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Bayesian Neighborhood Component Analysis
Dong Wang and Xiaoyang Tan

Abstract— Learning a distance metric in feature space poten-
tially improves the performance of the K nearest neighbor
classifier and is useful in many real-world applications. Many
metric learning (ML) algorithms are, however, based on the
point estimation of a quadratic optimization problem, which is
time-consuming, susceptible to overfitting, and lacks a natural
mechanism to reason with parameter uncertainty—a property
useful especially when the training set is small and/or noisy.
To deal with these issues, we present a novel Bayesian ML (BML)
method, called Bayesian neighborhood component analysis (NCA),
based on the well-known NCA method, in which the metric pos-
terior is characterized by the local label consistency constraints
of observations, encoded with a similarity graph instead of inde-
pendent pairwise constraints. For efficient Bayesian inference,
we explore the variational lower bound over the log-likelihood
of the original NCA objective. Experiments on several publicly
available data sets demonstrate that the proposed method is able
to learn robust metric measures from small size data set and/
or from challenging training set with labels contaminated by
errors. The proposed method is also shown to outperform a
previous pairwise constrained BML method.

Index Terms— Bayes modeling, distance metric learning, label
noise, neighborhood component analysis.

I. INTRODUCTION

LEARNING a good distance metric in feature space is
crucial in many real-world applications. It has been

shown to significantly improve the performance of object clas-
sification [1], image retrieval [2], image ranking [3], face iden-
tification [4], kinship verification [5], clustering [6], or person
reidentification [7]. Most of distance metric learning (DML)
methods aim to learn a linear transformation, which pulls
together samples from the same class while pushing away
those from different classes.

There has been considerable research on DML over the past
few years [8]–[14]. Among them, neighborhood component
analysis (NCA) [15] is a well-known DML method, which is
conceptually simple and is developed under a well-formulated
probabilistic framework with graph label consistency con-
straints. There are also several extensions of this method in the
literature, such as the large margin nearest neighbor (LMNN)
[16], nearest class mean (NCM) [1], label noise robust NCA
[17], and so on.
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Although ML algorithms have achieved great success,
in many real-world applications, its performance may be hurt
by two problems: 1) collecting a large number of labeled data
for DML training is laborious and not easy and 2) even when
one has one large data set, more often than not the quality
of the collected data cannot be guaranteed. Moreover, most
of the DML algorithms are based on point estimation, which
is sensitive to the choice of training examples and tends to
be overfitting especially when training set is small or noisy.
Many robust learning methods have been proposed [18]–[23],
but they usually have high computation cost and do not focus
on ML. The recently proposed pairwise constrained Bayesian
ML (BML) method [24] tries to address these issues by taking
the prior distribution of the transformation matrix into account.
However, it treats each sample independently and ignores the
different importance of each sample, which limits its efficiency
in learning.

In this paper, we present a graph constrained BML method
to address the above-mentioned issues. The method is based
on the NCA method but, for the first time, extends it under
the Bayesian framework, hence called Bayesian NCA (BNCA).
To be concrete, unlike previous studies on ML methods, our
method has the following advantages.

1) It naturally takes account the influence of parameter
uncertainty and is less susceptible to overfitting by
exploiting the prior knowledge.

2) It provides robust estimation even when there are errors
in data annotation, with the help of graph label con-
sistency constraints and the adopted local variational
training method.

3) It significantly reduces the computational cost while
preserving the effectiveness of Bayesian estimation, due
to a newly developed variational lower bound of the log-
likelihood objective.

We verify the effectiveness of the proposed method on
several real-world applications, including image classification,
digital recognition, and face recognition. Our results demon-
strate that the BNCA method is able to learn robust metric
measures from small size data sets or from data sets with
noisy labels. It is also shown to outperform a previous pairwise
constrained BML method [24] and several other state-of-the-
art DML methods.

The remaining parts of this paper are organized as follows.
In Section II, preliminaries are provided; then, we detail
our proposed method in Section III, make some analysis of
it in Section IV, and verify its performance in Section V.
We conclude this paper in Section VI.

II. PRELIMINARY

Assuming that we have a data set D of N data points,
denoted as D = {xi , yi }, i = 1, 2, 3, . . . , N , where yi is

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the label of the i th data point xi . In DML, we aim to learn a
Mahalanobis matrix—A using some form of supervision infor-
mation. Mahalanobis distance metric measures the squared
distance between two data points xi and x j as follows:

d2
A(xi , x j ) = (xi − x j )

T A(xi − x j ) (1)

where A ≥ 0 is a positive semidefinite matrix and xi , x j ∈ Rd

is a pair of samples (i, j). For simplicity, we denote d2
A(xi , x j )

as d2
Ai j . With these notations, in what follows, we give a brief

overview on two state-of-the-art works closely related to ours
in learning a Mahalanobis metric, i.e., NCA [15] and pairwise
constrained BML [24].

A. Neighborhood Component Analysis

The NCA algorithm [15] begins by constructing a complete
graph with each data point as its node. Let the weight of each
edge between any two nodes denoted as pi j . It is interpreted
as the probability that data point xi selects x j as its neighbor
and can be calculated as follows:

pi j = exp
( − d2

Ai j

)

∑
t∈Ni

exp
( − d2

Ait

) (2)

where Ni denotes the set of neighbors of xi . It can be checked
that pi j ≥ 0 and

∑
j∈Ni

pi j = 1, and hence, pi j is a valid
probability measure.

