
Robust image segmentation using FCM with spatial constraints 

based on new kernel-induced distance measure 

 

Songcan Chen1, 2* and Daoqiang Zhang1 

 

1Department of Computer Science and Engineering, Nanjing University of 

Aeronautics and Astronautics, Nanjing, 210016, People’s Republic of China 

2National Laboratory of Pattern Recognition, Institute of Automation, Chinese 

Academy of Sciences, Beijing, 100080, P.R. China 

 

_____________________________________________________________________ 

Abstract --- Fuzzy c-means clustering (FCM) with spatial constraints (FCM_S) is an 

effective algorithm suitable for image segmentation. Its effectiveness contributes not 

only to introduction of fuzziness for belongingness of each pixel but also to 

exploitation of spatial contextual information. Although the contextual information 

can raise its insensitivity to noise to some extent, FCM_S (1) still lacks enough 

robustness to noise and outliers and (2) is not suitable for revealing non-Euclidean 

structure of the input data due to the use of Euclidean distance (L2 norm). In this paper, 

to overcome the above problems, we first propose two variants, FCM_S1 and FCM_S2, 

of FCM_S to aim at simplifying its computation and then extend them, including 
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FCM_S, to corresponding robust kernelized versions KFCM_S, KFCM_ S1 and 

KFCM_ S2 by the kernel methods. Our main motives of using the kernel methods 

consist in: (1) inducing a class of robust non-Euclidean distance measures for the 

original data space to derive new objective functions and thus clustering the 

non-Euclidean structures in data; (2) enhancing robustness of the original clustering 

algorithms to noise and outliers, and (3) still retaining computational simplicity. The 

experiments on the artificial and real-world datasets show that our proposed 

algorithms, especially with spatial constraints, are more effective. 

Index Terms --- Image segmentation, fuzzy C-means clustering, kernel methods, 

kernel-induced distance measures, robustness, spatial constraints. 

_____________________________________________________________________ 



I. Introduction 

Image segmentation plays an important role in a variety of applications such as robot 

vision, object recognition, and medical imaging [1]-[3]. In the last decades, fuzzy 

segmentation methods, especially the fuzzy c-means algorithm (FCM) [4], have been 

widely used in the image segmentation [26]-[27] and such a success chiefly attributes 

to introduction of fuzziness for the belongingness of each image pixel, which makes 

the clustering methods able to retain more information from the original image than 

the crisp or hard segmentation methods [5]. So-called clustering is to partition a set of 

given observed input data vectors or image pixels into c-clusters so that members of 

the same cluster are similar to one another than to members of other clusters where 

the number, c, of clusters is usually pre-defined or set by some validity criterion or a 

priori knowledge. 

Generally, clustering methods can be categorized into [25]: hierarchical, graph 

theoretic, decomposing a density function and minimizing an objective function. In 

this paper, we will focus on clustering methods by minimization of objective function 

and apply them to segment images.  

Mathematically, the standard FCM objective function of partitioning a dataset 
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where |||| ⋅  stands for the Euclidean norm. Equivalently, Eq. (1a) can, in an inner or 

scalar product form, be rewritten as 
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⊂v are the centroids or prototypes of the clusters, T denotes matrix 

transpose, the parameter m is a weighting exponent on each fuzzy membership and the 

array U=[uik] is a fuzzy partition matrix satisfying 
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Although the original intensity-based FCM algorithm functions well on 

segmenting most noise-free images, it fails to segment images corrupted by noise, 

outliers and other imaging artifacts, such as the intensity inhomogeneity induced by 

the radio-frequency coil in magnetic resonance imaging (MRI), and thus leads to its 

non-robust results mainly due to (1) the use of non-robust Euclidean distance and (2) 

disregard of spatial contextual information in image. To deal with the first problem, 

some researchers adopted so-called robust distance measures, such as Lp norms 

(0<p≤1)[28-30], to replace the L2 norm in the FCM objective function reducing the 

effect of outliers on clustering results, and while many other algorithms have also 

been proposed to deal with the second problem by incorporating spatial information 

into original FCM objective function [33], [5]-[10], for example, Ahmed et al 

modified FCM objective function by incorporating spatial constraints (called as 

FCM_S later)[9]. However, besides the increase in computational time due to such 

introduction of spatial constraints, two problems with the FCM_S algorithm still 

suffer: one is insufficient robustness to outliers as shown in our experiments, and the 

other is difficult to cluster non-Euclidean structure in data such as non-spherical shape 



clusters.  

In this paper, we first propose two variants, FCM_S1 and FCM_S2, of FCM_S in 

[9] with an intent to simplify the computation of parameters and then extend them, 

together with the original FCM_S, to corresponding kernelized versions, KFCM_S, 

KFCM_ S1 and KFCM_ S2 , by the kernel function substitution. Goals of adopting the 

kernel functions aim: (1) to induce a class of new robust distance measures for the 

input space and then replace non-robust L2 measure to cluster data or segment images 

more effectively; (2) to more likely reveal inherent non-Euclidean structures in data 

and (3) to retain simplicity of computation.  

