these methods have shown the robustness against certain

types of noise, low-level representation can hardly capture seman-

tic information, which limits its effectiveness in real-world appli-

cations. 

Recently, many studies have shown that Deep Convolutional

Neural Networks (CNNs) could learn representations with high-

level semantic concepts and reported that it achieved the state-

of-the-art performance in many computer vision tasks such as im-

age recognition [8–10] object detection [11] or semantic segmen-

tation [12] . Notably, in image retrieval field, many works adopted

solutions based on features extracted from a CNN pre-trained for
∗ Corresponding author. 
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he task of image classification [8,13,14] . Most of these [15–17] paid

ore attention on features from the deep convolutional layers

f CNNs, and demonstrated that they contain particular semantic

eaning of local image regions and hence lead to better perfor-

ance. However, the CNN features are faced with the problem of

igh computational cost in similarity calculation due to the high-

imensional representation, hence being not appropriate for the

ask of efficient nearest neighbor search in image retrieval. 

A practical solution to this issue is the hash method, which

ims to learn a nonlinear function that transforms the real-valued

eatures to much compact binary codes such that similar data

tems are mapped into similar codes [18–30] . In fact, it has become

ne of the most popular storage and retrieval approaches in han-

ling large-scale vision problems [31–34] . The learned hash codes

an be either used to index data items or to approximate the dis-

ance in nearest neighbor search. The goal of hash coding can be

egarded as a type of representation learning, and it can be im-

lemented in either supervised or unsupervised way. Supervised

ethods [35–39] use label information to regularize the behavior

f learned hash codes such that they help to pull together sam-

les from the same class while pushing away those from differ-

nt classes. Besides supervised hashing, unsupervised [40–43] and

emi-supervised [44,45] hash methods also enjoy their popularity

n certain applications. 

Despite the success, the robustness property of hash codes has

eldom been studied. The reasons of the lack of robustness of hash

odes could be mixed with various factors such as the limitation of

https://doi.org/10.1016/j.patcog.2018.09.006
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d

he underlying optimization methods, or the inevitable information

oss due to feature binarization. Due to these, the hash codes are

sually vulnerable to the noise in input images, hence deteriorat-

ng the retrieval performance. Previous work deals with this issue

ither by explicitly identifying the suspicious occluded regions in

he input image through occlusion detection [46–48] , or by adopt-

ng specially designed similarity function [49–51] . However, these

ethods have not been used in the context of hash learning. Some

esearchers also try to use deep neural network [52,53] to learn

obust representation, but when the noise level is relatively large,

he CNN representation would be corrupted by itself, not mention

he subsequent hash code. 

There are many traditional methods on learning a compact and

obust representation, However, they almost focus on continuous

ata that can not properly deal with binary data. For example,

sing robust loss function [54–56] or introducing regularization

57–59] , or employing robust optimization [60,61] . However, these

ethods are not fit for binary data. Neural network based mod-

ls, e.g., denoising autoencoder (DAE) [62] and denoising Restrict

oltzmann Machine (RBM) [63] which are variants of AE and RBM

espectively, can be used to learn denoising feature representation

n both continuous and binary data which is more useful in real-

orld applications. However, the unsupervised learning algorithms

an not learn the optimal representation on labeled data. Recently,

eep learning based denoising methods [64,65] have been pro-

osed, however they also work on natural images not binary input

nd have enormous computation cost. 

In this paper, we propose a Bayesian denoising hashing that

erving as a post-processing denoising layer to improve the robust-

ess of existing hash codes. We show that our method essentially

eeks to reconstruct a new but more robust hash code by preserv-

ng the original input information while imposing extra constraints

o as to correct the corrupted bits. We optimized this model in

ariational Bayes framework, and in each training iteration it has

 closed-form update which is more efficient than numerical op-

imization. It is worth noting that our method can be added at

he top of any original hashing layer with no change to previous

raining procedure. Experiments on several benchmark datasets

emonstrate that the proposed method yields robust and mean-

ngful hash code, which significantly improves the performance of

tate-of-the-art hash learning methods on challenging tasks such

s large-scale natural image retrieval and retrieval with corrupted

mages. 