The object of NCA is then to learn a linear transfor-
mation A, which maximizes the log likelihood that after
transformation, each data point selects the points with the same
labels as itself as neighbors, i.e.,

max L(A) =
∑

i

log

⎛

⎝
∑

j∈Ni

1{yi = y j } · pi j

⎞

⎠ . (3)

B. Pairwise Constrained Bayesian Metric Learning

Yang et al. [24] proposed a BML method that estimates
the posterior distribution for the distance metric from labeled
pairwise constraints. It defines the probability for two data
points xi and x j to form an equivalence or inequivalence
constraint under a given distance metric A

P(yi j |xi , x j , A, μ) = 1

1 + exp(yi j (d2
Ai j − μ))

(4)

where yi j =
{

+1 (xi , x j ) ∈ S
−1 (xi , x j ) ∈ D. (5)

As mentioned earlier, S and D, respectively, denote the
sets of equivalence or inequivalence constraints. Given this,
the posterior distribution of metric A and the threshold μ can
be estimated by maximizing the following objective:

L(A, μ) =
∏

(i, j )

P(yi j |xi , x j , A, μ)p(A)p(μ). (6)

This method effectively overcomes some of the limitations
of traditional ML methods. However, it does not take the
structure of data into consideration and does not scale well.
Particularly, since its objective just requires that the distance

between similar pairs of points should be lower than that
between dissimilar ones, all pairs (i, j) (o(N2)) need to be cal-
culated for training. This not only increases the computational
cost, but also ignores the importance weight of each sample
regards to model training, which significantly decreases the
learning efficiency, because, ideally, we should focus more
on those data whose labels are not consistent with most of its
neighbors, instead of treating them indifferently. This problem
is partially addressed later by Yang et al. [24] with an active
learning method for data pair selection, but the computational
cost remains high.

III. BAYESIAN NEIGHBORHOOD COMPONENT ANALYSIS

A. Proposed Method

We start our derivation by considering the three compo-
nents of a general Bayesian model, i.e., prior, likelihood, and
posterior. Since the original NCA is a discriminant model,
we write its likelihood as P(Y |X, A) in our BNCA, where
A is the linear transformation matrix to be learned. We follow
the same assumption as that of NCA, i.e., the sample labels
are conditionally independent given the labels of their nearest
neighbors. Hence, the conditional model can be written as

P(Y |X, A) = 1

Z(A)

∏

i

P(yi |xi ,YNi , X Ni , A) (7)

where Z(A) is a normalizing constant known as the partition
function. To be consistent with NCA, we define

P(yi =k|xi ,YNi , X Ni , A)=
∑

j∈Ni
1{y j =k} · exp

( − d2
Ai j

)

∑
t∈Ni

exp
( − d2

Ait

) .

(8)

Comparing (8) with (4), we see that one of the major dif-
ferences between our model and the BML lies in that the
local neighborhood structure Ni is naturally embedded into
the model in our method.

To compute the posterior of the distance metric A, a prior
for it should be specified, and a convenient choice for this
could be the Wishart prior. Unfortunately, it is well known that
combining the Wishart prior with a non-Gaussian likelihood
is difficult to compute. In addition, the integration of A is
intractable as well.

To bypass the above-mentioned issues, we first approximate
the distance metric A as a linear combination of the top
eigenvectors of the observed data, and then estimate the poste-
rior distribution of the combination weights using variational
method.

1) Eigenapproximation: Let X = (x1, x2, . . . , xN ) denote
all the examples, and vl , (l = 1, 2, . . . , d) be the top d
eigenvectors of X X T . Inspired by [24], we approximate A
using the first d eigenvectors, i.e., A=

∑d
l=1 γlvlv

T
l , where

γl, (l = 1, 2, . . . , d) are the combination coefficients. With
this, the likelihood P(yi = k|xi ,YNi , X Ni , A) in (8) reduces
to its equivalent form P(yi = k|xi ,YNi , X Ni , γ )

P(yi =k|xi ,YNi , X Ni , γ )=
∑

j∈Ni
1{y j = k} · exp

( − d2
γ i j

)

∑
t∈Ni

exp
( − d2

γ it

))

(9)
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where we define

wl
i j = (

vT
l (xi − x j )

)2

wi j = [
w1

i j , w
2
i j , . . . , w

d
i j

]T

γ = [γ1, γ2, . . . , γd ]T (10)

then d2
γ i j = d2

Ai j = γ Twi j .
Our task then boils down to compute the posterior distribu-

tion of γ . For simplicity, we assume that the prior distribution
of γ to be Gaussian

p(γ ) = N(γ |m0, V0) (11)

where m0 and V0 are, respectively, mean and covariance.
2) Variational Approximation: At the second step,

we employ the variational method to estimate the posterior
distribution of γ . The main idea is to introduce variational
distributions for γ to construct the lower bound and then
maximize the lower bound to obtain the approximate
estimation for the posterior distribution. We begin with the
unnormalized logarithm likelihood log{Z(A)P(Y |X, γ )}.
Note that maximizing this objective directly regarding to
A leads to the standard NCA algorithm, but our goal here
is for local variational approximation; hence, the partition
function Z(A) is simply treated as a constant. Particularly

L = log{Z(A)P(Y |X, γ )}
=

∑

i

∑

k

1{yi = k} log{p(yi = k|xi ,YNi , X Ni , γ )}

=
∑

i

∑

k

1{yi =k} log

{∑
j∈Ni

1{y j =k} · exp
(−d2

γ i j

)

∑
t∈Ni

exp
( − d2

γ it

)

}

.

