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Abstract In multi-label learning, it is rather expensive to label instances since they are simultaneously associated with

multiple labels. Therefore, active learning, which reduces the labeling cost by actively querying the labels of the most

valuable data, becomes particularly important for multi-label learning. A good multi-label active learning algorithm usually

consists of two crucial elements: a reasonable criterion to evaluate the gain of querying the label for an instance, and

an effective classification model, based on whose prediction the criterion can be accurately computed. In this paper, we

first introduce an effective multi-label classification model by combining label ranking with threshold learning, which is

incrementally trained to avoid retraining from scratch after every query. Based on this model, we then propose to exploit

both uncertainty and diversity in the instance space as well as the label space, and actively query the instance-label pairs

which can improve the classification model most. Extensive experiments on 20 data sets demonstrate the superiority of the

proposed approach to state-of-the-art methods.
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1 Introduction

In many applications, we have plenty of unlabeled

data but few labeled data. As labeling is usually ex-

pensive since it requires the participation of human ex-

perts, training an accurate model with as few labeled

data as possible becomes a challenge of great signifi-

cance. Active learning, which reduces the labeling cost

by actively selecting the most valuable data to query

their labels, is a leading approach to this goal [1]. The

key task in active learning is to design a selection cri-

terion such that queried labels can improve the clas-

sification model most. During the past years, many

active selection criteria have been proposed. For exam-

ple, uncertainty measures the confidence of the current

model on classifying an instance [2], diversity measures

how different an instance is from the labeled data [3],

density measures the representativeness of an instance

to the whole data set [4], and so on. There are also

some other approaches try to consider different criteria

simultaneously [5, 6] and the aid of transferred knowl-

edge from related tasks [7].

In traditional supervised classification problems,

one instance is assumed to be associated with only one

label. However, in many real world applications [8],

an object can have multiple labels simultaneously. For

example, a nature scene image may be tagged with
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“trees”, “mountain” and “sky”, a web page introducing

a city may be related to topics of “population”, “econ-

omy” and “traffic”. Multi-label learning is a framework

dealing with such objects [9]. To label the multi-label

examples, each of the multiple labels should be decided

whether a proper one for an instance. Obviously, the

labeling cost is even higher than that of single label

learning, and thus active learning under the multi-label

setting has attracted more and more attention.

Unlike in the single label setting, multi-label ac-

tive learning methods have multiple choices on what to

query at each iteration. Most existing methods query

the whole label vector of one instance at a time. There

are a few works trying to query the relevance of a

instance-label pair, i.e., ask the oracle whether a spe-

cific label is relevant to the selected instance at each

iteration [5, 10]. It has been shown that by utilizing

external knowledge [11], such methods could be more

effective because it can exploit the correlations among

multiple labels. Especially for problems with many la-

bels, experts may hardly identify all positive labels for

an instance, but can easily decide whether a label is

relevant to an instance or not. In this paper, we follow

this setting and try to query if a label is positive on a

specific instance at each iteration.

In multi-label active learning, the main efforts focus

on exploiting uncertainty, leaving the other active selec-

tion criteria rarely considered. Different algorithms are

designed to evaluate the uncertainty of unlabeled data.

A commonness of them is that they usually evaluate

the active selection criterion based on the predicted la-

bels of instances. Thus an effective classifier which can

accurately predict the labels for the unlabeled data is

crucial for a successful active learning algorithm. Most

existing methods decompose the multi-label task into a

series of binary classification problems and learn each

label independently. Such a strategy, however, ignores

the correlations among different labels, which play an

important role in multi-label learning; moreover, even

with prediction values on each label, it is still a chal-

lenge to decide the threshold for separating positive and

negative labels of an instance. As we know, under the

single-label setting, given the outputs of the classifier,

the positive label can be easily determined as the one

with maximum prediction value. However, in multi-

label learning, we do not know how many positive la-

bels an instance should have. Also, the prediction val-

ues on different labels may not be comparable since the

classifiers are independently trained. To address this

challenge, some ad-hoc efforts have been attempted.

For example, simply taking the sign of predictions as

labels [12], normalizing the predictions on different la-

bels [13], predicting the number of positive labels via

an extra regression model [14], and so on.

