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a b s t r a c t

Classification for flowers is a very difficult task. Traditional methods need to built a classifier for each
flower category, and obtain large number of flower samples to train these classifiers. In practice, many
different types of flowers make the job become very difficult and boring. In this work, we present an
attribute based approach for flowers recognition. Particularly, instead of training for a specific category of
flowers directly based on manually designed features such as SIFT and HoG, we extract a series of visual
attributes from a given set of flower images and generalize these to new images with possibly unknown
flowers. A recently proposed sparse representations classification scheme is employed to predict the
attributes of a given flower image from any category. In addition, we use a genetic algorithm to find the
most discriminative attributes among others for better performance during the stage of flower
classification. The effectiveness of the proposed method is validated on a publicly available flower
classification database with promising results.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

The task of classification for flowers is very difficult. There are
large variations in scale and viewpoint in typical flower images,
partial occlusions, illumination, multiple instances, etc. Perhaps
the biggest challenge comes from the intra-class and the inter-
class variability. For example, some images from different classes
are with a smaller variation than from a class itself, and some
minute differences determine their different classification [1–7]. In
addition, as a plant with continuous growth and a non-rigid
object, flowers can be deformed in many ways, so in the intra-
class there is also a big change. Recent machine learning technique
has demonstrated its power in classifying flowers. For example,
one can consider kernel SVM [8] or boosting [9]. The performance
of the state of the art method is obtained with the use of multiple
features [10] and a multiple kernel classifier: each kernel is
designed for different features (e.g. colour, texture), and an
additional kernel is designed for the weighted combination of
these feature kernels.

Recently, along with the emergence of camera-equipped mobile
phones, new opportunity and challenge have generated in the
computer vision field. One of these challenges is that in resource
constrained environments, available memory, bandwidth and pro-
cessing power become restricting factors in image classification

[11]. For example, with a camera-equipped smart phone, a user
captures a flower image and wants to learn more knowledge about
the flower. In a traditional image identification system, it would
either extract some type of features of the flower image and
transmit it to a server or transmit the whole flower image to the
server directly. Then, for recognizing the category of the flower
image and feeding back the depicted information of the flower, the
server needs to perform a series of classification tests.

Regarding the feasibility of flowers classifying, there are two
important issues. The first one is that there should be enough
labeled examples for training the classifier. Then we can use the
classifier to identify the possible category of new test examples
having the same distribution with the training examples.
However, due to the large number of the possible image classes,
collecting a large amount of examples for training may not be
feasible even though the number of classes is not a large one
[12]. In addition, training classifiers of a real-time application in
the server may also be impractical, because along with the
increase of visitors, the performance of system response will
drop quickly.

The second one which leads to the failure of system design is
the limited power availability, bandwidth and processing capabil-
ities of mobile systems. For example, the available battery power
will quickly drain when transmitting raw images. Besides, because
the transmitted information load also increase congestion on the
server and the network, the user satisfaction will be directly
affected.

To cope with the challenges mentioned above, attribute learn-
ing proposed recently is attempted to learn attributes instead of
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traditional classes of image. In the camera-equipped smart phone
system shown in Fig. 1, it could recognize the attributes e.g. “red”
or “green” for the specific classes' classification. The processing
pipeline includes two stages: the one is the attribute vector
creating process which is accomplished by the mobile facility,
and the other one is final classification taken place on the server.
The classification stage is learned off-line from textual description,
which gives consideration to the mapping of attributes to classes.

There are many advantages in employing attributes to be a
bridge between image examples and classes. The greatest benefit
from the use of attributes is that classifiers can be trained and
tested using only text information without direct image features.
This means that instead of using label sample as metadata, and in
order to automatically identify test examples, large knowledge
databases can be employed for extracting information. Besides,
textual information is easier to transmit, process and store than
the image information. Compared to raw images, the text of
attributes with smaller dimensions can be easier employed to
reduce the query time for a huge retrieval system. Considering
that the visits to the server is very large at the same time, the
advantage mentioned above becomes very vital for a system like
the one shown in Fig. 1.

In recent years, as a kind of high-level image feature, the
semantic attribute has gained more and more attention in the field
of computer vision. Attributes' learning has been applied wide-
spread in classifying objects [13] or images [14]. Farhadi et al. [15]
first put forward a set of visual semantic attributes to describe
objects. Later, Kumar et al. [16] proposed a novel method to
predict the visual attribute vector through the related attribute
classifiers, and using these attribute vectors to represent faces.
Vogel and Schiele [17] employed visual attributes to express the
semantics of the outdoor scenes. Vaquero et al. proposed an
attribute based people search method [18]. Attributes learning
also has many potential applications in transfer learning [19],
multi-label learning [20], multi-instance learning [21], video
annotation [22] and image retrieval [23]. Despite that the semantic
attributes have been used in many kinds of image classifications,
to our knowledge there is no system that identifies flowers using
their attributes.