The remaining parts of this paper are organized as follows: We

etail our method in Section 2 . In Section 3 , we investigate the per-

ormance of our method empirically over several popular datasets.

e conclude this paper in Section 4 . 

. The proposed method 

.1. Bayesian denoising hashing 

In this section, we will detail the proposed method. Fig. 1 illus-

rates the whole pipeline. There are three steps: The first is to ex-

ract discriminant feature representation via well pretrained CNN

odel (e.g., Deep Residual Network [66] ). Next, a state-of-the-art

ash model (e.g., Fast Hash (FastH) [37] is trained on these data.

inally, we use our Bayesian denoising hashing method to correct

he possible error bits resulted from the second step. 

Formally, assume that we have a binary dataset {( x 1 , y 1 ), ( x 2 ,

 2 ), ... , ( x N , y N )} where x i ∈ {0, 1} D is a D -dimension hash vector

nd y i ∈ { 1 , 2 , . . . , K} is the class assignment for x i ( K is the number

f classes). Furthermore, we assume that these hash codes x i are

orrupted due to unknown disturbance, but their label information

s clean, and our goal is to reconstruct a denoised version of them.
his target is similar to the Denoising Autoencoder [62] but we do

ot know the clean version of the input. 

We introduce a latent variable z i for each observation ( x i , y i ),

ith its dimension identical to that of x i . We can think of z i as

he continuous version of the final denoised hash code which can

e obtained simply by thresholding the corresponding z i . On one

and, we use each dimension z d 
i 

of z i to control the corresponding

ash bit x d 
i 
, and on the other hand, we expect those z i from the

ame class to be close to each other while those from different

lasses to be kept far away. Consequently, the final value of each z i 
hould be a tradeoff of these two constraints. To do this, we model

he joint distribution of the interested random variable (or random

ector) X, Y and Z as follows, 

p(X, Y, Z) = 

∫ 
W 

p(X | Z) p(Y | Z, W ) p(Z) p(W ) dW (1) 

here W is the global parameter that increases the flexibility of

he model, and we also assume that X and Y are conditionally in-

ependent given latent code Z . Also note that although in principle

e can parameterize the generative model p ( X | Z ), in this work for

implicity we exploit the independence assumption made above to

et, 

p(X | Z) = 

∏ 

i p(x i | z i ) = 

∏ 

i 

∏ 

d p(x d 
i 
| z d 

i 
) (2) 

or convenience, if the binary variable x d 
i 

is 0, we convert it to -

. Hence x d 
i 

∈ {−1 , 1 } , which allows us to model p(x d 
i 
| z d 

i 
) directly

sing logistic regression: 

p(x d 
i 
| z d 

i 
) = θ (x d 

i 
z d 

i 
) (3) 

here θ ( t ) is the sigmoid function: 

(t) = 

1 
1+ exp (−t) (4) 

n this way, z d 
i 

controls the corresponding hash bit x d 
i 
, i.e., a posi-

ive z d 
i 

implies x d 
i 

= 1 with high probability, and x d 
i 

= −1 otherwise.

To identify behaviorally relevant variables, we have to assume

 supervised learning setting. Instead of modeling the dependent

ariable Y directly, we factorize the recognition model p ( Y | Z, W )

nto a set of pairwise constraints: 

p(Y | Z, W ) = 

∏ 

i j p(y i j | z i , z j , W ) (5) 

here y i j = 1 if y i = y j , and y i j = −1 otherwise. W ∈ R D × D is the

lobal parameter ( D is the dimension of the latent code Z ). We pa-

ameterize the pairwise model p ( y ij | z i , z j , W ) such that it behaves

ccording to the constraints mentioned at the beginning of this

ection. Specifically, it is defined as follows: 

p(y i j | z i , z j , W ) = θ (y i j z 
T 
i 
W z j ) (6) 

ence, our method is essentially a trade-off between preserving

he original input information and imposing extra supervised con-

traints to correct the possible error bits. Also note that we only

erform this method on the gallery set, and we do not change the

ash bits of query data due to that their class information is usu-

lly unknown. We show in the experiments that refining the hash

ode is very helpful for better image retrieval when the gallery set

s corrupted by big noise. 