In this paper, we propose to exploit both uncer-

tainty and diversity in the instance space and la-

bel space with an incremental multi-label classification

model. First, along with a label ranking algorithm

which learns a subspace shared by all labels to exploit

the label correlations, and optimizes the approximated

ranking loss to rank positive labels before negative ones,

we also introduce a dummy label for each instance, and

train the model to rank the dummy label between posi-

tive and negative labels. Since the dummy label thresh-

old is learned specifically for each instance along with

the ranking model, it is expected to provide an accurate

separation of positive and negative labels. Based on

this model, we then integrate uncertainty with diversity

as a new active learning criterion, and select the most

valuable instance-label pairs to query. Specifically, in

the instance space, we simultaneously evaluate the un-

certainty with label cardinality inconsistency(LCI) [12]

and the diversity with the number of labels not queried;

while in the labels space, the distance between a la-
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bel and the thresholding dummy label is employed to

evaluate the uncertainty. Our multi-label model is in-

crementally updated based on only the newly added

labeled data, avoiding the retraining from scratch. We

performed extensive experiments on 20 data sets with

regard to 2 performance measures. Results show that

the proposed approach is superior to several state-of-

the-art methods. We further studied the LCI criterion

to show that it is important to incorporate other criteria

at the beginning stage. Also, we disclosed that positive

labels are more important for multi-label learning by

studying the distribution of queried labels.

The rest of this paper is organized as follows. Sec-

tion 2 reviews related work. In Section 3, the multi-

label classification model as well as the active selection

strategy are presented. Section 4 presents the experi-

ments, followed by the conclusion in Section 5.

2 Related Work

The multi-label classification model used in this

paper is extended from an online multi-class ranking

model [15]. While similar techniques are used for op-

timizing the approximated ranking loss, the method

in [15] is designed for single label setting, and thus can

not decide how many labels should be selected as posi-

tive from the ranked label list. In contrast, by introduc-

ing the dummy label, our algorithm can automatically

learn a threshold for separating positive and negative

labels.

Fürnkranz et al. proposed a calibrated label rank-

ing approach for multi-label classification in [16], where

a mechanism similar to our dummy label is used for

separating positive and negative labels. However, to

the best of our knowledge, label ranking with thresh-

old learning has not been exploited in multi-label active

learning.

Multi-label active learning (MLAL), which is ex-

pected to reduce the expensive annotation cost in multi-

label learning, has attracted more and more interests

[17–21]. Most existing MLAL approaches are based

on the binary relevance model, which decomposes the

multi-label classification into a series of binary classi-

fication problems. For example, [22] trains a SVM for

each label, and selects the instance which maximizes

the reduction of expected loss to query its labels. [14]

also trains a SVM for each label and aims to maximize

the expected loss reduction, but uses an extra regres-

sion model to predict the number of labels for each

instance, and proposes to approximate the model loss

with the size of version space. Besides, based on inde-

pendently trained binary classifiers, the minimal, aver-

age and weighted summarization over the uncertainties

measured on each label are taken as active selection cri-

terion in [23], [24] and [25], respectively. In [12], label

cardinality inconsistency is combined with the separa-

tion margin via a tradeoff parameter as a new criterion

for active selection, where the labels of instances are

directly determined by the sign of prediction values of

individual binary SVMs.

Query type has a great impact on labeling cost

for MLAL [26]. Most MLAL methods try to query

the whole label vector of one instance at a time [12].

However, as different labels are usually correlated in

multi-label learning, this simple query type could lead

to information redundancy and wasting of annotators’

effort. There are some works querying instance-label

pairs in MLAL [5, 27, 28]. This method is more effec-

tive because it is easier to identify one label for an in-

stance compared to query the whole label vector. Be-

sides, Huang et al. propose a novel MLAL framework

to query the relevance ordering of label pairs, which

gets richer information from each query and requires

less expertise of the annotator [26].

There are also some other multi-label active learn-
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ing approaches proposed for different settings. Zhang

et al. propose the MLAL method for multi-view data

[29]. Wang et al. propose an ensemble-based active

learning framework to handle the multi-label stream

data [30].Chen et al. consider querying the most likely

positive subexample-label pairs instead of the example-

label pair [21]. It is worth noting that the active selec-

tion criteria and classification technique proposed in the

preliminary version [31] of this work have been extended

to multi-instance multi-label setting [32,33].