As far as the power availability and the communication band-
width of mobile systems are concerned, when the raw images or
image descriptors are limitedly transferred, attribute expression
can still be transmitted. In addition, instead of integrating the
whole system of images recognition, only two processing stages
are needed in the mobile system. The first one is the feature
extraction, and the second is the attribute prediction. In recent

years, feature extraction and image classification have been
applied in smart phones and other mobile devices [24–26] and
have got very exciting results.

Attribute based identification as a new way for image classifi-
cation can be used to deal with the flowers classifying based on
camera-equipped mobile phones. However, for the existence of a
large number of available attributes, collecting samples to train the
attribute classifiers is a tedious task. In addition, the traditional
attribute based classification framework assumes independence
among attributes, which cannot be ensured by the attributes
annotated by human. In this paper we propose an integrative
framework that enables us to predict attribute automatically and
to estimate the prior attribute–class probability relationship
matrix. We use some image samples to compose the dictionary
of the attribute classifier and employ the recently proposed sparse
representations classification scheme to predict other samples
attribute. Besides, in order to find the most discriminative attri-
butes, a genetic algorithm is employed to reduce attributes for the
flower classification. The benefits of the proposed extensions are
validated through the attribute-to-class mapping experimental
results.

2. The proposed method

In the traditional approach, given a signal such as a vectorized
image xARn , the signal x is called the k-sparse with respect to a
dictionary DARn�n if x¼Ds where k¼ JsJ0 . If the class of the
image x is yAY , there will be a mapping matrix W which makes
y¼Wx¼WDs. The parameter W will be learned by the training
samples in the training step and after that the label y of the testing
sample will be predicted by the learned classifier [27–29].

In the classification scheme based on the attributes, however,
we are given an attribute representation aAA for each class yAY
and the goal is to learn a non-trivial classifier f : X-Y . This can be
achieved with two subsequent parts. The first part is the sparse
representation-based classifier for attribute prediction f a : X-A,
and the second is the class mapping with class–attribute matrix
f c : A-Y .

In particular, a classifier for attribute a, trained with a set of
images labeled with a¼ 1 as positive otherwise as negative, can
provide an estimate of the posterior probability pðajxÞ of that
attribute being present in image x. To obtain the posterior
probability of class y for a given image x, we marginalize over all

Fig. 1. Attribute based image classification on a mobile system.
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possible attributes associated with this image, using Bayes rule
[30]:

pðyjxÞ ¼ ∑
aA f0;1g

pðyjaÞpðajxÞ ð1Þ

The role played by the attributes in the whole categorization
framework is illustrated in Fig. 2 and the corresponding learning
algorithm based on the sparse representations is given in Table 1.

2.1. Attribute prediction based on sparse representation

In this section, we describe our method for attribute prediction,
whose goal is to identify the most prominent attributes of a given
image. For this, we employ a sparse representation-based method.
Sparse representation is intuitively appealing since a new test
image with a series of semantic attributes is hoped to be
represented by small amounts of training images. With such a
sparse representation, detecting the particular attribute's presence
or not can be efficiently evaluated by a simple binary classifier,
such as SVM. Consequently, it offers high prediction accuracy with

light computational cost and high scalability capabilities for its full
consideration to the sparsity of flower image features.

In particular, to obtain the sparse representation s of a test
sample xt, we solve the following regularized l1 minimization
problem:

ŝt ¼ arg min
st

‖st‖1 s:t: ‖xt�Dst‖2rϵ ð2Þ

Many methods have been proposed to solve Eq. (2) such as
orthogonal matching pursuit (OMP), basis pursuit (BP) and Least
Absolute Shrinkage and Selection Operator (LASSO)[31]. We
choose the OMP algorithm in this work due to its simplicity and
efficiency. In the OMP, with the help of computing the orthogonal
projection of the signal onto the set of atoms selected so far, all the
coefficients extracted are updated after each step. However, before
running the OMP algorithm, we have to prepare a dictionary D for
it. In our implementation, the dictionary D is obtained by using an
adaptive training process, i.e., K-SVD, which is an iterative method
that alternates between updating the dictionary atoms to obtain
an optimal value and computing sparse coefficients of the exam-
ples based on the current dictionary.

Specifically, we solve the following optimizing problem on the
training data using the K-SVD algorithm:

fD̂; ŝi g ¼ arg min
D;si

∑
N

i ¼ 1
Jxi�Dsi J2 s:t: Jsi J1rϵ; 8 i ð3Þ

where xi is the i-th training image. In this way, we simultaneously
obtain for the training set a dictionary D̂, which will be used in the
test stage (see Eq. (2)), and a sparse representation ŝi , which can
be used to construct the attribute predictor. Here we adopt a linear
model for each predictor. By denoting the k-th attribute of the i-th
training image as lki , the parameters wk and bk for the k-th
attribute predictor can be obtained as

fŵk ; b̂k g ¼ arg min
wk ;bk

Jwk J2 s:t: lki ðwT
ksiþbkÞZ1; 8 i ð4Þ

In the testing stage, given the sparse representation st of a test
image xt calculated by OMP algorithm and the parameters of every
attribute classifier, we can estimate the posterior probability of
testing data having the attribute k using a sigmoid function:

