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a b s t r a c t 

The efficient and accurate access to the aerodynamic performance is important for the design and op- 

timization of supercritical airfoils. The aerodynamic performance is usually obtained by using compu- 

tational fluid dynamics (CFD) methods or wind-tunnel experiments. But the computations of CFD are 

very time intensive and expensive, and the prior knowledge in wind-tunnel experiments plays a decisive 

role in engineering. Though many surrogate methods were proposed to alleviate the costs of these tradi- 

tional approaches, most of them can only calculate the low-dimensional aerodynamic performance, and 

is not able to provide the accurate prediction of transonic flow fields for supercritical airfoils. Since the 

flow fields are equipped with its own discipline as a physical system in fluid dynamics, it is therefore 

possible to learn this discipline via data-driven machine learning approaches. Deep learning is witness 

to expansive growth into diverse applications due to its immense ability to extract essential features 

from complicated physical systems. Generative adversarial networks (GANs) as a recent popular method 

in deep leaning are capable of efficiently capturing the distribution of training data. In this work, we 

proposed a surrogate model, ffsGAN, which leverage the property of GANs combined with convolution 

neural networks (CNNs) to directly establish a one-to-one mapping from a parameterized supercritical 

airfoil to its corresponding transonic flow field profile over the parametric space. Compared with the 

most existing surrogate models, the ffsGAN is superior in efficiently and accurately predicting the high- 

dimensional flow field rather than the low-dimensional aerodynamic characteristics. The ffsGAN method 

is first trained using 500 airfoils that sampled based on RAE2822. The flow fields are then predicted 

for unseen airfoils to evaluate the generalization of the model in terms of prediction accuracy. An in- 

vestigation of the effects of various hyper-parameters in the network architectures and loss functions is 

performed. The experimental results show that ffsGAN is a promising tool for rapid evaluation of detailed 

aerodynamic performance. The elaborate flow field predicted by ffsGAN is possible to be considered in 

airfoil design to further improve the design and optimization quality in the future. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Aerodynamic performance, as the primary characteristics in

ing design, is related to the geometry of airfoil profile, velocity,

tmospheric density, flight attitude and other operating conditions.

upercritical airfoils are especially useful for improving the aerody-

amic performance in transonic range, reducing drag and improv-

ng position control [1] . However, the aerodynamic performance
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f supercritical airfoils is extremely sensitive to the shape of air-

oil and the operating conditions. Therefore, the effective access to

erodynamic performance of supercritical airfoils is crucial in wing

esign. 

Traditionally, wind tunnels are used to evaluate the aerody-

amic performance of airfoils, but the results strongly depend on

rior knowledge of designers and only part of the aerodynamic

haracteristics is considered on the surveys [2–6] . Furthermore, the

esign process is time-consuming and costly. With the develop-

ent of computer technologies and numerical simulation methods,

igh-fidelity computation fluid dynamics (CFD) is applied to solve

https://doi.org/10.1016/j.compfluid.2019.104393
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2019.104393&domain=pdf
mailto:xuejun.liu@nuaa.edu.cn
https://doi.org/10.1016/j.compfluid.2019.104393


2 H. Wu, X. Liu and W. An et al. / Computers and Fluids 198 (2020) 104393 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

d  

u  

t  

s  

m  

o  

m  

b

 

p  

a  

b  

s  

s  

e  

t  

t  

m  

fi  

a

 

b  

w  

t  

t  

o  

t  

k  

p  

m  

f  

C  

g  

p  

fi  

e  

p  

a  

d  

s

 

d  

w  

o  

a  

p  

i  

f  

S

2

2

 

o  

T  

z  

f  

d  

t  

u  

s  

T  

o  
the governing equations of aerodynamics and significantly reduces

the dependency on wind tunnel experiments in wing design. How-

ever, the methods of CFD need abundant computing resources for

extensive numerical computation. In engineering, surrogate mod-

els, also called response surface models or meta-models, were pro-

posed to increase the efficiency in the evaluation of aerodynamic

performance for airfoils as an auxiliary of the costly CFD computa-

tion. The existing surrogate models can be divided into three cat-

egories [43] : multi-fidelity models, reduced-order models (ROMs)

and data-driven models [7] . The first two categories are proposed

based on physical models and are precise and efficient under cer-

tain conditions. Nevertheless, they are sensitive to model parame-

ters which may lead to bad performance in robustness. By contrast,

data-driven models are able to capture the hidden characteristics

of data via the learning process involving machine learning algo-

rithms. This process is highly flexible and can be further general-

ized to unseen data. Therefore, the data-driven models are widely

utilized in the surrogate-based optimization design of airfoils. Our

work in this paper mainly focuses on data-driven surrogate mod-

els. 

At present, data-driven models primarily rely on regression

methods that modeling the relationship between the shape of air-

foil profiles and the aerodynamic characteristics. The commonly

used data-driven surrogate models, such as polynomial response

surface model [8] , artificial neural network [ 9 , 10 ], radial basis func-

tion [11] , support vector regression [12] , Kriging model [ 13 , 14 , 49 ],

and multiple output GP (MOGP) [15] , etc., have been widely used

in optimization design for rapid prediction of aerodynamic charac-

teristics. However, most of the current surrogate models are lim-

ited to predict the low-dimensional physical quantities, such as

lift coefficient, drag coefficient, moment coefficient and pressure

distribution, which reflect the average aerodynamic performance

for a single characteristic in the flow field and cannot depict the

precise and complete flow field structures. Considering the flow

field structures, including vortex, boundary layer, wake, shock wave

and so on, are expected to wholly enhance the performance of

optimization design of airfoils, we aim to build a surrogate to

rapidly predict these detailed physical characteristics of flow field

structures. In general, accurate and efficient prediction of the de-

tailed flow field structures plays an important role in improving

the quality of airfoil design. However, the structures of flow field

are most available with the costly wind-tunnel experiments and

CFD simulations, and can not be obtained efficiently and accurately

from most surrogate models. Although some approaches combin-

ing proper orthogonal decomposition (POD) and data-driven sur-

rogates are able to precisely predict smooth flow field, they are

incapable of handling flow field with shocks [49] and cannot be

considered in the design and optimization of supercritical airfoils. 