(12)

Since log(a + b) > log(a)+ log(b) if 0 < a, b < 1, we have

L >
∑

i

∑

j∈Ni

yi j log

{
exp

( − d2
γ i j

)

∑
t∈Ni

exp
( − d2

γ it

)

}

>
∑

i

∑

j∈Ni

yi j log

{
1

1 + ∑
t∈Ni

exp
(
d2
γ i j − d2

γ it

)

}

. (13)

Let xNi1
, xNi2

, . . . , xNiK
be, respectively, the K nearest

neighbors (KNNs) of xi . For convenience, we introduce the
following notations:

ηt
i j = d2

γ i j − d2
γ it = (wi j −wit )

T γ

W j
i = [wi j −wi Ni1

, wi j − wi Ni2
, . . . , wi j −wi NiK

]
ηi j = [

η
Ni1
i j , η

Ni2
i j , . . . , η

NiK
i j

]T = (
W j

i

)T
γ. (14)

Recall the definition of log-sum-exp function

lse(ηi j ) � log

⎛

⎝1 +
∑

t∈Ni

exp
(
ηt

i j

)
⎞

⎠ . (15)

Then, (13) can be rewritten as

L > −
∑

i

∑

j∈Ni

yi j lse(ηi j ). (16)

Algorithm 1 BNCA
Input:

Input: Training set {(xi , yi )| i = 1, 2, . . . , N}, prior distri-
bution N (γ |m0, V0);

Output:
posterior distribution N (γ |mT , VT )
—— Training Stage

1: Define W j
i , H according to (14) and (18) respectively.

2: Compute VT with eq. (22).
3: Repeat
4: compute ψi j for all (i, j) with eq. (24)
5: compute bi j for all (i, j) with eq. (19)
6: compute mT with Eq. (23).
7: Until converged.
8: Return N (γ |mT , VT ).

Using Bohning’s quadratic bound (see [25, p. 758, Sec. 21.8.2]
for details), we have

L >
∑

i

∑

j∈Ni

yi j

{
−1

2
ηT

i j Hηi j + bT
i jηi j − ci j

}

=
∑

i

∑

j∈Ni

yi j

{
−1

2
γ T W j

i H
(
W j

i

)T
γ + bT

i j

(
W j

i

)T
γ − ci j

}

(17)

where ci j is a constant and the remaining notations are
defined as

H = 1

2

[
IK − 1

K + 1
1K 1T

K

]
(18)

bi j = Hψi j − g(ψi j ) (19)

g(ψi j ) = exp(ψi j − lse(ψi j )). (20)

Note that ψi j is the variational parameter.
Now, we proceed to compute the posterior distribution of

γ , which we model as a Gaussian, denoted as N (γ |mT , VT ).
We write the unconstrained posterior distribution

p(γ |X,Y ) ∝ p(Y |X, γ )p(γ ) (21)

and plug in the approximated likelihood (17) and the prior
distribution N (γ |m0, V0) to get

VT =
[

V −1
0 +

∑

i

∑

j∈Ni

yi j W j
i H

(
W j

i

)T
]−1

(22)

mT = VT

(
V −1

0 m0 +
∑

i

∑

j∈Ni

yi j W j
i bi j

)
. (23)

Finally, the variational parameter ψi j is updated as

ψi j = (
W j

i

)T
mT . (24)

We summarize the proposed method in Algorithm 1.

B. Distance Estimation

For inference, we are interested in the expectation of the
point-to-point distance d2

γ i j for a new couple of data (i, j)
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Fig. 1. BNCA appropriately scale the axis to allow xi ’s neighbors in the
same class to be closer.

according to the posterior distribution of γ , which is a
Gaussian distribution as shown earlier. Particularly, we have

d2
γ i j ∼ N (

d2
γ i j |mij , σ

2
i j

)
(25)

where

mij = (wi j )
T mT

σ 2
i j = (wi j )

T VTwi j . (26)

It is worthwhile to mention that this mechanism of outputting
model uncertainty in distance metric calculation is potentially
beneficial to many real-world applications but unfortunately is
largely ignored in the field. For example, in the application of
image retrieval rather than ranking the results purely based on
the estimated similarity, we could now construct a more robust
ranking scheme by taking the value of the related similarity
uncertainty (i.e., σ 2

i j ) into account. We would not pursue this
issue any further as it is out of the range of this paper, but it
will be the focus of our future work.

Instead, one could simply use the mean value—mij to
estimate each d2

γ i j . To see the difference between this with
the traditional NCA method, we decompose its expectation as
follows:

E(d2
γ i j ) =

∑

l

wl
i j ml

T

=
∑

l

(xi − x j )
T vl m

l
T v

T
l (xi − x j ) (27)

where wl
i j and ml

T are the lth element of wi j and mT ,

respectively.
Now defining the new coordinate axes as [v ′

1, v
′
2, . . . , v

′
d ]

with v ′
l = (ml

T )
(1/2)·vl , we see that the inference equation (26)

essentially calculates the distance in a feature space spanned
by the top d the eigenvectors of X X T but scaled by (mT )

1
2 ,

according to the distribution of the corresponding eigenval-
ues (see Fig. 1).

C. Prediction Under Parameter Uncertainty

Under the difficult condition of small size training sam-
ples or samples with label noise, a single estimate of parameter
A tends to be unreliable, and the traditional DML methods
that are based on it may cause overconfidence in the future
predictions. In other words, they just make predictions but
cannot tell whether these predictions make sense. By contrast,

for Bayesian methods, this is really not a problem, because
no errors would be introduced due to the inaccurate estimation
of A. Particularly, the prediction for a never-seen sample xi can
be obtained from p(yi |xi ,YNi , X). Recall that the variational
posterior of metric parameter γ is a Gaussian distribution,
i.e., q(γ ) = N (γ |mT , V T ) [see (22) and (23)], we have

p(yi |xi ,YNi , X Ni ) =
∫

γ
p(yi |xi ,YNi , X Ni , γ )q(γ )dγ. (28)

The difficulty here is that this integration of γ is untractable,
because p(yi |xi ,YNi , X, γ ) is a multinomial distribution while
q(γ ) is a Gaussian one. Instead, we adopt an Markov chain
Monte Carlo (MCMC) method [26] to approximate this expec-
tation

p(yi |xi ,YNi , X Ni ) ≈ 1

T

T∑

l=1

p(yi |xi ,YNi , X Ni , γl) (29)

where γl(l = 1, 2, . . . , T ) are sampled i.i.d. from q(γ ).