Next we will detail how to learn the global parameter W and to

nfer the latent variable Z given X . 

.2. Variational inference 

First we choose a prior distribution for each z i , e.g. Gaussian

istribution, for its simpleness and smoothing property. 

p(z i ) = N (z i | � 0 , σ 2 
z I) (7) 
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Fig. 1. Hash codes learned with CNN features may be distracted by some types of noise such as partial occlusion (e.g., here the head of the bird is occluded.). Our Bayesian 

denoising hashing can be stacked at the top of the original hashing layer so as to improve its robustness against noise. Right (conceptual illustration): corrupted hash bits 

(shown in the yellow boxes of the bottom two rows) due to occlusion are corrected by our method (shown in the blue boxes at the top row). (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Then with the Bayes rule, we obtain the posterior distribution of

z i , 

p(z i | x i , Y, Z N i , W ) 

= 

p(x i | z i ) ∏ 

j∈ N i p(y i j | z i ,z j ,W ) p(z i ) ∫ 
z i 

p(x i | z i ) ∏ 

j∈ N i p(y i j | z i ,z j ,W ) p(z i ) dz i 

(8)

where N i = { j| y j = y i } is the set of indices of all points have label

y i , and Z N i = { z j | j ∈ N i } includes all the pairwise constraints of z i
constructed with N i . For the sake of efficiency, we can randomly

sample a small subset in each N i (e.g. let | N i | = 5 for each i ) instead

of using all the constraints. 

The posterior distribution of z i is intractable due to the fact

that 1) each z i is coupled with several z j , j ∈ N i , and 2) the like-

lihood terms p ( x i | z i ) and p ( y ij | z i , z j , W ) are not conjugate to the

prior p ( z i ). Hence we approximate the posterior using a distribu-

tion q ( z i ) within the variational inference (VI) framework [67] . Us-

ing the same method, we also estimate the model parameter W ,

and the main results are summarized in the following theorem: 

Theorem 1. The approximated posterior distribution q ( z i ) to Eq.

(8) by the variational inference is given by, 

q (z i ) = N (z i | ̄z i , V z i ) 
 z i = [ σ−2 

z I + 2 

∑ 

j∈ N i λ(ξz i j 
) E(z T 

j 
W 

∗W 

∗z j ) + 2�i ] 
−1 

z̄ i = 

1 
2 
V z i [ x i + 

∑ 

j∈ N i (2 y i j − 1) E( W 

∗z j )] 

(9)

and the optimal global matrix W 

∗ is recovered from its vectorized ver-

sion w 

∗, given by, 

w 

∗ = [ V 

−1 
w 0 

+ 2 

∑ 

i j λ(ξz i j 
) E(z i j z 

T 
i j 
)] −1 [ V 

−1 
w 0 

μw 0 
+ 

∑ 

i j (y i j − 1 
2 
) E(z i j )]

(10)

where E ( · ) is the expectation operator, λ(x ) = − 1 
2 x [ θ (x ) − 1 

2 ] , �i =
diag(�1 

i 
, �2 

i 
, . . . , �D 

i 
) is a diagonal matrix with �d 

i 
= λ( ξ

z d 
i 
)(x d 

i 
) 2 ,

N (w | μw 0 
, V w 0 

) is the prior distribution for the model parameter W

( w = vec (W ) ), z i j = vec (z i z 
T 
j 
) . 1 ξ

z d 
i 

and ξz i j 
are the variational pa-

rameters. 

Proof. According to the variational inference, we seek to maximize

the following variational lower bound, 

max L (q ) = 

∫ 
q (Z) ln 

p(X,Y,Z,w ) 
q (Z) 

dZ (12)