3 The Algorithm

We first introduce an incremental multi-label model

by extending the label ranking model proposed in [15]

from single-label to the multi-label setting in subsection

3.1, and then propose a new active learning strategy in

subsection 3.2 to iteratively query whether a label is

positive on an instance.

3.1 Multi-Label Ranking with Separating

Dummy Label

In [15], an online algorithm was proposed to opti-

mize approximated ranking loss on single label data,

aiming to rank the positive label before negative ones

for each instance. In single-label learning, we can easily

determine the positive label for an instance by selecting

the one with maximum prediction value. However, in

multi-label learning where one instance can have more

than one label, we do not know how many labels should

be selected as positive from the label list ranked based

on the predictions values. To overcome this difficulty,

inspired by [16], we introduce a dummy label to each

instance, and train the model to rank the dummy label

between positive and negative labels for thresholding.

We denote by {(x1,y1), (x2,y2), · · · , (xn,yn)} the

training data with n examples, where each instance xi

is a d-dimensional feature vector. Assuming there are

in all K possible labels, the label vector of xi is denoted

by yi = (yi1, yi2, · · · , yiK)>, where yik = 1 if instance

xi has the k-th label, otherwise yik = −1.

Binary relevance (BR) [34], which learns a classifica-

tion model for each label, is the simplest way to handle

multi-label data. Since BR approaches learn each label

independently, correlations among multiple labels are

ignored. In our approach, the classification model is

decomposed into two levels. On the first level, a sub-

space shared by all the labels is learnt from the original

feature space, and then on the second level, different la-

bel classifiers are trained based on the subspace. Since

different labels will contribute to the weight update in

shared space during the optimization, it is expected

that correlated labels may help each other, i.e., label

correlations are utilized. Formally, given an instance

x, we define the classification model on label k as

fk(x) = w>k W0x,

where W0 is an m × d matrix which maps the original

feature vectors to the shared subspace, and wk is a m-

dimensional vector as the classifier for label k. Here d

and m are the dimensionalities of the feature space and

the subspace, respectively. Note that m is usually set to

a small value, and thus for high dimensional data, the

two-level model used here can significantly reduce the

memory cost when the numbers of variables are reduced

from d×K to m× (d+K).

As in [26], the ranking loss for the instance x and

one of its positive labels y can be defined as:

ε(x, y) =

R(x,y)∑
i=1

1

i
, (1)

where R(x, y) counts how many negative labels are

ranked before label y, and can be formally defined as

Eq(2).

R(x, y) =
∑
ȳ∈Ȳ

I[fȳ(x) > fy(x)], (2)
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where Ȳ denotes the set of all negative labels of x, and

I[·] is the indicator function which equals 1 if the ar-

gument is true and 0 otherwise. Obviously, the lower

y is ranked, the larger R(x, y) is, and accordingly the

ranking error ε(x, y) becomes larger. By minimizing

the ranking error on all positive labels of all training

instances, the model is expected to rank positive labels

before negative ones for an unseen instance. With the

convention 0/0 = 0 if R(X, y) = 0, by combining Eq.1

and Eq.2, the ranking error ε(x, y) can be written as:

ε(x, y) =
∑
ȳ∈Ȳ

ε(x, y)
I[fȳ(x) > fy(x)]

R(x, y)
. (3)

It is difficult to minimize Eq.3 due to its non-convexity

and discontinuousness. So we instead try to optimize

its convex surrogate loss as follows:

Ψ(x, y) =
∑
ȳ∈Ȳ

ε(x, y)
max{0, 1 + fȳ(x)− fy(x)}

R(x, y)
. (4)

Obviously, the surrogate loss Ψ(x, y) is an upper bound

of ε(x, y). Actually, hinge loss has been shown as an

optimal choice among all convex surrogate losses [35].

Accordingly, we also redefine R(x, y) with a penalized

margin 1, as following:

R(x, y) =
∑
ȳ∈Ȳ

I[fȳ(x) > fy(x)− 1]. (5)

Further checking the elements of Eq.4, we can ob-

serve that for a negative label ȳ, it will contribute

nonzero loss to Ψ(x, y) only if it is ranked before the

positive label y. We call such ȳ the violated label since

it violates the order that positive label should be ranked

before negative label. Then each triplet (x, y, ȳ) will in-

duce a loss

L(X, y, ȳ) = ε(X, y) max{0, 1 + fȳ(X)− fy(X)}. (6)

In the cases R(x, y) > 0, by excluding the invio-

lated negative labels from Ȳ , the probability of ran-

domly sampling a violated negative label ȳ is 1/R(x, y),

and thus Ψ(x, y) can be viewed as the expectation of

L(x, y, ȳ).