IV. ANALYSIS OF THE PROPOSED METHOD

A. Adaptive Sample Selection in Learning

In the process of ML, it is beneficial to exploit the local
property of samples in the input space to improve the learning
efficiency. Take the NCA algorithm as an example. Its gradient
is calculated as follows:
∂L

∂A
= 2A

∑

i

⎛

⎝
∑

j∈Ni

pi j xi j x T
i j −

∑
j∈Ni

yi j pi j xi j x T
i j∑

j∈Ni
yi j pi j

⎞

⎠. (30)

That is, for any point xi , if and only if all its KNNs have
the same labels as that of xi , then

∑
j∈Ni

yi j pi j = 1, which
means that the gradient equals to �0. Hence, the NCA algorithm
would pay more attention on those points whose labels are
inconsistent with its KNNs. In other words, not all pairs
(xi , x j ) are active in constraining the search space of the
transformation matrix in the same way.

Similar observations can be made in other NCA extensions,
such as the large margin nearest neighbor (LMNN) [16]
method

min L(A)=
∑

i

∑

j∈Ni

yi j

⎛

⎝d2
γ i j +μ

∑

l∈Ni

(1 − yil )ξi j l (A)

⎞

⎠ (31)

where the first term can be seen as a regularizer while
the second one penalizes those data points that violate the
large margin condition.

But the situation is different for pairwise constrained mod-
els [24] in the sense that they usually lack an automatic sample
selection mechanism in the ML objective by itself [see (6)].
In our opinion, it is important to give different importance
weights to different points during training, because doing
this properly potentially allows us to significantly reduce the
computational costs and to lessen the likelihood of overfitting.
Actually, to avoid computing distance for all possible data
pairs, Yang et al. [24] designed an effective active learning
method to select the most uncertainty pairs in training process,
but the algorithm still needs to compute and store all the pairs’
uncertainty scores.
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Let us come to our results of BNCA shown in (22) and (23).
For simplicity, here, we only care about the diagonal elements

V ll
T (l = 1, 2, . . . , d) of VT . Let us define W jl

i as the lth row

of W j
i (W j

i = [W j 1

i ,W j 2

i , . . . ,W j d

i ]T )

W jl

i = [
wl

i j − wl
i Ni1

, wl
i j −wl

i Ni2
, . . . , wl

i j −wl
i NiK

]
. (32)

From (22), we get

V ll
T =

⎛

⎝
(
V ll

0

)−1 +
∑

i

∑

j∈Ni

∑

t∈Ni

yi j W jl

i Hll
(
W jl

i

)T

⎞

⎠

−1

. (33)

Assuming that K 	 1, H can be approximated by (1/2)I ,
such that

V ll
T =

⎛

⎝
(
V ll

0

)−1 + 1

2

∑

i

∑

j∈Ni

yi j

∑

t∈Ni

(
wl

i j −wl
it

)2

⎞

⎠

−1

. (34)

If we simply throw away the nondiag elements of
VT from (23), we see that V ll

T is in proportion to ml
T . In other

words, in BNCA, we scale the axis vl by reducing the variance
of γl , such that all xi ’s neighbors in the same class will be
closer in that direction, as shown in Fig. 1.

To see how our proposed BNCA handles different data
points adaptively, we consider the following two extreme
circumstances: 1) all xi ’s nearest neighbors have the same
labels as that of xi and have the same distance to xi and
2) none of xi ’s nearest neighbors belongs to the same class
of xi . In both cases, the term

∑
j∈Ni

yi j
∑

t∈Ni
(wl

i j − wl
it )

2

[see (34)] equals to 0, such that the variance will not be
changed by xi . In the first circumstance, those xi can be
thought of as perfect points that do not need to be adjusted,
while the second case illustrates how our method handles the
data in a robust way when some of them lie on the decision
boundary or when their labels are too noisy to be learned from.

B. Robustness Against Label Noise

To reveal the influence of label noise on the training of a
DML model, we start the analysis with the NCA method. First,
let us denote the two major components of its gradient (30)
as CE and CI , respectively

CE =
∑

i

∑

j∈Ni

pi j xi j x T
i j (35)

CI =
∑

i

∑
j∈Ni

yi j pi j xi j x T
i j∑

j∈Ni
yi j pi j

(36)

=
∑

i

∑

j

pi j xi j x T
i j

∑

k

1(yi = k) · 1(y j = k)
∑

j 1(y j = k) · pi j
. (37)

We see that
∂L

∂A
= 2A(CE − CI ). (38)

Intuitively, the CE term denotes the total scatter matrix of
the data points lying on the manifold induced by A and CI is
the corresponding intraclass scatter matrix (38) reveals that,
up to a constant matrix, in each step, the NCA algorithm
tries to seek a better linear transformation, such that after

projection, the total covariance becomes larger while the
intraclass covariance becomes smaller. However, when the
class labels are inaccurate or noisy, the estimation of CI tends
to be inaccurate (the CE value will be not influenced by this).

The same situation occurs in LMNN. As can be seen
from (31), label noise would possibly result in a lot of
incorrect training triples (i jl), which pull together samples
from different class while pushing away those from the same
classes. This issue becomes more and more troublesome with
the increase in the noise level, and actually, all the DML
techniques trained in a supervised way would suffer from
this if not properly taken care of. This is witnessed by our
experiments given later, showing that under some high noise
level, many traditional start-of-the-art DML methods, such as
NCA and LMNN, will even be inferior to the unsupervised
baseline, i.e., principal component analysis (PCA).