From the viewpoint of machine learning, most current surro-

gate models are “shallow” models, which are only able to fit a

small subset in the original function space and are limited in

fitting the whole complex function space. “Shallow” models are

therefore lack of generalization for the data far away from the

training data. For this reason, large numbers of data are usually

needed in the training process to enhance the model generaliza-

tion for complex problems. Deep learning approaches provide a

possibility to handle these problems in a “deep” way. The suc-

cessful applications in the area of computer vision have recently

drawn researchers’ attention to deep learning methods in the field

of structure mechanics and fluid mechanics [ 16 , 17 ]. Due to the

ability of convolutional neural network (CNN) in automatically ex-

tracting features from images, Zhang et al. utilized CNN to ex-

tract the geometric features of the two-dimensional airfoil profiles.

Then the features consisting of the Mach and Reynolds are fed into

a fully connected neural network to predict aerodynamic charac-

teristics [18] . Miyanawala and Jaiman proposed an efficient CNN
odel to predict the coefficients of cylindrical wake flow field un-

er different two-dimensional geometric shapes [19] . Sekar et al.

sed CNN to extract the characteristics of pressure coefficient dis-

ribution in the inverse design and predict its corresponding airfoil

hape [20] . The studies above have shown that the deep leaning

odels are superior in solving non-linear problems. Nevertheless,

nly the average aerodynamic characteristic is predicted in these

ethods, and the high-dimensional structure of flow field has not

een considered yet. 

Generative adversarial networks (GANs) [21] have been pro-

osed to generate various types of data, and innovated in theory

nd model structure [ 22 , 23 , 28–37 ]. Many variants of GANs have

een widely used in image processing, including text-to-image

ynthesis [ 38 , 39 ], image-to-image translation [ 35 , 40 , 41 ] and image

uper-resolution [42] . In light of the superiority of GANs in mod-

ling the generation of images, the whole flow fields displayed in

he form of images can be modeled by GANs. In this work, we aim

o construct a deep conditional generative adversarial network to

odel the one-to-one mapping between the shape of airfoil pro-

le and the image of elaborate flow field structure based on the

erodynamic simulation data. 

In this work, we devise a generative adversarial network com-

ined with CNN for the efficient prediction of flow field structure,

hich is called ffsGAN for abbreviation. This model is able to au-

omatically generate precise and high resolute images to elaborate

he whole structures of transonic flow fields over a specific range

f supercritical airfoils. We investigate the selection of loss func-

ion among several options during the learning of the model. The

ernel size of the embedded CNN is also examined for optimal

erformance. Using CFD simulation data, we demonstrate that our

odel achieves the accurate prediction of the flow field structures

or given airfoil profiles. Taking the place of the time-consuming

FD simulation and the expensive wind-tunnel experiments, our

enerative model can be taken as a surrogate model for rapidly

redicting the detailed flow field structures for given airfoil pro-

les, rather than the average aerodynamic performance of sev-

ral characteristics. The generated images, which contain abundant

hysical characteristics in the structure of flow field, can be set to

ccurately access the aerodynamic performance. Therefore, we also

iscuss the potential application of our model to the elaborate de-

ign of airfoils. 

The structure of this paper is organized as follows. A brief

escription of the problem is given in Section 2 , and following

ith our surrogate model in which considering the related meth-

ds including multilayer perceptron, convolution neural network

nd generative adversarial network. In Section 3 , a series of ex-

eriments are conducted and the effects of the hyper-parameters

n CNN are discussed. The extensive analyses on the objective

unction are also considered. Concluding remarks are provided in

ection 4 . 

. Methodology 

.1. Formulation of the problem 

We work on evaluating steady flow field structures over a range

f supercritical airfoils given a defined Mach and Reynolds number.

he Hicks-Henne (HH) method [25] is used for airfoil parameteri-

ation due to its capability of constructing a smooth airfoil with a

ew design variables. The upper and lower surfaces of an airfoil are

esigned as a 14-dimensional vector. It commonly takes one hour

o obtain the numerical results of the flow field around one airfoil

sing CFD simulation. The computed results can then be explicitly

hown in the form of images using the post-processing software

ecplot. In contrast, our surrogate model is aim to take the place

f this time expensive process and realize an efficient one-to-one
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Fig. 1. The flowchart for the comparison between CFD simulation and the proposed surrogate. 

Fig. 2. A MLP with one hidden layer. 
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apping from a given supercritical airfoil to its corresponding flow

eld structure shown in images. The flowchart for the comparison

etween CFD simulation and our surrogate is shown in Fig. 1 . The

onstruction of the proposed surrogate model is elaborated in the

ubsequent sections. 

.2. Multilayer perceptron 

Multi-layer perceptron (MLP) is the most typical model of ar-

ificial neural networks. It is made up of neurons, which are con-

ected together in a complex manner to form a network. Neurons

re the basic elements of the MLP, performing mapping from the

nput to the output defined in the regression problem. An example

f the model is shown in Fig. 2 . For the neurons in one layer, the

um of the weighted inputs is computed at the presence of a bias,
nd is then transferred through an activation function (e.g. sigmoid

unction) to obtain the output. The calculation from the weighted

nputs to the hidden neuron h j can be denoted as 

 j = 

R ∑ 

i =1 

w i, j x i + b j (1) 

here x i is the corresponding input data, w i, j is the weight con-

ecting the input layer neuron i = (1 , 2 , ..., R ) and the hidden layer

euron j = (1 , 2 , ..., N) , b j is the bias in the hidden layer, and R and

 are the total numbers of neurons in input and hidden layers, re-

pectively. 

Therefore, the output is obtained by transferring the input sig-

al through a nonlinear activation function σ ( · ). The sigmoid

unction is a commonly used activation function as shown below,
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Fig. 3. Typical schematic of convolution neural networks. 