We minimize the ranking error with stochastic gra-

dient descent (SGD). At the t-th iteration of SGD,

assuming the current model parameters are W t
0 and

wt
k (k = 1 · · ·K), we randomly sample an instance x,

one of its positive labels y, and one of its negative labels

ȳ ∈ Ȳ to form a triplet (x, y, ȳ). If ȳ is a violated label,

then gradient descent is performed aiming to minimize

L(X, y, ȳ) according to:

W t+1
0 = W t

0 − γt
R(x,y)∑
i=1

1

i
(wt

ȳx
> −wt

yx
>), (7)

wt+1
y = wt

y + γt

R(x,y)∑
i=1

1

i
W t

0x, (8)

wt+1
ȳ = wt

ȳ − γt
R(x,y)∑
i=1

1

i
W t

0x, (9)

where γt is the step size. The updated parameters, i.e.,

wy, wȳ and each column of W0 are then normalized to

have a `2-norm smaller than a specific constant C.

From the above equations we can see, R(x, y) should

be calculated in advance, which implies fy(x) should be

compared with fȳ(x) for each ȳ ∈ Ȳ . When the number

of possible labels is large, this procedure can be quite

time consuming. Therefore, we follow the idea in [15] to

use an approximation to estimate R(x, y). Specifically,

at each iteration of SGD, we randomly sample labels

from Ȳ one by one, until a violated label ȳ occurs. If

there are R(x, y) violated labels in Ȳ , we may need

k = |Ȳ |/R(x, y) trails to get a violated label (every k

labels contains a violated label on average). So assum-

ing the first violated label is found at the v-th sampling

step, R(x, y) can be approximated by b|Ȳ |/vc [15].

We first summarize the training procedure in Algo-

rithm 1, and then explain how the positive and negative

labels are separated with the dummy label. We assume

that every instances xi has a dummy label, denoted by
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yi0. In line 7 of Algorithm 1, the sampled label y can

be a positive label of x or the dummy label y0. We con-

struct the negative label set Ȳ depending on the type of

y. If y is the dummy label, then Ȳ consists of all nega-

tive labels of instance x, otherwise, Ȳ contains all nega-

tive labels as well as the dummy label. Notice that there

are only few positive labels for an instance, so y is very

likely to be dummy label. After the training with such

a mechanism, the dummy label will be ranked before

all negative labels while positive labels will be ranked

before both the dummy label and negative labels. So

the dummy label provides a nature threshold to sepa-

rate positive and negative labels. Given an unseen test

instance, with the prediction values on each label, we

can easily select the labels with larger predictions than

that of the dummy label as positive labels.

Algorithm 1 The multi-label classification algorithm

1: Input:
2: training data, parameters m, C and γt
3: Initialize:
4: initialize W0 and wk (k = 1 · · ·K) at random
5: Repeat:
6: randomly sample an instance x
7: randomly select a positive or dummy label y of x
8: Ȳ = all negative labels of x
9: if y is not the dummy label y0

10: Ȳ = Ȳ ∪ {y0}
11: end if
12: for i = 1 : |Ȳ |
13: sample an negative label ȳ from Ȳ
14: if fȳ(X) > fy(X)− 1
15: v = i
16: update W0, wy and wȳ as Eqs. 7 to 9
17: normalize the updated parameters
18: break
19: end if
20: end for
21: until stop criterion reached

3.2 Active Selection

In this subsection, we present the strategy of active

selection based on the previously introduce multi-label

classification model. As stated before, we follow the set-

ting in [10] to iteratively query if a label is positive on

an instance. We denote by D the data set, and divide

it into two parts: the labeled data Dl with Nl instances

and unlabeled data Du with Nu instances. Since we

select instance-label pairs for querying, there will be

some instances partially labeled. For convenience, such

partially labeled instances are also taken as unlabeled

data. In other words, Dl contains only the fully labeled

instances, while Du contains both the unlabeled and

partially labeled instances. We also introduce U(x) to

denote the set of labels that have not been queried for

instance x. So the task in each iteration is to select an

instance x∗ from Du and then select one label y∗ from

U(x∗) to query.