As for the proposed BNCA model, there are two sources
of regularization: one is the incorporation of the prior distrib-
ution, and the other is through eigenapproximation (spectral)
and local variational inference. Both are useful against label
noise, but in our opinion, the latter one plays a more important
role: recall that for a nonconvex objective function, an observa-
tion with label noise could potentially change the locations and
number of its local minima. Adding penalty onto the objective
[as in penalized ML estimator or equivalently, maximum
a posteriori estimator] using prior distribution helps but is
not enough, as the influence of the prior becomes weaker
with the increasing amount of data, while the local variational
inference replaces each term of the joint distribution with a
Gaussian, leading to a Gaussian-like lower bound to the global
objective. Such mechanism effectively smooths the influence
of observations with label noise, making the optimization
process much easier. This advantage is clearly independent
of the size of training data.

C. Computational Cost
To analyze the computational cost of the proposed method,

first note that usually the most time-consuming step in Laplace
approximation or a conjugate gradient method is related to
the calculation of Hessian matrix. In each iteration, it needs
o(N3) computational cost (where N is the number of training
data, e.g., if N is 103, the computational cost could be as
large as 109). While in our case, thanks to the Bohning’s
approximation, the Hessian matrix becomes a constant
matrix [see (18)], calculated only once. Furthermore, our
BNCA method avoids the time-consuming gradient iterations
completely—the lower bound of (17) actually gives us an
analytic solution [see (22) and (23)].

V. EXPERIMENTS

To verify the effectiveness of the proposed method, in this
section, we first compare the robustness performance of our
method with several related DML methods on the data sets
either with small sample size or with label noise; then, we turn
to investigate in depth the behavior of the proposed method.

A. Experimental Settings

We compare the performance of the proposed method
with several other closely related DML methods, including
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TABLE I

COMPARATIVE PERFORMANCE (%) ON UCI DATA SETS WITH VARYING SIZES OF TRAINING SET. (THE ASTERISKS INDICATE A STATISTICALLY
SIGNIFICANT DIFFERENCE BETWEEN THE SECOND BEST PERFORMER AND THE PROPOSED METHOD AT A SIGNIFICANCE LEVEL OF 0.05)

NCA [15], LMNN [16], ML for NCM [1], and pairwise
constrained BML [24]. Both the NCA and the LMNN are
ML methods with graph constraints, and the NCA is the
method our method based on, hence chosen to be the base-
line algorithm. Like ours, the BML method proposed by
Yang et al. [24] is a Bayesian method as well, but with pair-
wise constraints for learning. We also adopted two unsuper-
vised methods as baselines: PCA [27] and L1 distance, since
unsupervised learning algorithms are essentially irrelevant to
the issue of label noise.

For all the methods except the NCM (which has its own
classifier), we used the KNN method equipped with the
corresponding learned metric for classification. In addition,
the performance of all the compared methods is based on
the original implementation kindly provided by the corre-
sponding authors, and the related hyperparameters are fine-
tuned through cross validation. Each experiment is repeated
for ten times, and both the mean and the standard deviation
of the classification accuracy are reported. To evaluate the
performance of the compared methods, we also conducted
pairwise one-tail statistical test under significance level 0.05.

Implementation Details: In BNCA, there are a few parame-
ters need to be initialized, mainly including the parameters
of the prior distribution N (γ |m0, V0) and local variational
approximation parameters, including bi j (19) and ψi j (24).
In general, searching a right prior distribution is difficult,
although there exist several methods for that. For example,
McKay’s evidence maximization [28] deals with this issue by
learning it directly from data (based on the principle of evi-
dence maximization). Ideally, we could use McKay’s frame-
work to learn the prior and then proceeds with the variational
inference method to approximate the posterior of distance met-
ric. Unfortunately, adopting an empirical Bayes method (e.g.,
the evidence maximization) is challenging under our BNCA
model, due to the difficulty in making analytical approx-
imations of the marginal maximum likelihood estimator—
our likelihood function is non-Gaussian, and hence, it needs
further approximation to obtain the explicit form of the energy
function of the parameters. Another reason is that, establishing
a particular specification of the prior distribution is not so
necessary in our case as we only need something kind of
weakly informative prior distribution to regularize the posterior
distribution of the distance metric. Hence, in experiments,
we simply use the grid search method to look for a roughly

good prior distribution. In particular, we set m0 to ε�1, where
�1 is all 1’s vector and ε is a small scalar (e.g., 0.1). From
Section III-B, we see that this choice of m0 is equivalent to ini-
tialize BNCA with PCA, which is commonly used in ML for
initialization and will not be affected by label noise. Besides,
we set V0 to σ 2 I , where σ 2 is a very small value (e.g., 0.001).
This helps to preserve the stability of VT (22), one important
property related to overfitting. Then, we compute bi j and ψi j

according to (19) and (24), respectively.

B. Learning From Small Size Training Set
First, we investigate the performance of our method

with small sample size on three UCI data sets (“Balance,”
“Ionosphere,” and “Spambase”). In each data set, we randomly
sample three subsets as training set with the size of 10 × C ,
20 × C , and 30 × C (C is the number of categories), respec-
tively, and use an extra subset containing 100 data points as
test set.

Table I gives the classification performance. One can see
that when the training set is small, point estimation-based
methods tend to be unreliable. With only ten training samples,
the standard NCA performs even worse than the unsupervised
baseline approaches (PCA and L1) on two of the three data
sets tested. By contrast, the proposed BNCA performs the best
among the compared methods, partly due to the advantage of
the Bayesian framework, which potentially provides reliable
estimation even when the size of the training data is small.

Table I also shows that with increasing number of train-
ing points, the performance of all the methods considered
here improves a lot. As expected, when we sample 30 data
from each class, the performance gap between the Bayesian
approaches and the point estimation-based methods (such as
LMNN) becomes small.

C. Learning Under Random Label Noise

To test the performance of our method under label
noise, we tested our method on several real-world applica-
tions, including image classification (on the Caltech-10 data
set [29]), digital recognition (on the MNIST [30]), and face
recognition (on the FRGC-2 [31]). The data sets adopted are
popular benchmark on each of the task, respectively.