This leads to the following solution, 

ln q (z i ) = E −z i [ ln p(X, Y, Z, w )] (13)
1 

z i j = [ z 1 
i 
z 1 

j 
, z 1 

i 
z 2 

j 
, . . . , z 1 

i 
z D 

j 
, z 2 

i 
z 1 

j 
, z 2 

i 
z 2 

j 
, . . . , z 2 

i 
z D 

j 
, . . . , z D 

i 
z 1 

j 
, z D 

i 
z 2 

j 
, . . . , z D 

i 
z D 

j 
] T 

w = [ W 11 , W 12 , . . . , W 1 D , W 21 , W 22 , . . . , W 2 D , . . . , W D 1 , W D 2 , . . . , W DD ] 
T (11) 

e

ξ

ξ
 

T

= E −z i [ ln p(X | Z) P (Y | Z, w ) P (Z) p(w )] (14)

ow we adopt a factorized distribution q (Z) = 

∏ N 
i =1 q (z i ) to ap-

roximate true posterior distribution of Z , and plug Eqs. (3) and

6) into Eq. (14) and ignore those terms irrelevant to z i , we obtain,

n q (z) = E −z i [ 
∑ 

d ln θ (x d 
i 
z d 

i 
) + 

∑ 

j∈ N i ln θ (y i j z 
T 
i 
W z j ) + ln p(z i )] 

(15)

o make the likelihood conjugate to the prior, we follow Jaakkola

nd Jordan [68] to approximate the logistic sigmoid function ap-

eared in the right hand of Eq. (15) with its quadratic lower bound.

his leads to the following approximation of the log posterior of

nterest, 

n q (z i ) = −∑ D 
d=1 { λ(ξz d 

i 
)[(x d 

i 
z d 

i 
) 2 − ξ 2 

z d 
i 

] + 

1 
2 
(x d 

i 
z d 

i 
+ ξz d 

i 
) } 

−∑ 

j∈ N i E −z i { λ(ξz i j 
)[(y i j z 

T 
i 
W z j ) 

2 − ξ 2 
z i j 

] 

+( 1 
2 

− y i j ) z 
T 
i 
W z j + 

1 
2 
ξz i j 

} − 1 
2 
σ−2 

z z T 
i 

z i + const 

(16)

hen with some mathematical manipulations, we obtain the pos-

erior distribution q ( z i ) as shown in Eq. (9) . �

Next we turn to estimate parameter W . We first vectorize the

atrix W and z i z 
T 
j 

w.r.t. w and z ij , as shown in Eq. (11) . With this,

e reformulate the function of W (cf., Eq. (6) as an inner product:

 

T 
i 
W z j = w 

T z i j (17)

fter obtaining the MAP (maximum a posterior) solution w 

∗ , we

eshape w 

∗ back to W 

∗ . From Eq. (12) , the objective of w is, 

ax L w 

= 

∫ 
q (Z) ln p(X, Y, Z, w ) dZ (18)

y introducing the Gaussian prior N (w | μw 0 
, V w 0 

) of w and using

he Jaakkola bound [68] again, we get, 

 w 

≥ −∑ 

i j E Z { λ(ξz i j 
)[(y i j w 

T z i j ) 
2 − ξ 2 

z i j 
] 

+( 1 
2 

− y i j ) w 

T z i j + 

1 
2 
ξz i j 

} 
− 1 

2 
(w − μw 0 

) T V 

−1 
w 0 

(w − μw 0 
) + const 

(19)

aking the partial derivative ∂ L w 

/ ∂ w and set it to zero, we can get

he closed-form solution — w 

∗ (or W 

∗) (as in Eq. (10)) . Further-

ore, according to Jaakkola and Jordan [68] , the variational param-

ters ξ
z d 

i 
, ξz i j 

can be estimated as follows: 

z d 
i 

= 

√ 

E[(z d 
i 
) 2 ] 

z i j 
= 

√ 

E[(z T 
i 
W 

∗z j ) 2 ] 
(20)

his completes the proof of Theorem 1 . 
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During training, we iteratively update latent variable z i , global

arameter w (or W ) and variational parameter ξz i , ξz i j 
. In each it-

ration, the computational cost of learning Z is o ( ND ) and of learn-

ng W is o ( ND 

3 ). This may seem big, but note that the input of our

ethod is binary hash code from a state-of-the-art hashing algo-

ithm which is usually very compact, i.e., no more than 100 bits.

nd usually this closed-form updating just needs very a few train-

ng iterations to converge to a local optima. 