pðak ¼ 1jxtÞ ¼ 1
1þe�ðwkst þbkÞ

ð5Þ

Before making the final flower classification, however, we need
to estimate the mapping from attributes to class, i.e., pðyjjaiÞ,
which we call the attribute–class matrix. A maximal likelihood
method is adopted here as follows:

pðyjjakÞ ¼
#N

yj
ak

#Nak
ð6Þ

where #N
yj
ak is the number of training images in the yj class with

attribute ak, and #Nak is the total number of training images with
attribute ak. With this, the posterior probability that the test
image xt belongs to the category yj can be estimated using
pðyjjxtÞ ¼∑N

k ¼ 1pðyjjakÞpðakjxtÞ, and hence the final class label is
given by

ŷ ¼max
yj

pðyjjxtÞ ð7Þ

2.2. Attribute reduction based on genetic algorithm

The idea of attribute reduction is to choose the core and
important knowledge like a filter, and maintain the performance
of the classification or decision-making of information system as
best as possible. In the process of attribute reduction, a minimal
subset of the original attribute set, which contains compulsory
and important attributes, is looked for. The minimal subset should

Fig. 2. Classification model based on attributes [13].

Table 1
Attribute learning based on sparse representations algorithm.

Attribute learning based on sparse representations algorithm

Input: The training data Xtr ¼ fxigNi ¼ 1, its class label Ytr, and its attribute label

Ltr ¼ flki g
NM

i ¼ 1k ¼ 1, l
k
i Af0;1g,

the testing data Xte ¼ fxtgLt ¼ 1, the class set Y ¼ fyjgCj ¼ 1, the attribute set

A¼ fakgMk ¼ 1, the target threshold ϵ

Output: The class label of testing data.
1: With the training data, run the K-SVD algorithm to approximate the

Dictionary D and the sparse
representation of training samples' feature:

fD̂; ŝi g ¼ argminD;si∑
N
i ¼ 1 Jxi�Dsi J2 s:t:Jsi J1rϵ.

2: Employ the training data to obtain the parameters wk ; bk for every
attributes' classifier:

fŵk ; b̂k g ¼ argminwk ;bk Jwk J2 s:t:lki ðwT
k siþbkÞZ1

3: With the training data, class–attribute matrix can be obtained by the
number ratio of the samples with category

yj in the attribute ai to all the training samples of the attribute ak:

pðyjjakÞ ¼
#N

yj
ak

#Nak
.

4: With the testing data fxtgLt ¼ 1, use the OMP algorithm to approximate the
sparse representation of testing sample:

ŝ t ¼ argminst Jst J1 s:t:Jxt�Dst J2rϵ

5: In the testing stage, with the st of test sample calculated by OMP
algorithm and the parameters of each attributes'

classifier, estimate the attribute classification posterior probability of testing
data xt by a sigmoid function:

pðakjxt Þ ¼ 1
1þ e� ðwkst þ bk Þ

, where k indicate the kth attribute.

6: The posterior probability of class yj the image xt belonging to is then
obtained by pðyjjxt Þ ¼∑N

k ¼ 1pðyjjakÞpðakjxt Þ.
7: The class label of testing sample xt is given by ŷ ¼maxyj pðyjjxt Þ.
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represent the original attribute set without losing too much
information. Finding this minimal subset is usually NP-hard and
solved using approximate algorithms.

An approximate algorithm is an algorithm that is used to find
an optimum solution, but there is no guarantee that the solution is
the best one. Among many approximate algorithms, Genetic
algorithm (GA) has been successfully and popularly used in
optimization problems with its idea of Darwinian process of
evolution. GA does not depend on any specific application areas,
providing us with an effective way to deal with the search and
optimization problems with limited cost. The motivation for
applying GA to attribute reduction is that it can search the solution
space with a global scale, and provides a robust and adaptive
search performance. As an random search algorithm, GA can be
considered as an “anytime” approach for learning, and could
quickly give a good enough solution.

To perform attribute reduction using genetic algorithm, we
employ a binary string to represent each candidate attribute
reduction solution, which is usually called a chromosome. In other
words, every chromosome is a 0–1 vector with the dimension
same as the number of attributes, where “1” indicates the
presence of corresponding attribute with a high probability, and
“0” means that the corresponding attribute is absent or with a low
probability of presence. Then the problem of attribute reduction
boils down to find the best chromosome among the group of
candidates generated with GA operations such as crossover and
mutation, while the goodness of the solution is measured with a
fitness function. Two factors are considered here in designing the
fitness function, i.e., the compactness and the discriminative
capability.

Specifically, a flower category decision table is defined as
S¼ ðX;A;Y ;V ; f Þ, where X ¼ fx1; x2;…; xng is the set of flower
samples, A¼ fa1; a2;…; amg is the set of attributes, Y ¼ fy1; y2;…;

ykg is the set of class set, V is a set of the domain of the attribute,
and f : X � A [ Y-V is an information function. Define
POSAðYÞ ¼⋃Pi AX=Y fxjxAX4 ½x�ADPig be the positive region A with
respect to Y, where ½x�A means the equivalence class of x over
attribute set A, and X=Y means a partition of the sample set X
according to class set Y, with Pi as its i-th partition set. Hence
POSA(Y) can be thought of as a measure of consistency between the
current attribute sets A and the label set Y over the training
images, and the dependence of the attribute set A with respect to
class set Y can be defined as rðA;YÞ ¼ jPOSAðYÞj=jXj, where j�j
means the number of elements in the collection [32,33].