1) Caltech-10 is a subset sampled from Caltech-256 image
data set [32] with ten most popular categories.
The training set contains 300 images (30 from each
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TABLE II

COMPARATIVE PERFORMANCE (%) ON DIFFERENT DATA SETS WITH VARYING DEGREE OF LABEL NOISE. (THE ASTERISKS INDICATE A STATISTICALLY
SIGNIFICANT DIFFERENCE BETWEEN THE SECOND BEST PERFORMER AND THE PROPOSED METHOD AT A SIGNIFICANCE LEVEL OF 0.05)

TABLE III

COMPARISON OF TRAINING TIME (IN SECONDS) ON DIFFERENT DATA SETS. (THE ASTERISKS INDICATE A STATISTICALLY SIGNIFICANT

DIFFERENCE BETWEEN THE SECOND BEST PERFORMER AND THE PROPOSED METHOD AT A SIGNIFICANCE LEVEL OF 0.05)

class) and the test set is another randomly sampled
300 images.

2) The data set of MNIST we used contains 600 digit
images sampled from the full data set (60 from each
class; training/test: 300/300).

3) The data set of FRGC we used contains 400 face images
from 20 subjects (20 images per subject, training/test:
200/200).

On all these data sets, we inject random label noise on three
levels (10%, 20%, and 30%) and the test sets are kept clean.

Fig. 2 shows some of the noisy data of Caltech-10. One can
see that in each category, there exist some portion of images
that are not belonging to this category, possibly due to the
errors introduced in the labeling procedure, and very few work
investigate the consequence of this.

Table II shows how the ML algorithms perform under
random label noise. Label noise could mislead ML algorithms
in a way that it pulls data from different class together while
keeps those from the same class away. When there is no label
noise, almost all ML methods help to make an improvement
in accuracy. However, it can be seen that the performance of
all the methods declines with the increasing of noise level.
Particularly, as the noise level increases to 30%, some of
the ML methods do not work (such as NCA, NCM, and
LMNN) in the sense that they even perform worse than the
unsupervised baseline approaches (PCA and L1). Our BNCA
works significantly better than traditional ML methods even
under this challenging case—even when the noise level reaches
30%, the p-value is smaller than 0.001 when comparing our
method with the second best performer in terms of accuracy.

Table III compares the corresponding running time of the
methods in Table II under the situation of no label noise, with
our (unoptimized MATLAB) implementation. Table II shows
that on the average, the proposed BNCA runs more 61.2%

faster than the NCA algorithm and more than 41.0% faster
than the BML method. This is consistent with our analysis
described in Section IV-C. That is, in each iteration of vari-
ational inference, the introduction of fixed curvature Bohning
bound effectively avoids computing the Hessian matrix, result-
ing in significant reduction of running time.

D. Predictive Performance Under Difficult Conditions

In Sections V-B and V-C, we have shown the benefits
of the proposed BNCA method that learns either from a
small number of training examples or from examples with
label noise. In this section, we investigate empirically the
robustness performance of the BNCA method under difficult
conditions by comparing it with the baseline NCA method.
The motivation for this is that since the difficult samples are
commonly those lying either in the uncertain region, or those
lying far away from the normal distribution, making prediction
under these conditions would impose a great challenge for a
traditional DML method based on point estimation, due to its
lack of accounting for parameter uncertainty.

We conducted this series of experiments using MNIST [30].
First, 300 normal data points are sampled (by normal we
mean that those digital images are not difficult for a human
to recognize), and are used to train two models, i.e., an NCA
and a BNCA model. For test, we collect two different test
sets. One is normal while the other is most difficult in the
sense that all digital images in this set are hard to recognize
even by human. Since it is both time-consuming and error
prone to select those difficult samples manually, we adopt
one state-of-the-art model on the MNIST data set, i.e., the
C-SVDDNet [33], as the expert to choose samples, and those
samples close to the decision boundary of C-SVDDNet would
be regarded as difficult samples, otherwise, as normal samples.
In this way, we collect 300 random normal samples and
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Fig. 2. Illustration of training images injected with random label noise from the category of (a) plane and (b) butterfly in the Caltech-10 data set, where
images with inaccurate labels are marked with a red square.

Fig. 3. Illustration of the data from the MNIST data sets. (a) Normal data. (b) Difficult data.

Fig. 4. Visualization of predictive probability: P(yi = k|xi ,YNi , X Ni , A) and P(yi = k|xi ,YNi , X Ni ). (a) Result on normal test data that the distribution of
both NCA and BNCA has a single peak probability mass. (b) Result on difficult test data that NCA still has a single peak while BNCA assigns probability
to several possible candidates. The digit in green square is the ground-truth label and the digits in braces are the ranking list of predictions.

300 most difficult samples, respectively, as test sets. There
is no overlapping between these two test sets. Some of the
samples are shown in Fig. 3. To evaluate the performance
of NCA and BNCA in the two cases, we compute the
predictive probability P(yi |xi ,YNi , X Ni , A) [using (8)] and
P(yi |xi ,YNi , X Ni ) [using (29)] on the test data.

Fig. 4(a) visualizes the probability mass assigned to the
normal test samples by the two models. We can see that
both NCA and BNCA have a single peak probability mass,
indicating that both of them are quite certain about their
predictions. However, on the difficult set, their behaviors are

largely different. Fig. 4(b) gives the results on this harder
test set, and the ranking list of predictions according to their
assigned probability.

It is obvious that the NCA is overconfident in its prediction.
For example, the leftmost column of Fig. 4(b) shows that
NCA incorrectly classifies the image of “9” as “7” with a
high predictive probability of over 0.99 (those predictions with
posterior mass less than 0.01 are canceled), indicating that this
type of approximation to the posterior with a point mass is
inadequate. On the other hand, the predictions of the BNCA
are more moderate. One can see that although the true labels
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Fig. 5. Comparison of mean average precision (%) of NCA and BNCA
on (a) normal test set and (b) difficult test set.