Uncertainty is an effective and mostly used crite-

rion for active learning [12]. In this paper, we will try

to exploit the uncertainty in both the instance space

and label space, and combine it with diversity for ac-

tive selection. In single label learning, a classic imple-

mentation of uncertainty sampling is to query the in-

stance closest to the decision boundary. This strategy

can be easily extend to multi-label learning. For exam-

ple, the average or minimal margin over all labels can be

taken to measure the uncertainty of an instance [24,25].

Recently, a simple uncertainty criterion, named as la-

bel cardinality inconsistency was proposed in [12]. It

measures the inconsistency between the number of pre-

dicted positive labels of an instance and the average

label cardinality on the fully labeled data, and can be

formally defined as:

LCI(xi) = (

K∑
k=1

I[ŷik > 0]− 1

Nl

Nl∑
j=1

K∑
k=1

I[yjk > 0])2,

where ŷik (k = 1 · · ·K) is the predicted labels for in-

stance xi, and I[·] is the indicator function. In [12],

LCI was combined with margin with a tradeoff param-

eter to measure the uncertainty, and has been shown

to be effective. However, with the increase of labeled
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data, the difference of LCI over different instances may

get smaller and smaller, and thus it becomes more dif-

ficult to identify the most uncertain instance based on

the LCI criterion. In this paper, we extend LCI to in-

corporate with diversity, and define a new criterion as

follows:

C1(xi) =

∣∣∣∑K
k=1 I[ŷik > 0]− 1

Nl

∑Nl

j=1

∑K
k=1 I[yjk > 0]

∣∣∣
max{ξ,K − card(U(xi))}

,

(10)

where card(·) counts the number of elements in a set,

and thus K − card(U(xi)) is the number of queried la-

bels of xi. ξ ∈ (0, 1) is a constant to avoid the zero

divisor. The motivation here is that instances with

less queried labels may contain more unknown infor-

mation and should be preferentially queried. As we

want to query the instance with maximum uncertainty

and diversity, the instance x∗ with maximum C1 value

is selected. Note in our experiments, we set ξ = 0.5

and randomly select one instance if multiple instances

achieved the maximal C1 value.

After selecting the instance x∗, we need to decide

which label to query. Since the dummy label stands

for the separating threshold of the positive and nega-

tive labels, the uncertainty of a label y can be naturally

measured by the distance from it to the dummy label,

which is formally defined as:

C2(x∗, y) = |fy(x∗)− fy0
(x∗)| (11)

The pseudo code of the proposed algorithm, termed

AUDI (Active learning based on Uncertainty and Diver-

sity for Incremental multi-label learning), is presented

in Algorithm 2. First, a subset of the data set D is ran-

domly sampled to initialize the labeled data Dl. Note

in the experiments, to be fair, for all algorithms, Dl is

initialized with the same set of fully labeled instances

rather than instance-label pairs. After the initializa-

tion, we apply the Algorithm 1 introduced in the previ-

ous subsection on Dl to train a multi-label classification

model. Then at each iteration of active learning, we se-

lect an instance-label pair (x∗, y∗) according to:

x∗ = argmax
x∈Du

C1(x)

y∗ = argmin
y∈U(x∗)

C2(x∗, y)

and query if y∗ is a positive label of x∗. After that, y∗

is removed from U(x∗) and x∗ is moved from Du to Dl

if it is fully labeled. Since our multi-label classification

model can be trained incrementally, we do not need

to retrain the model from scratch, but only update f

based on the newly labeled data. Note that adding a

label to an instance may affect the rank of all labels on

it, so f is updated on x∗ and all of its labels, instead

of only on the pair (x∗, y∗). This active querying and

model updating process is repeated until enough data

labeled.