The above basic concepts are helpful for us to define a good
fitness function as follows:

FðLÞ ¼ ðM� JLJ0Þ=MþrðL;YÞ; ð8Þ
where L represents a chromosome, JLJ0 refers to the number of
nonzero element in the chromosome L; M refers to the length of

the initial chromosome, i.e. the number of initial attributes, rðL;YÞ
means the dependence of the attribute set corresponding to the
chromosome L, with respect to class set Y. In our implementation,
an improved genetic algorithm [34] is adopted to solve the
objective function (Eq. (8)). See Section 3.3 for more details.

3. Experiments

3.1. Experimental setting and arrangement

Data setting: In order to compare our methods' performance to
the others, a public flower dataset called Oxford17 is chosen as the
experimental dataset, http://www.robots.ox.ac.uk/vgg/data/flow
ers/index.html. The flowers dataset consists of 17 species of
flowers with 80 images of each (Fig. 3). The samples of the
Oxford17 are all natural images. In Oxford17, some categories of
flowers have very distinctive visual appearance, e.g. tigerlilies and
fritillaries, but some others have very similar appearance to each
other, such as dandelions and colts feet. Besides these, there exist
large viewpoint, scale, and illumination variations in this dataset.
The intra-class diversity and tiny differences between categories
make this dataset very challenging. Furthermore, it is difficult to
distinguish the flower categories by one or two attributes of the
flowers. For example, snowdrop cannot be discriminated from
window flower only by color, and bluebell cannot be discriminated
from cowslip only by shape [3].

We select 27 attributes (Fig. 4) to describe the flowers of the
dataset. In order to validate the generalization performance of the
proposed classification model based on the attribute, the dataset
was divided into three sections. We randomly select the splits into
40 images per class for training, 10 images per class for verification
of attribute-class probability relational matrix and 30 images per
class for testing of attribute and class prediction. Because images
of each class often contain multiple attributes, one image with
multiple attributes will be reused to predict different attributes. So
the training database contains 2720 pictures and some of them are
repetitive. In this way, the number of training images for each
attribute will reach around 100. The testing set has 510 images
selected for testing the performance of attributes and classes
prediction.

Features extracting: All images are aligned and resized to ensure
the image size is 500 pixels. In order to represent each image, a
series of features such as SIFT [36], PHOG [37] and local color
histogram [38] were extracted. The final feature vector is 204 in
dimension, including 100 dimensional SIFT features, 40 dimen-
sional PHOG features and 64 dimensional RGB color histograms
features.

Experimental settings: Dictionary construction in sparse repre-
sentation should meet the requirement of over completeness,

Fig. 3. Illustration of images in the Oxford 17 flower database.
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namely the dimension of dictionary columns should be larger than
the dimension of the feature. In our experiments, the dimension of
the feature is set to be 204 and the number of dictionary columns
is set to be 2720. In addition, the target threshold ϵ is set to be
1e-7 and the number of iterations is set to be 30.

Originally we have 27 attributes to describe flowers. After the
attribute reduction, only 10 attributes remain. We use the
approach introduced in Section 2.2 to predict attributes of each
image and the class–attribute matrix. In the first step, with
training data, the K-SVD algorithm is used to approximate the
solution of Dictionary D. Then, use the training data's sparse
representation to approximate the parameters of attributes’ clas-
sifier. In the next step, with the testing data, use the OMP
algorithm to obtain the sparse representation coefficient s. In the
testing stage, with the representation of testing sample and the
parameters of every attributes classifier, we can get the attribute
classification posterior probability of the test data. Finally, we can
get the label of test data with the Bayes rule.

3.2. Overall performance and comparison

Previously, several methods have reported their performance in
the same Oxford 17 flower database. In [1], Nilsback and Zisser-
man developed and optimized a nearest neighbor classifier
architecture on the segmented version of the dataset. They
obtained 72.8% accuracy with a combination of HSV, SIFT and

HOG descriptors. Later the same authors employed the “bag of
visual words (BoW)” method to classify flowers, which improves
the performance to 81.3%. With the same features, multiple kernel
classifier [39] obtains a recognition rate of 85.2%. Ref. [40] shows
the performance of column generation boosting for mixtures of
kernels. It can give a recognition performance of 84.8%. LPBoost is
another boosting approach which achieves 77.5% accuracy in
flower classification [41]. These results besides ours are summar-
ized in Fig. 5. Although our method does not provide a significant
gain compared to others, it gives a good semantic explanation
which cannot be given by other methods.

3.3. Critical steps of sparse representations based attribute learning

In this section, we investigate several factors that may have
influence on the performance of our method, including attribute
reduction, the effect of various amount of training images, and the
performance of individual attribute learner.