TABLE IV

COMPARATIVE PERFORMANCE (%) OF VARIOUS METHODS ON THE

IMAGENET DATA SET (15.0% LABEL NOISE)

may not be ranked the highest, they are correctly among the
first few high ranking candidates. Under the previous example,
although there is over 60% probability is assigned to the
digital of “7” by our method, a significantly higher amount
of predictive mass (≥ 25%) than that of NCA is correctly
assigned to the number of “9.” This reveals that under difficult
conditions, BNCA provides a much better approximation to
the posterior than the point estimation method of NCA,
by considering the uncertainty of parameters.

More precisely, we compare the performance of NCA and
BNCA on the two test sets. For this, a new measurement,
i.e., modified mean average precision (MAP), is introduced as
our performance metric, which is defined as

MAP =
N∑

i=1

K∑

k=1

pi (k) · 1{yi = k} · 1{p(yi = k|xi) > τ } (39)

where pi(k) is the precision at cutoff k in i ’s ranking list and
τ is a truncating threshold. The threshold is usually set to be
a very small number (e.g., 0.01), since if the corresponding
response p(yi = k|xi) of the model to the input xi is too
small, there is no point to count it in performance measuring.

Fig. 5 gives the results. One can see that while on the normal
test data, the MAP accuracy of BNCA is slightly better than
that of NCA (about 1.0% higher), the BNCA significantly
outperforms NCA by more than 5.0% on the difficult set.
This reveals that taking the prediction uncertainty into account
indeed helps to improve the mean average precision. Also
note that since the pairwise constrained BML method [24]
only estimates whether a date pair belongs to the same
class or not, while not being able to give the predictive
distribution p(yi |xi), it is not included for comparison here.

E. Experiments on Large Scale Data Set

To evaluate the performance of our method on large scale
natural images, we conduct an experiment on ImageNet [34]

data set. This data set contains over 1.2 million color images of
totally 1000 categories. We sample a subset of 10 000 images
from ILSVRC2012 (10 categories with 1000 images per cate-
gory) as the training set and use the ILSVRC2012 validation
set as test set by discarding those out of the training categories.
Table IV gives the results. We can see that if the ground truth
of label information is used for model training, our method
perform comparable to NCA and LMNN. However, with 15%
label noise, we see that the performance of NCA significantly
reduces by 3.9%, while there is only 1.5% performance
reduction in our BNCA. Furthermore, the training time is
given in the third column of Table IV, and shows that our
BNCA method is much faster than the compared methods.
For example, it only takes less than half of the time of NCA
for our model to train. This is consistent with our analysis that
in each iteration of variational inference, the introduction of
fixed curvature Bohning bound effectively avoids computing
the Hessian matrix, resulting in significant reduction of time.

F. Discussions

1) Robustness Against Overfitting: To further investigate the
behavior of the proposed BNCA method, we plot in Fig. 6 the
learning curves of both BNCA and NCA as the function of
the number of iterations. Three data sets (Caltech-10, MNIST,
and FRGC) are used for this, with the same experimental
setting as before, and on each data set, there are 30.0%
random label noise injected. For NCA training, we used the
conjugate gradient method [35], which seeks the steepest
gradient direction with proper step size in each training step.
Fig. 6 shows that with the iterations going, on all of the three
data sets, the training errors of NCA keep decreasing but their
test errors tend to rise at the same time, indicating that the
method is easy to be overfitting under the condition of label
noise. Although some empirical tricks, such as early stopping,
can be adopted, Fig. 6 clearly shows that this is not an issue for
our Bayesian extension to the NCA. Actually, Fig. 6 reveals
that it only takes a few iterations before the learning converges.

In general, there are two types of noise, i.e., the data noise
and the label noise. Although in this paper we focus on in
the latter type of noise, i.e., noise caused by label error,
it is interesting to further investigate the robustness of BNCA
against data noise. Particularly, we, respectively, add speckle
noise and Gaussian noise onto the training images of the
Caltech-10 data set. For Gaussian noise, we vary the standard
variance from 0σ to 0.1σ , where σ is the standard variance
of data, while for speckle noise, the percent of noise features
varies from 0% to 10%. We also evaluate the performance by
varying the number of training images per class. Fig. 7 gives
the results. One can see that in all the three cases of BNCA
consistently outperform NCA, which validates the robustness
of BNCA as analysis in Section IV-B. Particularly, Fig. 7(c)
shows that with only six training images per class, our BNCA
method improves the performance of NCA from 65.0% to
about 74.0%, revealing that our method is less sensitive to the
small sample problem than the NCA method.

2) Comparison of Various Training Methods: In this
section, we investigate the effectiveness of our training
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Fig. 6. Learning curves of NCA and BNCA. The classifier is KNN and the noise level is at 30%. (a)–(c) With the training set. (d)–(f) With the test set.

Fig. 7. Performance of BNCA and NCA under (a) speckle noise, (b) Gaussian noise, and (c) small sample size. For Gaussian noise, we vary the standard
variance from 0σ to 0.1σ , where σ is the standard variance of data, while for speckle noise, the percent of noise features varies from 0% to 10%.