During inference, we use q ( z i ) to deduce the groundtruth value

f x i . Let us define ˜ x d 
i 

as the corrected bit. Then the relationship

etween ˜ x d 
i 

and z̄ d 
i 

( Eq. (9) ) is: 

˜ 
 

d 
i = 

{
−x d 

i 
if x d 

i 
� = sign ( ̄z d 

i 
) and | ̄z d 

i 
| > threshold 

x d 
i 

otherwise 
(21) 

ote that this is a conservative strategy that the introduced thresh-

ld is used to correct those bits whose margin (i.e., x d 
i 
z̄ d 

i 
) is

maller than some predefined value 2 . We summarize the pro-

osed method in Algorithm 1 . 

lgorithm 1 Bayesian denoising hashing. 

nput: 

Input: Noisy hash dataset { (x i , y i ) | i = 1 , 2 , ..., N} , prior distribu-

tion p(z i ) , i = 1 , 2 , ..., N and p(w ) = N (w | μw 0 
, V w 0 

) . 

utput: 

Denoised dataset { ( ̃  x i , y i ) | i = 1 , 2 , ..., N} 
—— Training Stage 

1: Initialize q (z i ) , (i = 1 , 2 , ..., N) with prior p(z i ) , set w to μw 0 
;

then compute ξ
z d 

i 
, ξz i j 

with eq. (20) respectively. 

2: Repeat 

3: update q (z i ) , (i = 1 , 2 , ..., N) with eq. (9). 

4: update w with eq. (10). 

5: update ξ
z d 

i 
, ξz i j 

with eq. (20). 

6: Until converged. 

7: Detect and correct the error bits in x i , (i = 1 , 2 , ..., N) with eq.

(21). 

8: Return denoised dataset { ( ̃  x i , y i ) | i = 1 , 2 , ..., N} . 

. Experiments 

.1. Setting 

To evaluate the performance of the proposed method, we con-

uct a series of experiments on three well-known datasets: CIFAR-

0 [69] , MNIST [70] , and ImageNet [71] . 

On each dataset we use random noise to synthesize corrupted

mages, particularly, we blurred a randomly selected square region

ith its mean value for each training image of a given dataset.

ow many images are undertaken such corruption depends on the

pecific evaluation protocol of a given dataset - we only do this

n the training partition (including the gallery set or the set to be

etrieved) of the dataset while the query images are kept clean. 

All the input images undergo whitening and contrast normal-

zation as preprocessing steps [69] . We use the mean average pre-

ision (MAP) as evaluation metric to report the retrieval perfor-

ance both before and after adding our Bayesian denoising hash-

ng layer. 

.2. Experiments on the MNIST dataset 

We first investigate the behavior of our methods on MNIST

ataset. MNIST [70] is a large scale digital recognition dataset con-
2 By default, in our experiments we set the threshold to be 1 unless otherwise 

oted. 

n  

t  

n  

t  
aining 70,0 0 0 28 × 28 gray images (10 categories, training/test :

0,0 0 0/10,0 0 0). On this dataset, we add occlusion noise to the

allery set by varying the occlusion size from the 4 × 4 to 20 × 20

n pixel. Fig. 2 illustrates some of the examples. We can see that

hen the occlusion size is small (4 × 4), it has little effect on

ecognition while as the size increases to 20 × 20 it is even impos-

ible for human to recognize. On this dataset, we apply the pro-

osed Bayesian denoising hashing method on three baseline hash-

ng models: Kernel-Based Supervised Hash (KSH) [35] , Fast Hash

FastH) [37] and Supervised Discrete Hash (SDH) [38] . For each of

hem, we test three hash code lengths — 12-bits 24-bits and 48-

its. We use the C-SVDDNet model [72] for feature extraction. 

Fig. 3 (a)–(c) give the results, where the performance of vari-

us hash methods before and after adding our Bayesian denois-

ng layer (‘+Bayes’) is reported. We can see that under 48 bits

ode length and no occlusion, the current state-of-the-art hash

ethod like KSH, SDH, FastH achieves excellent performance of

9.3% 99.0% 99.6% MAP respectively. However, as the degree of ran-

om structural distortion increases, the performance of all meth-

ds decreases quickly. Particularly the performance of the FastH

ethod [37] decreases about 3.0%, that is, from 99.6% to 96.6%, is

he most robust one among them, while the performance of all

he other two methods decreases more than 15.0%. The situation

ecomes even worse if a shorter code is adopted. For example, un-

er 12 bits, even the FastH decreases nearly 9.0% MAP from 99.6%

o 90.7%. From these observations we conclude that random partial

cclusion on the images does impose a challenge onto the current

earning to hash methods. 