In the experiment of attribute reduction based on the genetic
algorithm, we first denote a chromosome as a binary string whose
length is the number of the initial attributes. The parameters of
the algorithm are set to as follows: the maximum evolution
algebra is 20, the crossover probability is 0.7, and the mutation
probability is 0.01. In order to transform the original problem of
attributes reduction into a problem searching for minimum value,
we change the fitness value to be opposite value of original fitness

Fig. 4. Some attributes of flowers [35]. Attributes of (a) inflorescence and (b) flower shape.
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value, i.e. FðLÞ ¼ �½ðM� JLJ0Þ=MþrðA;YÞ�, where the parameters
have been explained in Section 2. The target chromosome L, i.e. the
reduced attributes set, is arg minL FðLÞ. The the iteration process
for objective optimization is illustrated in Fig. 6 and the best
chromosome L is ½001101110001100010001000010�, which
means that the set of attributes selected is fa3; a4; a6; a7; a8;
a12; a13; a17; a21; a26g.

To investigate how many training images forming the diction-
ary are necessary for accurate class prediction, we run the
experiments with various numbers of training examples used for
attribute learning and test the final flower classification perfor-
mance. Fig. 7 gives the accuracy corresponding to a specific
number of training examples. It can be seen that with the
increasing number of training examples, the flower classification
tends to be more accurate. In addition, the figure also shows the
benefit of attribute reduction. Actually, the discriminative attribute
reduction helps us to reduce the overlapping regions between
different classes, which in turn improves the final prediction
performance.

To enable attribute-to-class mapping, the accuracy of the
attribute prediction for a specific image is important. Fig. 8
illustrates some flowers and their corresponding attributes auto-
matically learned with our system. We also investigated the role of
individual attribute with respect to flower classification accuracy.
First, Fig. 9 gives the test accuracy of our attribute learner. It can be
seen that some attributes are more difficult to predict than others.
The effective identification of an attribute is depending on
whether it can be described in detail. Better defined attributes

are easier to be discriminated. Second, Fig. 10 visualizes the
attribute–class matrix which reveals the correlation between each
attribute and each category.

3.4. Zero-shot learning based on attributes of flowers

To verify the performance of our method in zero-shot learning,
the Oxford17 flower set is divided again into two new sets, for
training and testing. Particularly, 12 categories and 50 samples of
each class are chosen to be the source categories and are served to
be the training set of attribute classifiers as well. The other five
categories and 50 samples of each class are selected as the zero-
shot learning classes and as the testing set. Altogether three
different splits of classes for training and testing are designed.
These three cross validation experiments are independent of each
other, and our division of dataset is set in such a way that there are
enough samples to train all the attribute classifiers. Finally, 30
samples of each class are randomly selected to test the perfor-
mance of the attribute classifiers. Note that because all zero-shot
learning classifiers base their decisions on the same learned
attribute classifiers, the performance of category classifiers is
determined solely by the performance of these attribute classifiers.

Figs. 11 and 12 respectively gives the accuracy of each individual
attribute predictor and the corresponding ROC curve (AUC). One can
see that the performance of learned attribute classifiers is signifi-
cantly higher than the chance level of 0.5 in terms of AUC value.

The baseline methods we chosen to compare against our zero-
shot classifier are the conventional 1NN and one vs. all SVMs.
Similar to our zero-shot classifier, 12 categories with 50 samples of
each class are chosen as the training set, and another five
categories with 10 samples of each class are selected to train the
classes classifiers for testing. At the testing stage, the five cate-
gories with 30 samples of each class are selected to evaluate the
performance of these multi-class classifiers. Fig. 13 gives the
comparative results between these methods and our method over
15 classes (five classes for each cross validation testing).

3.5. Computational complexity analysis

Flower classification is a multiclass classification problem. The
multiclass classification problem can be decomposed into several
binary classification tasks which are solved with a one-versus-rest
or one-versus-one scheme using binary classifiers. There are many
ways to deal with the multiclass classification problem, such as the

Fig. 5. Performance comparison between our method and previous methods
[1,39–41].

Fig. 6. Illustration of iterative process for attribute reduction with genetic algorithm.
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KNN, MKL, CG-Boost. Owing to the large number of classes, the
number of binary classifiers employed to deal with multiclass
classification problem will increase enormously. By contrast, our

method based on attribute learning with sparse representations is
much efficient. Particularly, denote the number of classes as C, the
number of training samples N, the number of attributes M, the
dimension of test data's original feature d and the sparse repre-
sentation's dimension l, the time complexity of traditional multi-
class classification is OðC2N2dÞ, while ours is OðMN2lÞ. Due to
MoN and lod, the total computational complexity of the method
based on attribute learning with sparse representation is smaller.

3.6. Discussion

Attribute learning method vs. non-attribute learning method: In
the experiment, we compare our attribute learning method to
some non-attribute learning methods such as CG-Boost and SVM.
As one can see in Fig. 7, although our method does not provide a
significant gain, it delivers a good semantic explanation and an
ability to recognize new categories from purely textual descrip-
tions. We can obtain three observations based on attribute con-
tributions. First, the importance of the attributes is not same. This
is why we can use attributes reduction method to search the
core attributes for flower classification. In addition, better defined

Fig. 7. Performance comparison before and after attributes reduction under different numbers of training images.