Fig. 4. Typical convolution operation in the CNN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Typical pooling operation in the CNN. 
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o h j = σ
(
h j 

)
= 

1 (
1 + e −h j 

) (2)

In the output layer, the output of the neuron is obtained as fol-

lowing, 

y k = σ

( 

N ∑ 

j=1 

w j,k o 
h 
j + b k 

) 

(3)

where w j, k is the weight connecting the hidden layer neuron j =
(1 , 2 , ..., N) and the output layer neuron k = (1 , 2 , ..., S) , and b k and

S are the bias and the total number of neurons in the output layer,

respectively. The weights and biases are the parameters of MLP and

are usually optimized by SGD (Stochastic Gradient Descent), Adam

(Adaptive moments) and so on. 

2.3. Convolution neural network 

The MLPs have been widely used in various fields, such as pat-

tern recognition [44] , classification [45] , function approximation

[46] , signal processing [47] and so on. However, they are limited

in images processing in the field of computer vision for the rea-

son that MLPs have too many parameters (the weights and bi-

ases) to estimate. Hence, Lecun et al. [27] proposed the convolu-

tional neural network with significantly fewer parameters to allevi-

ate this difficulty by introducing convolutional kernels. CNNs nor-

mally comprise several types of layers, such as the convolutional

layer, the pooling layer and the fully connected layer. A typical

schematic of the CNN architecture is shown in Fig. 3 . 

In convolutional layer, the convolution operation leverages two

ideas that play an important role in CNN: sparse interactions and

parameter sharing. The sparse interactions are accomplished by

making the kernels (also known as filters) smaller than the input

in spatial dimensions, typically in processing the images. The pa-

rameters in kernels are shared at every position in one layer and

can be revisited. 

Similar to MLPs, the weights of the kernels make up an elemen-

twise scalar product whose area is connected to the input volume,

known as the receptive field. In each convolution layer, the scalar

product operation performed for one kernel is shown in Fig. 4 . The

scalar product mentioned above is then transferred by the non-

linear activation maps σ ( · ). The two operations aforementioned

form one convolutional layer and the corresponding output o i, j for
ne kernel can be calculated as follows: 

 i, j = σ

( 

l 1 ∑ 

m =0 

l 2 ∑ 

n =0 

C ∑ 

c=1 

w m,n,c . I i + m, j+ n,c 

) 

(4)

here w is the kernel with a size of l 1 × l 2 and I is the input image

ith length L , height H and channel C . The spatial dimensionality

f the output volume in the convolution layer can be altered using

ifferent sizes of the kernels with two operations: the stride and

he padding. 

In addition to the convolutional layer, the pooling layer is an-

ther importance module of CNNs. The pooling layer makes a spa-

ial reduction of the dimensions for a given input, called down-

ampling. In all cases, pooling helps to make the representation ap-

roximately invariant to small translations of the input. The pool-

ng layer generally follows a convolution layer and the output of

onvolution layer is scaled in dimensionality by the specified pool-

ng operation: maximum pooling or average pooling. A maximum

ooling operation with the kernel size of 2 × 2 is shown in Fig. 5 .

ully connected layer is exactly the same as the network in MLP

n which the neurons are full connected between neighboring lay-

rs. Similar to the mechanism in the operations of convolution and

ooling, deconvolution and unpooling perform the corresponding

nverse operations. 

.4. Generative adversarial network 

Generative adversarial network (GAN) is a novel generative

odel [21] and can be viewed as the following two-player mini-

ax game. One of them is called the generator which creates sam-

les that are intended to come from the same distribution as that

f the real data. The other player is the discriminator that deter-

ines whether the samples are from the generator or not. The pro-

ess is shown in Fig. 6: 

The loss of GAN expressed in Fig. 6 can be calculated as follows,

in 

θG 
max 
θD 

= E 

x ∼P data 

[ log (D (x )) ] + E 

z 
[ log (1 − D (G (z))) ] (5)

here P data is the underlying distribution of the real data x and z

s a variable sampled from some simple prior distributions, such

s Gaussian or uniform distributions. Since GAN is a minimax

ame, the discriminator and the generator work iteratively to carry

ut minimization and maximization on cross-entropy respectively.
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Fig. 6. The flowchart of GAN. 

Fig. 7. Conditional generative adversarial network. 
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oth of the generator and the discriminator can be represented

y deep neural networks. The generator network is defined by a

unction G that takes z as input and owns its parameters θG . The

istribution of the generated samples P G (z) is expected to be sim-

lar to P data in the desired setting of generator network. Similarly,

he discriminator network with parameter θD is implemented as a

unction D that is fed with x or G ( z ). The discriminator is designed

o maximize the probability of assigning the correct label to both

enerated samples and samples from the training data. The goal of

he minimax game is to find the Nash Equilibrium by minimizing

he function in Eq. (5) with respect to G and maximizing the func-

ion with respect to D alternately. If both the generator and dis-

riminator networks are of sufficient capacity, we have G (z) ∼ P data 

ith given random input z. In other word, the output of dis-

riminator network is 1/2 when deciding whether the input is x

r G ( z ). 

Following the original GAN, two effective variants of GAN were

roposed. DCGAN combined the GAN framework with deep convo-

utional neural networks for generating high quality images [22] .

t has been shown that DCGAN is superior in the problems involv-

ng image processing. A conditional version of generative adversar-

al network (cGAN) was introduced to generate images conditioned

n class labels [23] . The cGAN extended the original GAN from an

nsupervised method to a supervised one. The structure of cGAN

s shown in Fig. 7 , in which the noise z and the class label y are

ed to the generator and the input of the discriminator is also con-

itioned on the class label y. Thus the objective function of cGAN
s 

in 

θG 
max 
θD 

= E 

x ∼P data 

[ log (D (x | y )) ] + E 

z 
[ log (1 − D (G (z| y ))) ] (6) 

.5. ffsGAN 

In this work, we combine cGAN with the deep structure of

NN and present a variant of GAN to build an efficient one-to-

ne mapping from a given supercritical airfoil to its correspond-

ng flow field structure. The construction of our surrogate includes

wo phases, the training phase and the test phase. In the training

hase, the parameterized profiles and the corresponding images

f flow field structure are jointed to form the training data. For

earning the model, the parameterized airfoil profiles represented

s vectors are fed to the generator, while the generated images

nd the corresponding real images conditioned on their parame-

erized vectors are jointed as the input of the discriminator. In the

est phase, the images of flow filed structures are generated by the

earned generator. The detailed flowchart is shown in Fig. 8 . 