Fortunately, Fig. 3 (a)–(c) also reveal that when equipped with

ur Bayesian denoising layer, the performances of all the baseline

ethods are consistently improved significantly regardless of the

ode length. For example, our method remarkably improves the

erformance of the KSH [35] and SDH [38] by more than 15.0%

t the occlusion size of 20 × 20 in pixels. Even for the most sta-

le FastH method, adding our Bayesian denoising layer could lead

o about 4.0% performance improvement at the code length of 12

its. 

By treating the hash code obtained with clean data as ground

ruth, we can compare it with the hash code generated at vari-

us size of partial occlusion to gain more understanding of the be-

avior of these methods. Fig. 4 shows the error statistics about

ow many hash bits are erroneously flipped due to partial oc-

lusion. One can see that as the occlusion size increases, more

its are flipped by the FastH method, but with our Bayesian post-

rocessing layer many erroneous bits are corrected. This is consis-

ent with and partly explains the results of Fig. 3 (c). 

To show the efficiency of the our variational Bayesian train-

ng, we also conduct experiments on MNIST dataset by varying the

umber of training iterations of our method. Fig. 5 shows the re-

ults that even with big occlusion, our method only needs a few

terations (3 to 5) to converge to a local minima for all the three

ashing methods. 

.3. Experiments on the CIFAR-10 dataset 

We next evaluate our method on the famous CIFAR-10 dataset

hich contains 60,0 0 0 32 × 32 color natural images (10 categories,

raining/test : 50,0 0 0/10,0 0 0). On this dataset, besides random oc-

lusion we have considered two other types of occlusions, i.e., oc-

lusion on the object and occlusion on the background. The sim-

lation of the corruption is made by blurring either the center

egion of a given image (for occlusion on the object) or the cor-

ers of it (for occlusion on the background), see Fig. 6 for illus-

ration. Over these images, we apply the proposed Bayesian de-

oising hashing post-processing on two types of hashing: one is

he end-to-end deep hashing, e.g., part based deep hashing (PDH)
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Fig. 2. Illustration of the images of MNIST dataset with varying degrees of partial occlusion. The size of occlusion is (a) 4 × 4, (b) 12 × 12, (c) 20 × 20. 

Fig. 3. Comparative Performances of various deep hash methods for image retrieval on the MNIST datasets. 

Fig. 4. Comparison of the proportion of erroneously flipped hash bits (%) with the 

FastH method and the proposed method under various size of partial occlusion on 

the MNIST dataset with code length 12 bits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Performance of the Bayesian denoising hashing by varying the number of 

training iterations (with 20 × 20 occlusion, code length = 12). 
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[33] , semi-supervised deep hashing (SSDH) [26] , Deep Weighted

Hashing (DWH) [27] , deep supervised hashing with pairwise labels

(DPSH) [24] ; the other is non-end-to-end hashing in which we first

use a pretrained deep network (Wide ResNet [73] : 95.5% acc) to

extract feature representations and then on it we train the shal-

low models such as FastH [37] , SDH [38] , KSH [35] and supervised

hashing with latent factor models (LFH) [23] . The hash length for

all the methods is set to be 24 bits. The other setting is the same

as MNIST. 

Fig. 7 gives the results. Both types of methods are sensitive to

the occlusion noise. Particularly, the performance could be heav-

ily deteriorated if the object to be retrieved is suffered from par-

tial occlusion, e.g., the performance of LFH decreases from 94.25%

to 66.29% with occlusion on the object, but with occlusion on

background its performance remains to be high — 92.94%. Fortu-

nately, in all these cases, our Bayesian denoising hashing can ef-

fectively improve the robustness against occlusion for both end-

to-end hashing methods and non-end-to-end methods. For exam-
le, our method improves the performance of LFH from 66.29% to

7.92% in the object-corrupted case. 