Fig. 8. Illustration of some flowers and the predicted attributes with our method.

Fig. 9. The performance of individual attribute predictor on the flowers datasets.
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attributes are easier to identify than more fuzzy ones. Second, the
number of attributes is usually less than the number of classes,
and the attribute classification is only a binary classifier and can be
reused in the same categorization context. For this reason, the
attribute learning method is very suitable for classification with a
large number of category. The third observation is that attributes
play a similar role not only in the sample learning prediction but
also in the case of the zero shot learning. In other words, attributes
can be learned without knowing the class labels of flowers. This
observation further supports the argument of why attributes can
be reliably employed in transfer learning.

Direct vs. indirect attribute prediction: A direct attribute predic-
tion (DAP) learning method employed in our attribute learning
frame adopts an attribute layer to separate the flower samples
from the layer of their category tags. During the training stage, the
output category label of each sample induces a deterministic
labeling of the attribute layer. In addition, we can employ any
supervised learning algorithm to obtain the parameter of attri-
butes predictor. At the testing stage, we can use these trained
attribute predictors to output the attribute labels of each test

sample. Then, the class tag will be inferred from the attribute
labels. Indirect attribute prediction (IAP) also employs the attri-
butes to transfer knowledge from some classes to others. But the
attribute layer is between two class layers, where the class labels
of one layer are known at training time while the other one not.
IAP can be used as a multi-class classifier. During the training stage
of IAP, the assigned probability of each class is calculated using the
training sample. Then, with the help of the class–attribute relation,
the probability of each attribute can be obtained. At the testing
phase, the normalized probability of each training class for the test
image is predicted firstly. According to this posterior distribution
over the training classes, the probability of each attribute for the
test image is obtained by means of class–attribute relation. Then,

Fig. 10. Visualization of attribute–class matrix.

Fig. 11. The ROC curves of each attribute predictor.

Fig. 12. Performance of each individual attribute predictor measured by the area
under the ROC curve.

Fig. 13. Classification accuracy of our zero-shot learning method based on
attributes, compared against 1NN and SVM.
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the category tag of the test sample can be inferred from the
labeling of the attribute layer. The major difference of the two
methods lies on the relationship between training and test
categories. In the DAP, all the classes are treated equally. In
addition, the training and test classes are not disjoint. In the test
stage, the class identification is based only on the attribute layer. In
contrast, in the IAP, the training classes also occur in the test time
as an intermediate layer. This leads to the following problem: in
the zero-shot learning scenario, if there is a class of training
samples which is relatively sensitive to the test sample (i.e., they

are similar to each other in appearance but different in label), it
will likely cause an error classification. This is why we chose the
DAP scheme rather than the IAP in this work. Fig. 14 shows some
example images of misclassified by the IAP method but are
correctly classified by DAP.

Sparse representations vs. non-sparse representations. Employing
sparse representations to the flower classification based on attri-
butes learning has two advantages. For one thing, in the scenario
of flower recognition, a high dimensional flower picture x can be
exhibited by a vector with much lower dimensionality. That is why

Fig. 14. Example images that are correctly classified by the DAP scheme but are misclassified by the method of IAP.
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we use the l1-norm regularization to describe flower images for
improving the identification speed and reducing the storage cost.
For another, in our experiment, owing to the limited training
samples, we only use a general dictionary composed of samples
with different attributes to describe the test samples. Assume that
there are enough training samples for each attribute so that we
can employ one set of training samples with attribute ai, i.e., Xi, as
the dictionary for this class, then a testing sample x with attribute
ai can be more sparsely represented over dictionary Xi than the
general dictionary. The reason is as follows. If x is with attribute ai,
it is more likely that we can use only a few samples in Xi to
represent x with a good accuracy. In contrast, we may need more
samples with other attributes to represent x with nearly the same
accuracy. With the sparsity constraint, the representation error of
x by Xi will be visibly lower than that by the general dictionary,
which will be helpful to the attribute prediction of x. For this
reason, our sparse representation method not only uses the l1-
norm regularization to describe flower images, but also could
employ a certain sparsity constraint to control the representation
error, making the classification of x easier (c.f., Fig. 15).

4. Conclusion

In this paper, a novel approach for flowers recognition is
proposed based on the attribute learning. Instead of training for
the recognition of a specific category of flowers directly based on
the manually designed feature sets, a series of visual attributes are
extracted from a given set of flower images, which are then
generalized to new images from possibly unknown category. To
automate the attribute extraction from a given image, a generative
dictionary is learned from the training set, which facilitates a
sparse representation based classification scheme for attribute
prediction. Furthermore, the genetic algorithm is adopted to find
the most compact and discriminative set of attributes for flower
categorization. Extensive experiments on the publicly available
Oxford flower database demonstrate the effectiveness of the
proposed method.