Some previous works combined auto-encoders (AEs) with CNNs

o predict the flow field structure around airfoil [ 24 , 50 , 51 ]. Both AE

nd GAN belong to generative models. The AEs generate data by

ssuming low dimensional latent variables which capture the real

eatures of data. In these works, AEs were solved by only consider-

ng the reconstruction errors. In contrast, the mechanism in GANs

s to fulfill the process that the generated data match the distri-

ution of the original images. Therefore, in ffsGAN we construct

he loss function combing the minimax objective function in GANs

nd the reconstruction error, and this is expected to achieve more

ccurate results. 

For a given data point (x, y), it contains a parameterized su-

ercritical airfoil represented as a 14-dimensional vector y, and its

orresponding pressure profile illustrated as image x. [40] demon-

trated that omitting the adversarial loss generate the related tar-

et images, while the details are hard to recognize. On the other

and, omitting the L1 loss (or identity loss) gives realistic images,

ut unrelated to the given source image. So here we define the loss

unction as below, 

in 

G 
max 

D 
Loss (G, D ) + 

λ

MN 

|| G (y ) − x | | 1 (7)

hich consists of both the adversarial loss and the L1 loss. 

In cGAN, the noise z and the one-hot labels y are concatenated

s the input to the generator and the generation process is thought

f as a one-to-many mapping. The noise z models the variability

mong samples within the same class. The label y is encoded in

he one-hot label in classification problem. In contrast, our model
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Fig. 8. The detailed flowchart of our surrogate. (a)-The training phase, in which the parameterized airfoil profile shown as a vector is the input of the generator. The 

generated and the real images of flow field structure, and the vector are jointed as the input of the discriminator. (b)-The test phase, in which the parameterized airfoil 

profile is fed to the trained generator, the image of the detailed flow field structure is obtained finally. 
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is aimed to constructing a one-to-one mapping from an airfoil pro-

file to its corresponding flow field structure, and the noise z is

therefore removed entirely. The optimization of minimax function

can be performed with respect to the generator and the discrimi-

nator iteratively. At the step for optimizing the generator, the loss

function is 

Los s G = E y [ − log (D ( G( y ) | y )) ] + 

λ

MN 

E (x,y ) ∼P r (x,y ) || G (y ) − x | | 1 (8)

where y is a uniformly distributed variable whose upper and lower

bounds depend on the design space of the airfoil. And P r (x, y ) de-

notes the joint distribution of x and y. M and N are the length

and height of the image, respectively. The first term in Eq. (8) is

a cross-entropy between the distribution of the generated and the

real images. This loss function enables the networks to extract the

underlying features of images in an unsupervised manner and tries

to fool the discriminator network by generating a well predicted

flow field structure. The second term is the scaled L1 loss (or iden-

tity loss) over the whole image, and is used to measure the dif-

ference between generated and the real images. λ is the hyper-

parameter that balances the cross-entropy and L1 loss, and needs

to be finely tuned. The term of MN is to average the L1 loss for

each pixel. 

The loss function for optimizing the discriminator is defined as

follows: 

Los s D = −E (x,y ) ∼P r (x,y ) [ log (D (x | y )) ] − E y [ log (1 − D (G (y ) | y )) ] (9)

Minimizing Eq. (9) with respect to the discriminator is to dis-

tinguish the real flow filed image from the generated flow field

image. The loss functions of Eq. (8) and Eq. (9) are optimized iter-

atively with respect to the generator and the discriminator respec-

tively. The effect of the two terms in Eq. (7) will be investigated in

Section 3 . 
.6. Configuration of neural networks 

In light of the consideration above, we aim to build ffsGAN

ombined with CNNs to predict the detailed flow field structure

rom a given airfoil profile. The representation of the airfoil is

rucial in airfoil design. It not only determines the resource con-

umption and computational efficiency during the design, but also

mpacts upon the smoothness and validity of the airfoil profile.

mportantly, airfoil parameterization decides whether there is a

eaningful optimum scheme in the design space and whether the

ptimum can be found by the optimization algorithm. Although

any previous works successfully applied CNN to the airfoil pro-

le images for automatic features extraction, we think this intro-

uced more parameters in the model and leaded to more com-

utations for working out the model. Also, using images to repre-

ent airfoil makes it difficult to search for the optimum scheme in

irfoil design due to the high dimensionality of the design space.

or all these reasons, we adopt the widely used Hicks-Henne (HH)

ethod to parameterize the airfoil profile. The airfoil is repre-

ented in a14-dimensional vector which is taken as the input of

ur model, and the corresponding output is the image of the flow

led structure obtained from the CFD simulation and the post-

rocessing tool Tecplot. 