Algorithm 2 The AUDI algorithm

1: Input:
2: data set D
3: Initialize:
4: Divide D to Dl and Du

5: train a model f on Dl

6: Repeat:
7: get predictions and labels for instances in Du

with f
8: compute C1(x) for all x ∈ Du as Eq.10
9: select the instance x∗ with maximum C1 value

10: compute C2(x∗, y) for all y ∈ U(x∗) as Eq.11
11: select the label y∗ with minimal C2 value
12: query if label y∗ is a positive one for instance x∗

13: remove y∗ from U(x∗)
14: if |U(x∗)| = 0
15: move x∗ from Du to Dl

16: update the model f with x∗ and its labels
17: end if
18: until the number of queries reached

4 Experiments

4.1 Settings

In the experiments, the following six multi-label ac-

tive learning approaches are compared:
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- Random: the baseline which randomly selects

instance-label pairs.

- 2DAL: the two-dimensional active learning method

proposed in [10], which selects instance-label pairs

with the expected classification error reduction

criterion.

- MML: the mean max loss strategy proposed in [22].

- MMC: the method proposed in [14], which uses the

maximum loss reduction with maximal confidence

as selection criterion.

- Adaptive: the adaptive method proposed in [12],

which combines the max-margin prediction un-

certainty and the label cardinality inconsistency

as the criterion for active selection.

- AUDI: the method proposed in this paper.

Table 1. Statistics on Datasets used in the Experiments

Data # instance # label # feature cardinality

Corel5K 5000 374 499 3.52
Emotions 593 6 72 1.87
Enron 1702 53 1001 3.38
Genebase 662 27 1185 1.25
Image 2000 5 294 1.24
Medical 978 45 1449 1.25
Reuters 2000 7 243 1.15
Scene 2407 6 294 1.07
Yeast 2417 14 103 4.24
Arts 5000 26 462 1.64
Business 5000 30 438 1.59
Computers 5000 33 681 1.51
Education 5000 33 550 1.46
Entertainment 5000 21 640 1.42
Health 5000 32 612 1.66
Recreation 5000 22 606 1.42
Reference 5000 33 793 1.17
Science 5000 40 743 1.45
Social 5000 39 1047 1.28
Society 5000 27 636 1.69

Experiments are performed on 20 data sets, most

of which can be download at the web page of MULAN

project∗. Corel5K [36] contains 5000 images with 374

possible labels, where each image is represented with

a 499-dimensional feature vector. Emotions [37] con-

sists of 593 songs, each of which is represented with

a 72-dimensional feature vector. The task is to pre-

dict the music emotions of songs. Enron is a sub-

set of the Enron email corpus [38], including about

1700 emails, where each email is represented as a 1001-

dimensional feature vector. Genebase [39] is a set of

662 proteins for gene function classification. Image is a

data set for natural scene image classification. It con-

tains 2000 images, each of which is represented by a

294-dimensional [40]. Medical is a data set of clinical

text for medical classification. Each instance is repre-

sented as a 1449-dimensional feature vector. Scene con-

tains 2407 images with 6 possible labels: beach, sunset,

fall foliage, field, mountain and urban. Reuters is a

data set for text categorization. It is a processed ver-

sion of [41] with the method introduced in [42]. Each

document is represented as a 243-dimensional feature

vector by aggregating all the instances in a bag. Yeast

is a data set for predicting the gene functional classes

of the Yeast Saccha-romyces cerevisiae, we use the ver-

sion preprocessed by [43], which contains 2417 genes.

Each gene is represented as a 203-dimensional feature

vector. Yahoo consists of 11 independent data sets,

i.e., Arts, Business, Computers, Education, Entertain-

ment, Health, Recreation, Reference, Science, Social,

and Society. They are collected from “yahoo.com” do-

main [44] for web page categorization. Each of the 11

data sets contains 5000 documents. And 20% to 45%

of the documents have more than one class labels. De-

tailed characteristics of these data sets are summarized

in Table 1, including number of instances, number of

∗http://mulan.sourceforge.net/datasets.html
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Fig.1. Comparison results on 20 datasets with regard to Micro-F1. The curves show the performances of different methods with the
number of queries increasing.

labels, feature space dimensionality and label cardinal-

ity (LC), where LC counts the average number of labels

per instance.

For each data set, we randomly divide it into two

parts with equal size, take one part as test set and the

other part as the unlabeled pool for active selection.

The random data partition is repeated for 10 times,

and average results over the 10 repeats are reported.

At the very beginning of active learning, we randomly

sample 5% instances from the unlabeled pool as initial

labeled data. At each iteration of active learning, one

instance or one instance-label pair is selected by the ac-
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tive learning methods based on their own strategy, and

then added into the labeled data. After 2×m instance-

label pairs queried, we train a classification model on

the labeled data and evaluate its performance on the

holdout test data. The querying process is stopped

if all data are fully labeled or the number of queried

instance-label pairs reaches 20000.