Acknowledgment

This research is supported by the National Science Foundation
of China (NFSC) Nos. 61170126, 61203246, 61003183, 61373060
and the Science Foundation of Jiangsu Province No. BK2011521.

References

[1] M. Nilsback, A. Zisserman, Automated flower classification over a large
number of classes, in: Proceedings of the Sixth Indian Conference on
Computer Vision, 2008.

[2] D. Guru, Y. Sharath Kumar, S. Manjunath, Textural features in flower classifica-
tion, Math. Comput. Model. Math. Comput. 54 (2011) 3–4.

[3] M. Nilsback, A. Zisserman, A visual vocabulary for flower classification, in: The
Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2008.

[4] S. Takeshi, K. Toyohisa, Automatic recognition of wild flowers, in: The
Proceedings of International Conference on Pattern Recognition, vol. 2, 2000,
pp. 507–510.

[5] M. Das, R. Manmatha, M. Riseman, Indexing flower patent images using
domain knowledge, IEEE Intell. Syst. 14 (5) (1999) 24–33.

[6] N. Shingo, S. Mie, A. Yoshimitsu, H. Shuji, Flower image database construction
and its retrieval, in: The Proceedings of Korea–Japan Joint Workshop on
Frontiers of Computer Vision, 2001, pp. 37–43.

[7] T. Saitoh, K. Aoki, T. Kaneko, Automatic recognition of blooming flowers, in:
The Proceedings of International Conference on Pattern Recognition, vol. 1,
2004, pp. 27–30.

[8] E. Chang, B.T. Li, G. Wu, K. Goh, Statistical learning for effective visual
information retrieval, in: The Proceedings of International Conference on
Image Processing, 2003, pp. 609–612.

[9] Y. Freund, R. Yyer, R. Schapire, Y. Singer, An efficient boosting algorithm for
combining preferences, J. Mach. Learn. Res. 4 (2003) 933–969.

[10] J. Zhang, M. Marszalek, S. Lazebnik, C. Schmid, Local features and kernels for
classification of texture and object categories: a comprehensive study, Int. J.
Comput. Vis. 73 (2) (2007) 213–238.

[11] T. Abe, T. Takada, H. Kawamura, T. Yasuno, N. Sonehara, Image-identification
methods for camera-equipped mobile phones, in: The Proceedings of Inter-
national Conference on Mobile Data Management, 2007.

[12] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The pascal
visual object classes (VOC) challenge, in: The Proceedings of International
Conference on Computer Vision, vol. 88, 2010.

[13] G. Wang, D. Forsyth, Joint learning of visual attributes, object classes and
visual saliency, in: The Proceedings of International Conference on Computer
Vision, 2009.

[14] Y. Su, F. Jurie, Improving image classification using semantic attributes,
J. Comput. Vis. 100(1) (2012) 59–77.

[15] A. Farhadi, I. Endres, D. Hoiem, D. Forsyth, Describing objects by their
attributes, in: The Proceedings of International Conference on Computer
Vision and Pattern Recognition, 2009.

[16] W. Kumar, A.C. Berg, P.N. Belhumeur, S.K. Nayar, Attribute and simile classifiers
for face verification, in: The Proceedings of International Conference on
Computer Vision, 2009.

[17] J. Vogel, B. Schiele, Semantic modeling of natural scenes for content-based
image retrieval, Int. J. Comput. Vis. 72 (2) (2007) 133–157.

[18] D.A. Vaquero, R.S. Feris, D. Tran, L. Brown, A. Hampapur, Attribute-based
people search in surveillance environments, in: The Proceedings of the
Workshop on the Applications of Computer Vision, 2009.

[19] C.H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object
classes by between-class attribute transfer, in: The Proceedings of Interna-
tional Conference on Computer Vision and Pattern Recognition, 2009.

[20] Z. Zha, T. Mei, J. Wang, Z. Wang, X. Hua, Graph based semi-supervised learning
with multiple labels, J. Vis. Commun. Image Represent. 20 (2) (2009) 97–103.

Fig. 15. Comparison of attribute classifiers using SVM, DAP and our method(DAPþSR).

K. Cheng, X. Tan / Neurocomputing 145 (2014) 416–426 425

http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref2
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref2
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref5
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref5
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref9
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref9
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref10
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref10
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref10
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref17
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref17
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref20
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref20


[21] Z. Zha, X. Hua, T. Mei, J. Wang, Joint multi-label multi-instance learning for
image classification, in: The Proceedings of Computer Vision and Pattern
Recognition, 2008, pp. 1–8.

[22] Z. Zha, Y. Zhang, Y. Yang, M. Wang, Interactive video indexing with statistical
active learning, Multimedia 14 (1) (2012) 17–27.

[23] Z. Zha, L. Yang, T. Mao, M. Wang, Z. Wang, Visual query suggestion, in: The
Proceedings of the 17th ACM international conference on Multimedia, 2009,
pp. 15–24.