Under this data representation strategy, the input of genera-

or is the 14-dimensional vector, y, and the output is the corre-

ponding image. The structure of the discriminator is the same as

he original cGAN with two inputs x and y. In Fig. 9 we show

he overview architecture of the generator and the discriminator

or the ffsGAN. The generator and the discriminator both contain

 convolution/ deconvolution layers without the pooling layers or

he fullyconnected layers. The convolution layer in the discrimina-

or extracts the underlying features of the image and the decon-

olution layer in the generator fulfills the transformation from an

irfoil to its corresponding flow field image. 
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Fig. 9. Schematic diagram of the overall architecture of ffsGAN. 
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The property of the invariance to local translation in pooling

ayer is useful if we care more about whether some feature is

resent than exactly where it is. However, the locations of features

re importance as well for modeling the elaborate flow field struc-

ure. Thus, the pooling operation is not appropriate here anymore.

dditionally, if the features are transferred to the fullyconnected

ayer, the structure information may be damaged. We therefore re-

ove the fully connected layers as well. The kernel size in the con-

olution layers and deconvolution layers is set as 2 × 2 or 3 × 3

hich is the general setting in the field of computer vison (CV).

ompared with the larger kernel size, such as 7 × 7, the small ker-
Table 1 

Detailed description of the generator and discriminator architectures

Generator Disc

Kernel Filters Stride Padding BN Activation Kern

3 × 3 1024 2 0 Yes Relu 2 ×
2 ×

3 × 3 512 2 0 Yes Relu 2 ×
2 × 2 512 2 0 Yes Relu 2 ×
2 × 2 256 2 0 Yes Relu 2 ×
2 × 2 256 2 0 Yes Relu 2 ×
2 × 2 256 2 0 Yes Relu 3 ×
2 × 2 3 2 0 No Tanh 3 ×
el size of 3 × 3 will get the same scale of receptive field with a

eeper network, which is helpful for enhancing the model capacity

nd model depth. At the same time, the number of parameters in

he whole network is reduced. For the sake of efficiently extracting

he spatial features in images, the filters (or channels) that repre-

ent the number of kernels need to be large enough. To demon-

trate the goodness of the chosen network structure, we also in-

estigate the influence of the various kernel sizes in the following

ections. 

For a more detailed description of the model settings see

able 1 . 
. 

riminator 

el Filters Stride Padding BN Activation 

2 32 2 0 Yes LeakyReLu(0.2) 

2 32 2 0 Yes LeakyReLu(0.2) 

2 64 2 0 Yes LeakyReLu(0.2) 

2 128 2 0 Yes LeakyReLu(0.2) 

2 256 2 0 Yes LeakyReLu(0.2) 

2 512 2 0 Yes LeakyReLu(0.2) 

3 1024 2 0 Yes LeakyReLu(0.2) 

3 1 2 0 No Sigmoid 
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Fig. 10. Sampled training and test airfoils. 

Fig. 11. Comparison of the pressure coefficient distributions for the RAE 2822 air- 

foil, Ma = 0 . 73 , α = 2 . 79 ◦, Re = 6 . 5 × 10 6 , between the experimental data of Case 9 in 

[26] and CFD values. 
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Fig. 12. Example of resizing th
. Experiment and analysis 

.1. Datasets 

In order to train the proposed generative model, we sample 516

irfoils with HH method from the modified RAE2822. The training

nd test airfoils are presented in Fig. 10 including 500 training air-

oils in yellow and 16 test airfoils in red. Especially, 4 airfoils in

reen are randomly selected from the training airfoils to demon-

trate the fitting capacity of the model. Since the test airfoils have

ot been seen by the model during the training phrase, they are

sed to validate the generalization of the model. 

The corresponding pressure profiles for the sampled airfoils

shown in Fig. 10 ) are generated under the fixed physical condition

n which the Reynolds number Re = 6 . 5 × 10 6 , the Mach number

a = 0 . 73 and the angle of attack α = 2 . 79 ◦. The mesh plays an

mportant role to assess the aerodynamic performance in the res-

lution and accuracy. According to the experiments in ref [48] , we

hose the same mesh with 53,756 elements. The validation for the

eterministic case was performed by comparing CFD results with

he experimental data for Case 9 from Cook et al. in [26] . The sur-

ace pressure-coefficient showed good agreement with the compu-

ational data (from CFD) in Fig. 11 , with the small discrepancies oc-

urring around the shock wave. In this condition, the correspond-

ng value of y + is calculated as 3. The flow fields are obtained

y solving the Reynolds Averaged Navier–Stokes (RANS) equations

tilizing the finite volume method, for which the Spalart-Allmaras

urbulence model is employed. The obtained flow field structures

re transferred to images using Tecplot. Thus, the training sets con-

ain the input (profile parameters of the supercritical airfoils) and

he output (images of pressure profiles). The resolution of the raw

ressure profiles images are all of 1045 × 929. For efficient com-

utation and clear display, the images are resized to 224 × 224 by

utting out the uninformative parts and keeping the parts of most

nterests. One example of the process for image resizing is shown

n Fig. 12 . 

.2. Results and discussions 

The implementation of ffsGAN is based on the Pytorch code

f cGAN. The deep learning models are sensitive to parameters,

uch as number of layers, filters size, and so on. In model training,
e pressure profile image. 
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Fig. 13. The average values of the MAE between the generated and real images in 

training set. 
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he influences of these parameters usually need to be investigated

n order to select the appropriate network with high accuracy. In

his paper, we especially examine the choices of loss function, the

yper-parameter λ, the kernel size and the number of CNN layers. 

.2.1. The influence of the hyper-parameter λ
Mean absolute error (MAE) is commonly used to quantify the

ifference between the predicted and the true values in accuracy

alidation. The lower value of MAE, the better performance the

ethod achieves. The metric of MAE in our work is set to calculate

he average difference of the pixel points between the generated
ig. 14. Comparison of the images of pressure profiles from training set. (a)-row and (b)-

he images from the left to right are generated with three different loss functions: adver
nd real images. The computation of MAE is as follows, 

AE = 

1 

m 

m ∑ 

i =1 

| ( y i − ˆ y i ) | (10) 

here, y i and ˆ y i represent the i th pixel intensities in the generated

nd the real image, respectively and m is the number of pixels of

he image. 

To demonstrate the influence of the hyper-parameters λ in

q. (7) , we apply the MAE metric to quantitatively evaluate the

odel performance for different settings of λ. The hype-parameter

is the scaling factor which is to balance the importance of the 

wo terms, cross-entropy and L1 loss. Thus, it needs to be finely

uned. We choose λ among [5, 150] with interval of 5 and then

he MAEs are calculated over the training set to quantitatively eval-

ate the performance for the 30 different values of λ. The results

re shown in Fig. 13 , the highest accuracy is reached at λ= 110.

owever, the values of accuracy do not show significant difference

ctually when λ is beyond 25 since there is no visual difference

mong results obtained from these λ. In practice, when we look

or the optimal value of λ, we generally test λ increasingly from

ower values and we may first find 50 and stop testing since the

ccuracy is acceptable. For this consideration, we choose the value

f 50 for λ in the following studies. 