We evaluate the performances of compared ap-

proaches on both micro-F1 and macro-F1, which are

commonly used in multi-label learning [12, 14]. Micro-

F1 computes the F1 measure by considering predic-

tions of all instances on all labels together, while macro-

F1 averages the F1 measure on each label. They are

formally defined as Eqs(12) and (13), respectively.

micro-F1 =
2
∑n

i=1

∑K
k=1 I[yik = 1] · I[ŷik = 1]∑n

i=1

∑K
k=1(I[yik = 1] + I[ŷik = 1])

,

(12)

macro-F1 =
1

K

K∑
k=1

2
∑n

i=1 I[yik = 1] · I[ŷik = 1]∑n
i=1(I[yik = 1] + I[ŷik = 1])

,

(13)

where ŷik denotes the predicted label of the i-th in-

stance on the k-th label, and I[·] is the indicator func-

tion.

To be fair, we use one-versus-all linear SVM (im-

plemented with LIBLINEAR [45]) as the classification

model for evaluating all the compared approaches. For

MMC, the regression model is also implemented with

LIBLINEAR. For AUDI, we use constant step size for

SGD and set m = 100 as default. The other param-

eters are selected via 5-folds cross validation on the

initial labeled data from the following candidate val-

ues C ∈ {1, 5, 10}, γ ∈ {0.01, 0.1}. For the other ap-

proaches, parameters are determined in the same way

if no values suggested in their literatures.

4.2 Comparison Results

We plot the curves of micro-F1 and macro-F1 with

the number of queried instance-label pairs increasing in

Figs.1 and 2, respectively. Note that three approaches:

Random, 2DAL and AUDI, which query instance-label

pairs, are plotted in solid line, while the other three

methods which query instances are plotted in dashed

line.

First, we observe that results on micro-F1 and

macro-F1 are consistent on most data sets. Gener-

ally speaking, methods querying instance-label pairs

are more effective than those query instances, which

is consistent with the results in [10]. This phenomenon

is probably because multiple labels may be correlated,

and thus redundancy of information may exist among

the multiple labels of the same instance. This also ex-

plains why random selection can be better than some

active approaches on some data. Among the methods

querying instances only, Adaptive and MMC tend to be

more effective than MML.

When comparing the proposed AUDI with other

methods, no matter querying instance-label pairs or in-

stances only, our method achieves the best performance

in most cases. Especially on data sets with more labels,

such as Corel5K, Enron and Yahoo data sets, the supe-

riority of AUDI gets more significant. The only special

case is on yeast data set, where AUDI achieves compa-

rable performance with the best baseline on micro-F1,

while is outperformed by MMC and MML on macro-

F1.

4.3 Further Study on LCI

As stated before, the label cardinality inconsistency

criterion may be less discriminative after a number of

queries since the difference of label cardinality between

instances may become very small. Suppose the differ-

ence is measured with the standard deviation of the

label cardinality on all instances. First, we can obtain

the standard deviation based on the ground-truth of

training data, and denote it as LCstd gt. Then, after
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Fig.2. Comparison results on 20 datasets with regard to Macro-F1. The curves show the performances of different methods with the
number of queries increasing.

some instance-label pairs queried, we can also calcu-

late the standard deviation of label cardinality based

on the predictions of the classification model, and de-

note it as LCstd pre. At the beginning stage of active

learning, the numbers of predicted labels on different

instances can be very different, i.e., LCstd pre can be

large, thus we can easily identify the most uncertain

instance as the one with largest LCI. However, with

more and more queries, LCstd pre may get smaller and

smaller, and thus the LCI criterion gets less discrim-

inative. Especially when LCstd pre gets even smaller

than LCstd gt, LCI provides very limited information
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Fig.3. Micro-F1 curve of AUDI and AUDI LCI. AUDI LCI is comparable to AUDI at the beginning, and gets less effective after a few
thousands of queries.
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Fig.4. Standard deviation of label cardinality.

on evaluating the uncertainty of instances.