The results also show that sometimes the performance of non-

nd-to-end hashing methods may work better than end-to-end

eep hashing methods. For example, the FastH model trained on a

retrained deep residual network achieves 93.43% MAP (with ran-

om occlusion noise) which outperforms all the other compared

ethods. This is possibly due to the reason that although end-to-

nd training helps to exploit the training data, it has to make a

ompromise between feature representation and prediction accu-

acy, which may hurt its generalization capability especially when

he input data is noisy. 

Fig. 8 gives the training time of our method. For those shal-

ow hashing algorithms, adding our Bayesian post-processing will

ncrease the training time by about 20–30% on average, e.g., for

he KSH [35] method, the extra training time we pay for is about
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Fig. 6. Illustration of the images of CIFAR-10 dataset: (a) original images, (b) with occlusion on object, (c) with occlusion on background. 

Fig. 7. Comparative performance (mAP %) on CIFAR-10 dataset (24-bits code). (a) clean images (b) with random occlusion (c) with occlusion on object (d) with occlusion on 

background. 
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 min (i.e., the total training time increases from 14 to 17 min),

ut its robustness performance against random occlusion increases

rom 80.5% to 90.1%. 

We also conduct an experiment to evaluate the effect of fin-

uning deep features by noise images. Particularly, we tested this

ethod based on the LFH method [23] . Fig. 9 gives the results.

t shows that finetuning helps to improve the robustness against

cclusion, by increasing the performance of LFH from 78.04 to

0.21%. However, the effect of finetuning over LFH + Bayes is

arginal, possibly due to the fact after our Bayes post-processing

he resulted hashing codes have higher tolerance against noisy im-

ges. 

Additionally, we conducted another experiment on CIFAR-10

ataset to investigate the effect of network structure. We test two

etworks, one is a pretrained Wide ResNet—WRN-16-8 [73] , the

ther is the CNN-F network which we have finetuned on CIFAR

ataset. Fig. 10 shows the performance of 4 shallow hashing meth-

ds (FastH [37] , SDH [38] , LFH [23] , KSH [35] ) with the WRN

nd CNN-F respectively under 16 × 16 occlusion noise. With our

ayesian denoising hashing, the performance of the 4 compared

ethods are significantly improved under both of the two network

tructure. Moreover, this result also shows that the performance of

ashing does rely on the network structure. Using a deeper net-

ork can further improve the performance. 
.4. Experiments on the ImageNet dataset 

Our final series of experiments are conducted on the large

cale ImageNet database [71] . The database contains over 1.2 mil-

ion color images of totally 10 0 0 categories. We sample a sub-

et of 10 0,0 0 0 images from ILSVRC2012 (10 0 0 categories with 100

mages per category) as the database to be retrieved and use

he original validation partition as query set (50,0 0 0 images). As

equired by the ResNet-50, all the input images are resized to

24 × 224. Since many hash methods are not easily adaptive to

arge scale dataset due to its huge time complexity, on this dataset

e only compare the performance of FastH, ‘FastH + Bayes’ and

FastH + DAE’. The DAE (Denoising autoencoder [62] ) method is a

opular representation method that learns the manifold of dataset

y trying to reconstruct the original data from its corrupted ver-

ion. Similar to our Bayesian denoising layer, we use DAE to post-

rocess the hash codes generated by the FastH, and compare its

erformance with ours. 

Table 1 gives the results obtained with/without partial occlu-

ion. As expected, one can see that for a large dataset like this

 longer hash code is preferred. It is interesting to see that on

his dataset, even under no any simulated random structural dis-

ortion, our Bayesian denoising layer significantly improve the per-

ormance of the original FastH method. For example, our method
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Table 1 

Comparative performance (mAP %) on ImageNet. 