.2.2. The choice of the loss function 

To demonstrate which components of the loss function in

q. (7) are important to the performance, we run ablation studies

o isolate the effect of the L1 term and the adversarial term. The

redicted results are shown in Figs. 14 and 15 where two training

amples and two test samples are displayed, respectively. For each

ample, we show the prediction for three types of loss functions,

dversarial + L1, L1 and adversarial. It can be seen from these fig-

res that using L1 or adversarial loss alone gives inaccurate results.

1 loss leads to blurry and incomplete images. Especially, the im-
row represent the generated images from two different airfoil profiles respectively. 

sarial + L1, L1 and adversarial, respectively. 
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Fig. 15. Comparison of the images of pressure profiles from test set. (a)-row and (b)-row represent the two generated images from different airfoil profiles respectively. The 

images from the left to right are generated with three different loss functions: adversarial + L1, L1 and adversarial, respectively. 
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i  
portant features (high pressure) around the leading edge of the air-

foil profile get lost in prediction. Results with the adversarial term

loss alone (setting λ= 0) depict the whole features, but give much

sharper images. In this case, since the loss does not penalize the

deviation between the generated and the real images, it only cares

that the generated image looks realistic. In our surrogate, the ob-

jective function that combines the two terms with the weight λ
addresses these artifacts (shown in the leftmost column). Clearly,

the loss measures the quality of the generated image in terms of

two aspects: firstly, the adversarial term helps to match the distri-

bution between the generated and the real images; secondly, the

L1 term encourages the generated image to be close to the real

image. 

3.2.3. The influence of the elements in networks 

In this section, we compare our surrogate with the following

four more networks of different structures to demonstrate the gen-

eralization of our model. 

Case 1: medium (256) consists of 6 layers with medium kernels

(4 × 4, 5 × 5, 6 × 6) and the maximum number of kernels

is 256. 

Case 2: medium (1024) consists of 6 layers with medium ker-

nels (4 × 4, 5 × 5, 6 × 6) and the maximum number of

kernels is 1024. 

Case 3: large (256) consists of 5 layers with large kernels (7 × 7,

8 × 8, 9 × 9) and the maximum number of kernels is 256. 

Case 4: large (1024) consists of 5 layers with large kernels

(7 × 7, 8 × 8, 9 × 9) and the maximum number of kernels

is 1024. 

Cases 1 and 2 use medium-sized kernels while Cases 3 and 4

use large-sized kernels. The number of kernels in Cases 1 and 3

are less than those in Cases 2 and 4. The detailed structures of the

networks for the four cases are exhibited in appendix. 
For a test sample, Fig. 16 shows the real image compared with

he images generated from the four networks and our model re-

pectively. As shown in Fig. 16 , the number of kernels affects the

uality of generation. The first two generated images (in Cases 1

nd 3) in upper panel are more blurry than the others. However,

he first two generated images (in Cases 2 and 4) in lower panel

re more elaborate compared with the images in Cases 1 and 3.

his owes to the less parameter of networks in Cases 1 and 3 than

hat in Cases 2 and 4. So, the more parameters equip in network,

he better quality of the generation is. However, with the increase

f the number of parameters, more storage space is required. Com-

ared with the alternative four cases, the network in our surrogate,

ith 7 layers, smaller kernels (2 × 2, 3 × 3) and more kernels

1024), has moderate number of parameters. At the same time,

he training time is also a critical factor for model selection. As

hown in Table 2 , though the images generated in Cases 2 and 4

re smoother than that in our surrogate, the training time in Cases

 and 4 is 6 and 9 h, respectively, which are longer than that of

ur surrogate, 3 h. Furthermore, the prediction accuracy is calcu-

ated to demonstrate the generalization of the models. The average

alues of the MAE for the 16 test samples are shown in Fig. 17 .

otice that the MAE in Case 3 is much higher than the others and

here is no significant difference among Case 2, Case 4 and our

urrogate. This indicates that our surrogate achieves great general-

zation compared to the models with more parameters. Consider-

ng the training time, storage space and the accuracy, our model is

uperior to the four alternatives. 

.2.4. Overall validation of ffsGAN 

In this section, we present the overall validation of our surro-

ate by examining the convergence process and the prediction ac-

uracy in both training and test data sets. With the aim to visual-

ze the iteration process, the convergence curve for model training

s shown in Fig. 18 . It can be seen that the process converges at
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Table 2 

The training time for the four cases and our surrogate. 

Case Medium (256) Medium (1024) Large (256) Large (1024) Our surrogate (small kernel size) 

time 3 h 6 h 3.5 h 9 h 3 h 

Fig. 16. Comparison of the five generated images of pressure profiles for the structures of networks in the four cases and our surrogate. The real image is exhibited for 

comparison. 

Fig. 17. The average values of MAE for the 16 test samples. Our surrogate is com- 

pared with the alternative four cases. 
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Fig. 18. The convergence curve for the training set. 
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bout epoch 50 and the descending of loss at epoch 100 is due to

he decay of learning rate. Although the generated image shown in

poch 50 is blurry, the overall flow structure is almost obtained.

t epoch 200, the generated image is closed to the real image and

he images are finely tuned in the latter iterations. 