[24] D. Ta, W. Chen, N. Gelfand, K. Pulli, Efficient tracking and continuous object
recognition using local feature descriptors, in: The Proceedings of Interna-
tional Conference on Computer Vision and Pattern Recognition, 2009.

[25] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, D. Schmalstieg, Pose
tracking from natural features on mobile phones, in: The Proceedings of
International Symposium on Mixed and Augmented Reality, 2008.

[26] D. Wagner, D. Schmalstieg, H. Bischof, Multiple target detection and tracking
with guaranteed frame rates on mobile phones, in: The Proceedings of
International Symposium on Mixed and Augmented Reality, 2009.

[27] R. Baraniuk, M. Davenport, R. DeVore, M. Wakin, Simple proof of the restricted
isometry property for random matrices, Constr. Approx. 28 (3) (2008).

[28] E. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal
reconstruction from highly incomplete frequency information, IEEE Trans. Inf.
Theory 52 (2) (2006).

[29] D. Donoho, Compressed sensing, IEEE Trans. Info. Theory 52 (4) (2004).
[30] M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, B. Schiele, What helps where –

and why? semantic relatedness for knowledge transfer, in: The Proceedings of
International Conference on Computer Vision and Pattern Recognition, 2010.

[31] A. Yang, A. Ganesh, S. Sastry, Y. Ma, Fast l1-minimization algorithms and an
application in robust face recognition: a review, IEEE Trans. Pattern Anal.
Mach. Intell. 31 (2) (2010).

[32] Z. Pawlak, Rough set theory and its applications, J. Telecommun. Inf. Technol
(2002) 7–10.

[33] D. Miao, G. Hu, heuristic algorithm for reduction of knowledge, J. Comput. Res.
Dev 36 (6) (1999) 681–684.

[34] C. Zhang, J. Ruan, H. Zou, An improved genetic algorithm for attribute reduction
in rough set theory, Int. J. Adv. Comput. Technol. 3 (8) (2011) 103–109.

[35] W.S. Judd, C.S. Campbell, E.A. Kellogg, P.F. Stevens, M.J. Donoghue, Plant
Systematics: a phylogenetic approach, Sinauer Associates Inc., Sunderland,
2008.

[36] D. Lowe, Distinctive image features from scale-invariant keypoints, in: The
Proceedings of International Conference on Computer Vision, 2004.

[37] K. Van de Sande, T. Gevers, C. Snoek, Evaluation of color descriptors for object
and scene recognition, in: The Proceedings of International Conference on
Computer Vision and Pattern Recognition, 2008.

[38] E. Shechtman, M. Irani, Matching local self-similarities across images and
videos, in: The Proceedings of International Conference on Computer Vision
and Pattern Recognition, 2007.

[39] M. Varma, D. Ray, Learning the discriminative power invariance trade-off,
in: The Proceedings of International Conference on Computer Vision, 2007,
pp. 1–8.

[40] K. Mikolajczyk, M. Awais, F. Yan, J. Kittler, Augmented kernel matrix vs
classifier fusion for object recognition, in: The Proceedings of the British
Machine Vision Conference, 2011, pp. 60.1–60.11.

[41] P.V. Gehler, S. Nowozin, On feature combination for multiclass object classi-
fication, in: The Proceedings of International Conference on Computer Vision,
2009, pp. 221–228.

Keyang Cheng is a member of CCF. He received the
M.S. degree from the School of Computer Science and
Telecommunication Engineering of Jiangsu University,
in 2008. Now he is currently a Ph.D. student at the
Department of Computer Science and Engineering,
Nanjing University of Aeronautics & Astronautics. He
has co-authored more than 20 journal and conference
papers. He is currently a researcher and teaching
assistant in the School of Computer Science and Tele-
communications Engineering of Jiangsu University. His
current research interests lie in the areas of pattern
recognition, computational intelligence and computer
vision.

Xiaoyang Tan received his B.Sc. and M.Sc. degrees in
computer applications from Nanjing University of Aero-
nautics and Astronautics (NUAA), in 1993 and 1996,
respectively. Then he worked at NUAA in June 1996 as an
assistant lecturer. He received a Ph.D. degree from Depart-
ment of Computer Science and Technology of Nanjing
University, China, in 2005. From September 2006 to
October 2007, he worked as a postdoctoral researcher in
the LEAR (Learning and Recognition in Vision) team at
INRIA Rhone-Alpesin Grenoble, France. His research inter-
ests are in face recognition, machine learning, pattern
recognition, and computer vision. In these fields, he has
authored or coauthored over 20 scientific papers.

K. Cheng, X. Tan / Neurocomputing 145 (2014) 416–426426

http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref22
http://refhub.elsevier.com/S0925-2312(14)00582-7/sbref22

	Sparse representations based attribute learning for flower classification
	Introduction
	The proposed method
	Attribute prediction based on sparse representation
	Attribute reduction based on genetic algorithm

	Experiments
	Experimental setting and arrangement
	Overall performance and comparison
	Critical steps of sparse representations based attribute learning
	Zero-shot learning based on attributes of flowers
	Computational complexity analysis
	Discussion

	Conclusion
	Acknowledgment
	References