Fig. 8. Performance comparison among different variants of NCA meth-
ods (NCA, SNCA, MBNCA, and BNCA) on the Caltech-10 data set (a) with
30% label noise and (b) under imbalanced training set.

method by comparing it with two methods that solve
numerically the nonapproximate functional instead of with
closed form, i.e., spectral NCA (SNCA) and MCMC BNCA
(MBNCA). The SNCA is a variant of NCA that uses the

eigenapproximation to learn the model, i.e., replacing the
distance metric parameter A in (1) to (3) with A = ∑

γiviv
T
i ,

and performing the optimization using gradient ascent

∂L

∂γ
=

∑

i

⎛

⎝
∑

j∈Ni

pi jwi j −
∑

j∈Ni
yi j pi jwi j

∑
j∈Ni

yi j pi j

⎞

⎠ (40)

where wi j is defined in (10).
The MBNCA is a sampling-based [36] approach to learn γ̄

γ̄ =
∫

γ
γ · p(γ |S)dγ

= 1

C

∫

γ
γ · p(S|γ )p(γ )dγ

≈ 1

C

T∑

t=1

γt · p(S|γt ) (41)
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Fig. 9. Influence of prior with 30% label noise on the Caltech-10 data set.
(a) Training size = 300. (b) Training size = 600.

where γt is sampled from prior distribution p(γ ), and the
normalizing const C is estimated as follows:

C =
∫

γ
p(S|γ )p(γ )dγ ≈

T∑

t=1

p(S|γt ). (42)

To test these methods, we conducted a series of experiments
on the Caltech-10 data set with two settings: 1) with 30%
label noise and 2) under imbalanced training data. For the
latter case, we randomly sampled different numbers (e.g., 3,
6,…30) of images from each of the ten class as training set;
hence, each time in training the size of each class is different.

Fig. 8 gives the results. One can see that under both
experimental settings, compared with the baseline algo-
rithm (NCA), both approximation methods based on numerical
techniques (e.g., SNCA and MBNCA ) and our closed form
solver (BNCA) achieve better performance, and our BNCA
method performs the best. For example, on the imbalanced
data set, the accuracy of NCA is 73.5% and the SNCA
slightly improves this to 74.8%, while our BNCA significantly
outperforms both methods, achieving an accuracy of 77.5%.
Fig. 8 also shows that the BNCA method consistently performs
better than the sampling-based MBNCA method, revealing the
effectiveness of our closed form solution.

3) Effect of Regularization: To investigate the effect of
relative importance of two major components of the proposed
method, i.e., prior and local variational inference with spectral
decomposition, we conducted a series of experiments on the
Caltech-10 data set with 30% random label noise by changing
the degree of prior knowledge used in the model. Specifically,
we vary the value of σ 2 (V0 = σ 2 I ) from 10−4 to 104

but keeping the mean value m0 fixed at the same time. Note
that a large value of σ 2 indicates that the prior tends to be
more noninformative (i.e., higher uncertain) about the γ value.
Fig. 9 shows how the performance changes as a function of
the degree of uncertainty in prior. We have three observations
from Fig. 9: 1) the prior is beneficial when the value of σ 2

in a relatively large range between 10−3 and 101; 2) even
when the prior is very flat (e.g., σ 2 is larger than 101),
our BNCA method still works better than the baseline NCA
method, which indicates that the robustness capability of our
approach; and 3) as expected, with increasing amount of data,
the influence of the prior distribution on posterior quantities
becomes weaker.

4) Comparison of BNCA and Gaussian Process: Besides
BML, Gaussian process (GP) is also a widely used approach

Fig. 10. Comparison of GPML and BNCA on the Caltech-10 data set.

to estimate the uncertainty of prediction. There are some
connections between them. In [37], a GP for ML (GPML)
method is proposed. The objective is to maximize the marginal
distribution p(Y |A), which is shown to be

log p(Y |A) = −1

2
Y T K −1Y − 1

2
log |K | + const (43)

where Y = [y1, y2, . . . yN ]T (yi ∈ {−1, 1}) is the class labels
of training data. The covariance (kernel) matrix K is chosen
to be Kij = 1/(xi − x j )

T A(xi − x j ). Let A = M MT ;
then, −log |K | can be regarded as an L2-norm regularizer
on M . Note that Y T K −1Y = ∑

i

∑
j yi j K −1

i j , where yi j =
1{yi = y j }. Hence, GP can also be regarded as a pairwise
constrained ML method (similar argument is also valid for
logistic regression, as in [1]).

However, despite such connection in the context of DML,
there are two main differences between GP and BML:
1) in GPML, the parameters are learned via point estima-
tion (evidence maximization), which is not robust against label
noise and 2) GP is a nonparametric method and has higher
computational cost than ours, due to the need of computing
the inverse of the covariance matrix.

Due to the above-mentioned reasons, our method is superior
to GP regarding both robustness and efficiency. Note that one
can think of the DML as a kind of feature extraction and,
hence, can embed it into GP through the covariance matrix
K for classification. We conduct an experiment to compare
the performance of GPML and BNCA on Caltech-10 data set
using two classifiers, i.e., KNN and GP, respectively. For KNN,
both GPML and BNCA are used as the similarity measure,
while for GP, they are just two different ways to calculate the
K matrix. Fig. 10 gives the results. It shows that our BNCA
consistently outperforms GPML no matter with or without
label noise. Fig. 10 also shows that as a nonlinear classifier,
GP leads to higher performance than KNN.

VI. CONCLUSION

We present a new BML method—BNCA that effectively
improves the performance of KNN classifier under the condi-
tion of small sample size and/or when data labels are noisy.
The method is based on the classical NCA method with point
estimation, and for the first time extends it under the Bayesian
framework. The major advantages of BNCA over NCA in
DML are threefolds: 1) it is easy to train without worrying
about overfitting; 2) it performs more robust compared with
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NCA under difficult conditions; and 3) it naturally handles
label noise by reducing the influence of data points with pos-
sible labeling errors. In addition, to improve the efficiency of
Bayesian learning, we introduce a new variational lower bound
of the log-likelihood of the objective. Extensive experiments
conducted on several challenging real-world applications show
that the performance of the proposed BNCA method sig-
nificantly improves upon the baseline NCA method and it
outperforms several other state-of-the-art DML methods as
well. We are currently investigating more applications of the
proposed BNCA method, such as image retrieval with model
uncertainty.
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