We investigate the fitting capacity and the generalization ability

f the surrogate in the following part. Four airfoils are randomly

elected from the training samples to access the fitting capacity.

he generated and the real images are shown in Fig. 19 (a) and

b). As seen in the figure, the generated are close to the real im-

ges demonstrating the high fitting capacity of our model. In or-

er to show the generalization of our method, 8 airfoils are ran-

omly sampled from the test set. The validation results are shown
n Fig. 20 (a, b, e and f). It can be seen that our model also achieves

igh accuracy on the test data even though the generator network

ave never seen the sampled airfoils in the training process. The

agnitude of pressure variables in the generated images has a

reat consistency with the real images. In addition, the absolute

ressure error between the generated and the original images are

hown in Figs. 19 (c) and 20 (c, g) for the training and the test

amples, respectively. The generated images of the flow fields show

 good match with the real images in spite of the slight discrepan-

ies occurring around the shock wave. For an elaborate comparison

f the spatial structure between the real and generated, the pres-

ure contours of the images are shown in Fig. 19 (d) and Fig. 20 (d,

) for the training and test samples respectively. It is obvious that
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Fig. 19. Comparison of the images of pressure profiles for 4 randomly-chosen airfoils from training set. (a)-row: real images; (b)-row: generated images by ffsGAN; (c)-row: 

the absolute pressure error between the generated and the original images; (d)-row: the comparison of the pressure contours between the original images and the generated 

images. 
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the contours in generated images show great agreement with the

real images over the entire domain of the flow filed. Especially,

our method obtains accurate prediction results over the shock area

showing the superior ability to cope with highly non-linear prob-

lems. 

In addition, the comparison of the pressure coefficient distri-

bution over the airfoil surface between the generated image and

the reference is shown in Fig. 21 to verify the accuracy of the

predicted flow structure. The pressure coefficient distribution is
rawn according to the predicted image of pressure profile shown

n Figs. 19 (a, b) and 20 (a, b). It is clear from the results that the

ressure field prediction near the boundary also keeps good accu-

acy in comparison with the CFD results. More results are demon-

trated in Figs. 23 and 24 in appendix. This shows that once we

btain the accurate flow field structure, all the low dimensional

erodynamic quantities, such as the distribution of pressure coef-

cient, can be easily calculated. Due to the low pixel precision of

he flow structure images used in this paper, the roughness of the
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Fig. 20. Comparison of the images of pressure profiles for 8 randomly-chosen airfoils from test set. (a) (e)-row: real images; (b) (f)-row: generated images by ffsGAN; (c) 

(g)-row: the absolute pressure error between the generated and the original images; (d) (h)-row: the comparison of the pressure contours between the original images and 

the generated images. 



14 H. Wu, X. Liu and W. An et al. / Computers and Fluids 198 (2020) 104393 

Fig. 21. The comparison of the pressure coefficient distribution over the airfoil surface between the generated image and the reference. (a) shows the comparison for one 

training sample; (b) and (d) show the comparison for two test samples. 

Fig. 22. The boxplots of the MAEs for the training and test sets. 
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l  
pressure distribution can be observed. For realistic use of the pres-

sure distribution in airfoil optimization, images with higher pixel

precision or post-processing of the pressure distribution will be

needed. For a further quantitative analysis of the model accuracy,

we draw the boxplots of the MAEs for all samples in training and

test sets as shown in Fig. 22 . The low mean (marked as black line)

and median (marked as blue dot) MAE values for the training set

demonstrate the superior capacity of model fitting in the training

phase. It is not surprising that the MAEs of the test samples are

larger than that of the training samples, since these samples have

not been seen by the model during the training phrase. Although

the relatively large MAEs are obtained for test samples, no obvious

differences between the generated and real images of the pressure

profiles can be visually observed in Fig. 20 (a, b, e and f). There-

fore, it can be concluded that ffsGAN is capable of rapidly predict-

ing the precise detailed aerodynamic characteristics under steady

flow field over a given space of supercritical airfoils. 

3.3. Further analysis 

3.3.1. The cost-effectiveness of the proposed model 

The low efficiency of obtaining the detailed field flow struc-

tures is exempted in our model. Meanwhile, the computation

speed boost in several orders of magnitude qualitatively. Differ-

ent from CFD simulations and wind-tunnel experiments, the pro-

cess of training the generator and discriminator networks in our

model costs a few hours, but it takes only a few seconds to gen-

erate the image of detailed flow field for any given supercritical

airfoil. In contrast, numerous hours are required to generate pre-

cise flow field structures for CFD simulations. Therefore, our work

has demonstrated that it is possible to rapidly and accurately eval-
ate the flow field for unseen airfoil by carefully establishing the

elationship between the airfoil profile and the elaborate flow field

tructure using deep learning technique. 

.3.2. Compared to the related works 

In some wing design problems, the lift and drag coefficients,

nd several other finite aerodynamic characteristics are insufficient

o denote detailed aerodynamic performance of an airfoil. So, the

laborate flow field structure which is obtained from our surrogate

an provide more abundant and complete characteristics of flow

eld. One potential application of our work is that the predicted

ow field structure can be considered in the optimization objec-

ive in airfoil optimization. In [24] , one of the deep neural net-

orks, convolutional auto-encoder (CAE), was previously adopted

o extract the features of flow field structure which was subse-

uently used to predict the drag coefficient for an airfoil profile

n the airfoil optimization design [24] . Even though the flow field

tructure was considered in the modeling, the optimizer only took

he drag parameter into consideration, and other general physi-

al characteristics were ignored. Besides, some other work mod-

led the relationship between the aerodynamic parameters and the

orresponding image of airfoil profile by using convolutional neu-

al network, and obtained high prediction precision [ 18 , 20 ]. It is

eserved to mention that additional operations for feature extrac-

ion need to be carried out, and this leads to more complexity and

omputational cost of the model. 

Comparing with the above work, all the general physical char-

cteristics are displayed in the flow field image which is the in-

ut of the discriminator network of our model. The discriminator

s applied to fulfill the feature extraction of the flow field images

nd realize the dimension reduction. In the process of generation,

he parameterized airfoils are fed into the generator network to

econstruct the flow field image. Taking the generator as the sur-

ogate, our method can easily predict the high-dimensional flow

eld for parameterized airfoils. This enables the surrogate to be

pplied in airfoil design and optimization where detailed informa-

ion of flow field is considered and other areas where the evalu-

tion of the whole flow field structure is essential but expensive.

or example, we may want to eliminate vortex in some area, for

hich detailed flow field structure is needed to help detecting vor-

ex. In this study, we used the flow field images with the size of

24 × 224 and the accuracy of this data has been validated in the

revious sections. To use more accurate data, the pixel precision of

he images can be further increased. 