Code length Clean 80 × 80 occlusion 

24 48 1024 2048 24 48 1024 2048 

FastH 4.69 14.02 57.7 60.8 2.46 9.49 53.0 56.7 

FastH + DAE 3.68 12.54 53.5 56.1 2.01 8.37 48.7 51.2 

FastH + Bayes 12.44 27.98 66.0 67.8 7.45 25.47 63.6 65.6 

Fig. 8. The training time (min) of hashing models on CIFAR-10 dataset (24-bits 

code). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The effect of finetuning on CIFAR-10 dataset (24-bits code). 
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improve the MAP score of FashH by 10.0% from 52.4 to 62.4% at

512 bits coding with no occlusion, while at the extreme case of

80 × 80 in pixel occlusion and 512 bits coding, the relative perfor-

mance improvement yielded by our method is 12.9% (from 46.7 to

59.6%). The results also show that the performance of short hash-

ing codes on this dataset is far from being satisfied (even using

our Bayesian denoising hashing layer) for this dataset. This indicate

that the length of hashing codes may depend on the complexity of

the content of the underlying dataset, and in order to encode a big

dataset of many categories, long hashing codes are better. 

Fig. 11 gives some illustration of the retrieval results. We argue

that for real-world images like those in the ImageNet, there in-

evitably contains complicated background or other random struc-

tural distortion that deteriorates the retrieval performance (cf.,

Fig. 11 ). This highlights the need for post-processing methods like

ours to further handle the ‘raw’ hash code. Note that it seems that
Fig. 10. The effect of network structure: (a) Wide R
he DAE does not work well in this case, possibly due to the fact

hat the small Gaussian noise adopted in DAE is not consistent

ith the patterns that disturb the hash codes. 

.5. Discussion 

Our experiments reported above clearly show that current deep

ashing methods are sensitive to the structural noisy signal con-

ained in the input image. Ensemble methods like Fast Hash

37] are seen to alleviate noise on input features by constructing

obust hash function with a set of classifiers, which work with

ach other to improve noise resistance. However, as we see in

able 1 , this is still not enough for real-world applications. 

One natural question is, since both previous learning to hash

ethods and our Bayesian denoising hashing method assume a su-

ervised learning setting to identify behaviorally relevant hash bits,

hy our method could improve the performance of previous state-

f-the-art hashing methods even further? In our opinion, there are
esNet network [73] , (b) CNN-F network [74] . 
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Fig. 11. Top10 retrieved images on ImageNet of FastH and FastH + Bayes under 2048 bits. For each query image (the first column), images in the first row are the top 10 

results retrieved with FastH method, while the images below are results by using FastH+Bayes. The red square indicates the false positive. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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wo factors that play an important role in explaining this. The first

ne is due to the variational inference mechanism. One can see

rom Eq. (9) that the estimated ‘cleaned’ code z̄ i is computed by

ombining the information from the original hash code (i.e., x i )

nd its pairwise constraints z j , j ∈ N i , while W can be interpreted

s combination coefficients. Hence this is actually a voting strategy

hich makes a tradeoff between preserving the original informa-

ion and correcting it based on the supervised pairwise constraints.

oreover, Eq. (21) ensures that the risk of “over-correcting”, i.e.,

ipping the hash code too much, is very low. The second source of

ur robustness actually comes from the previous hashing layer it

ims to denoise - note that this lower hashing layer works directly

n the real-valued input (i.e., CNN features) by performing a non-

inear transformation on it, so that the influence of unknown ran-

om disturbance on the raw data is partially ‘blocked’ or bounded

y just “bit flipping” (from 0 to 1 or from 1 to 0). This helps to

lleviate the burden faced by our method. 

. Conclusion 

The robustness of hash coding against structural noise is an im-

ortant yet seldom-studied problem. General hashing methods are

evoted to dealing with real-valued data, and therefore are sen-

itive to the noise contained in data, which would possibly re-

ult in heavy performance deterioration. In this paper we present

 Bayesian denoising hashing within the variational Bayes frame-

ork. Our method serves as a post-processing denoising layer by

xploiting supervised constraints of data, which corrects the er-

or hash bits learned from other hashing algorithms. Experimental

esults demonstrate its performance, scalability and efficiency on

everal challenging image retrieval tasks. 

However, the performance of this method relies on the input

NN features which would possibly limit its applicability. In future

ork, we will focus on learning a Bayesian deep hashing model in

n end-to-end way, and thus make it more applicable for complex

atasets. 
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