To validate this hypothesis, we perform a further

empirical study in this subsection. First, we construct a

baseline approach termed AUDI LCI, which is the same

with AUDI except that: AUDI selects instances based

on both LCI and diversity (as Eq.10) while AUDI LCI

considers LCI only. We plot the micro-F1 curves of

AUDI and AUDI LCI in Fig.3, and the LCstd pre curve

in Fig.4 with aligned x-axis. Due to space limitation,

we only present the results on three data sets with typ-

ical results: Health, Reference and Social. In Fig.4,

as expected, the LCstd pre goes down as the num-

ber of queries increases, and finally gets smaller than

LCIstd gt. On the other hand, in Fig.3, AUDI LCI is

comparable to AUDI at the beginning, and gets less ef-

fective after a few thousands of queries. Surprisingly,

we can see that AUDI LCI losses its edge exactly when

LCstd pre is very close to or smaller than LCstd gt.

This observation validates the shortcoming of LCI as

discussed above.

4.4 Distribution of Queried Labels

In multi-label learning, an instance is usually as-

sociated with only a small subset of all labels, and

thus class-imbalance problem is usually suffered from.

Based on such a phenomenon, it is guessed that positive

labels may be more important than negative ones to

train an accurate multi-label classification model, and

it would be interesting to examine the distribution of

labels queried by AUDI. We calculate the percentage

of positive labels among all queried labels by AUDI at

different stages of active learning, and present them in

Table 2. The first column is the percentage of posi-

tive label calculated on the whole training set, while
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the second to fifth columns are calculated after 25%,

50%, 75% and 100% of all queries, excluding the initial

labeled data. It is worthy noting here all queries does

not mean the whole data set, but the queries performed

in our experiments as stated in Section 4.1.

Table 2. Percentage of Positive Labels Among Queried Labels
at Different Stages of Active Learning

Dataset all data 25% 50% 75% 100%

Corel5k 0.009 0.193 0.171 0.151 0.133
Emotions 0.312 0.414 0.356 0.328 0.311
Enron 0.064 0.116 0.128 0.112 0.100
Genebase 0.047 0.072 0.056 0.049 0.046
Image 0.247 0.439 0.382 0.309 0.247
Medical 0.028 0.074 0.049 0.037 0.029
Reuters 0.165 0.263 0.224 0.189 0.165
Scene 0.179 0.408 0.326 0.236 0.179
Yeast 0.303 0.287 0.280 0.286 0.303
Arts 0.063 0.098 0.122 0.116 0.105
Business 0.053 0.081 0.099 0.093 0.084
Computers 0.046 0.071 0.093 0.093 0.085
Education 0.044 0.070 0.099 0.099 0.090
Entertainment 0.067 0.114 0.132 0.119 0.107
Health 0.052 0.088 0.122 0.121 0.109
Recreation 0.065 0.105 0.122 0.113 0.103
Reference 0.035 0.053 0.073 0.076 0.070
Science 0.036 0.053 0.072 0.083 0.079
Social 0.033 0.052 0.070 0.075 0.068
Society 0.062 0.090 0.114 0.109 0.100

As we can see in Table 2, the percentage of positive

labels in the queried labels is usually higher than that

on the whole data set, especially at the early stages of

active learning. The only outlier is yeast data set, on

which, coincidentally, AUDI is less competitive. Ob-

viously, AUDI favors positive label during the active

selection. Given the superior performance of AUDI,

this interesting phenomenon implies that positive labels

may play a more important role in multi-label classifi-

cation. Further, while no special effort is taken to pre-

dict whether the selected label is positive or negative

in our algorithm, it suggests that explicitly exploiting

the possible positive labels may be an interesting future

direction of research on multi-label active learning.

5 Conclusion

An effective classification model along with a good

selection criterion are the key factors of a successful

active learning approach. This paper extends our pre-

liminary research [31], and proposes a new multi-label

active learning approach to iteratively query whether

a label is positive on an instance. First, we present

an incremental model for effective multi-label classifi-

cation by incorporating label ranking with a threshold

mechanism. Based on the model, we then propose to

combine uncertainty and diversity as the criterion to

select the most valuable instance-label pairs to query.

The results of our extensive experiments demonstrate

the superiority of our algorithm. In the future, we will

try to study other active query strategies based on the

label ranking model. Also, our experimental observa-

tion suggests that it is worthy to pay more attention on

positive labels in multi-label active learning.
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