. Conclusion 

Deep learning models are capable of modeling the highly non-

inear function and have the generalization ability in unseen cases.
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n this work, we leveraged this property and first attempted to ap-

ly GANs with CNN structure to predict the flow field for supercrit-

cal airfoils. The numerical simulation in fluid dynamic was con-

erted into computer vision (CV) problem and was modeled by the

roposed deep learning model, ffsGAN. The input of the generator

etwork is the parameterized airfoil profiles. The outputs (the gen-

rated images) present the elaborate flow field which includes the

ntire characteristics of the aerodynamic performance. We sampled

00 modified RAE2822 airfoils and calculated their corresponding

mages of pressure profiles to train ffsGAN. We investigated the

nfluence of the model parameters including hyper-parameter λ,

oss function, filter size and the number of CNN layers. By mak-

ng appropriate choices of all these parameters, all training and

est airfoils were used to demonstrate the overall effectiveness of

ur model. It can be concluded that ffsGAN is suitable for predict-

ng accurate flow field structure for a given range of supercritical

irfoils. It is therefore likely that the expensive CFD simulations

nd wind-tunnel experiments in some cases can be replaced by a

rained generator network and the image of flow field can be pre-

isely evaluated in a few seconds for a given parameterized airfoil

rofile. 

In our experiments, the Mach and Reynolds number and other

onditions were fixed. In the future work, we will investigate to

odel the changeable flow field conditions. Furthermore, since the

enerated images from our method include more detailed physical

haracteristics of flow field rather than aerodynamic coefficients or

ressure distributions on solid surface, such as the information of

ortex shedding and boundary layer interaction with shocks which

ay be hints of buffeting, we will study the application of ffs-
Table 3 

The structures of the network for medium (256). 

Generator Disc

Kernel Filters Stride Padding BN Activation Kern

4 × 4 256 2 0 Yes Relu 6 ×
6 ×

5 × 5 128 2 0 Yes Relu 6 ×
5 × 5 128 2 0 Yes Relu 5 ×
5 × 5 64 2 0 Yes Relu 5 ×
6 × 6 64 2 0 Yes Relu 25 ×
6 × 6 3 2 0 No Tanh 4 ×

Table 4 

The structures of the network for medium (1024). 

Generator Disc

Kernel Filters Stride Padding BN Activation Kern

4 × 4 1024 2 0 Yes Relu 6 ×
6 ×

5 × 5 512 2 0 Yes Relu 6 ×
5 × 5 512 2 0 Yes Relu 5 ×
5 × 5 256 2 0 Yes Relu 5 ×
6 × 6 256 2 0 Yes Relu 25 ×
6 × 6 3 2 0 No Tanh 4 ×

Table 5 

The structures of the network for large (256). 

Generator Disc

Kernel Filters Stride Padding BN Activation Kern

9 × 9 256 2 0 Yes Relu 6 ×
6 ×

7 × 7 128 2 0 Yes Relu 6 ×
8 × 8 128 2 0 Yes Relu 5 ×
7 × 7 64 2 0 Yes Relu 5 ×
8 × 8 3 2 0 No Tanh 4 ×

A

riminator 

el Filters Stride Padding BN Activation 

6 16 2 0 Yes LeakyReLu(0.2) 

6 16 2 0 Yes LeakyReLu(0.2) 

6 32 2 0 Yes LeakyReLu(0.2) 

5 64 2 0 Yes LeakyReLu(0.2) 

5 64 2 0 Yes LeakyReLu(0.2) 

5 128 2 0 Yes LeakyReLu(0.2) 

4 1 2 0 No Sigmoid 

riminator 

el Filters Stride Padding BN Activation 

6 64 2 0 Yes LeakyReLu(0.2) 

6 64 2 0 Yes LeakyReLu(0.2) 

6 128 2 0 Yes LeakyReLu(0.2) 

5 256 2 0 Yes LeakyReLu(0.2) 

5 256 2 0 Yes LeakyReLu(0.2) 

5 512 2 0 Yes LeakyReLu(0.2) 

4 1 2 0 No Sigmoid 

riminator 

el Filters Stride Padding BN Activation 

6 16 2 0 Yes LeakyReLu(0.2) 

6 16 2 0 Yes LeakyReLu(0.2) 

6 32 2 0 Yes LeakyReLu(0.2) 

5 64 2 0 Yes LeakyReLu(0.2) 

5 128 2 0 Yes LeakyReLu(0.2) 

4 1 2 0 No Sigmoid 

AN to the improved airfoil optimization where detailed flow field

tructure is considered in the optimization objectives. 
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Table 6 

The structures of the network for large (1024). 

Generator Discriminator 

Kernel Filters Stride Padding BN Activation Kernel Filters Stride Padding BN Activation 

9 × 9 1024 2 0 Yes Relu 6 × 6 64 2 0 Yes LeakyReLu(0.2) 

6 × 6 64 2 0 Yes LeakyReLu(0.2) 

7 × 7 512 2 0 Yes Relu 6 × 6 128 2 0 Yes LeakyReLu(0.2) 

8 × 8 512 2 0 Yes Relu 5 × 5 256 2 0 Yes LeakyReLu(0.2) 

7 × 7 256 2 0 Yes Relu 5 × 5 512 2 0 Yes LeakyReLu(0.2) 

8 × 8 3 2 0 No Tanh 4 × 4 1 2 0 No Sigmoid 

l surfa

rfoil su

 

 

 

 

 

 

 

 

 

Figs. 23 and 24 . 

Fig. 23. The comparison of the pressure coefficient distribution over the airfoi

Fig. 24. The comparison of the pressure coefficient distribution over the ai
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