The kernel methods [11]-[16] are one of the most researched subjects within 

machine learning community in the recent few years and have widely been applied to 

pattern recognition and function approximation. Typical examples are support vector 

machines [12]-[14], kernel Fisher linear discriminant analysis (KFLDA) [15], kernel 

principal component analysis (KPCA) [16], kernel perceptron algorithm [24], and just 

name a few. The fundamental idea of the kernel method is to first transform the 

original low-dimensional inner-product input space into a higher (possibly infinite) 

dimensional feature space through some nonlinear mapping where complex nonlinear 

problems in the original low-dimensional space can more likely be linearly treated 

and solved in the transformed space according to the well-known Cover’s theorem 

[17]. However, usually such mapping into high-dimensional feature space will 

undoubtedly lead to an exponential increase of computational time, i.e., so-called 

curse of dimensionality. Fortunately, adopting kernel functions to substitute an inner 



product in the original space, which exactly corresponds to mapping the space into 

higher-dimensional feature space, is a favorable option. Therefore, the inner product 

form in Eq. (1b) leads us to applying the kernel methods to cluster complex data 

[21]-[22]. However, compared to the approaches presented in [21]-[22], a major 

difference of our proposed approach in this paper is that we do not adopt so-called 

dual representation for each centroid, i.e., a linear combination of all given dataset 

samples, but directly transform all the centroids in the original space, together with 

given data samples, into high-dimensional feature space with an (implicitly) mapping. 

Such a direct transformation brings us the following benefits: (1) inducing a class of 

robust non-Euclidean distance measures if we employ robust kernels; (2) inheriting 

the computational simplicity of the FCM; (3) interpreting clustering results intuitively; 

even (4) coping with data set with missing values easily [31]. The proposed 

algorithms, especially with the spatial constraints, are shown to be more robust to 

noise and outlier in image segmentation than the algorithms without the kernel 

substitution.  

The rest of this paper is organized as follows. In Section II, the conventional 

spatial FCM algorithm (FCM_S) for image segmentation is introduced and two new 

low-complexity variants are derived. In Section III, we obtain a group of kernel fuzzy 

clustering algorithms with spatial constraints for image segmentation by first 

replacing the Euclidean norm in the objective functions with kernel-induced 

non-Euclidean distance measures and then minimizing these new objective functions. 

The experimental comparisons are presented in Section IV. Finally, Section V gives 



our conclusions and several issues for future work.  

II. Fuzzy clustering with spatial constraints (FCM_S) and its Variants 

In [9], an approach was proposed to increase the robustness of FCM to noise by 

directly modifying the objective function defined in (1) as follows 
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where kN stands for the set of neighbors falling into a window around kx  and RN is its 

cardinality. The parameter α  in the second term controls the effect of the penalty. In 

essence, the addition of the second term in (3), equivalently, formulates a spatial 

constraint and aims at keeping continuity on neighboring pixel values around kx . By 

an optimization way similar to the standard FCM algorithm, the objective 

function mJ can be minimized under the constraint of U as stated in (2). A necessary 

condition on iku  for (3) to be at a local minimum is 
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A shortcoming of (4) and (5) is that computing the neighborhood terms will take 

much more time than FCM. In this section, we will present two low-complexity 

modifications or variants to (3). Firstly, we notice that by simple manipulation, 
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kx is a mean of neighboring pixels lying within a window around kx . Unlike (3), 

kx can be computed in advance, thus the clustering time can be saved when 

21
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r iN
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−∑ x v  in (3) is replaced with 
2

k i−x v . Hence the simplified objective 

functions can be rewritten as 
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Similarly, we can obtain the following solution by minimizing (6) 
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Therefore (4) and (5) obtain simplification to some extent. In order to enhance 

robustness of clustering, kx  can be considered to take as median of the neighbors 

within a specified window around kx . Similarly from (7) and (8), we can see that α  

controls the tradeoff between the original image and the corresponding mean- or 

median-filtered image. When α is set to zero, the algorithm is equivalent to the 

original FCM, while α  approaches infinite, the algorithm acquires the same effect as 

the original FCM on the mean or median filtered image respectively.  

For convenience of notation later, we will name the algorithm using (4) and (5) 

FCM_S, the ones using (7) and (8) with mean and median filtering FCM_S1 and 

FCM_S2 respectively. The above algorithms can uniformly be summarized in the 

following steps. 



Algorithm 1: 

 Step 1) Fix the number c of these prototypes or clusters and then select initial 

prototypes (centroids) , and set 0>ε  to a very small value. 

Step 2) For FCM_S1 and FCM_S2 only, compute the mean or median filtered 

image. 

Step 3) Update the partition matrix using Eqs. (4) (FCM_S) or Eqs. (7) (FCM_S1 

and FCM_S2). 

Step 4) Update the centroids using Eqs. (5)(FCM_S) or Eqs. (8)(FCM_S1 and 

FCM_S2). 

Repeat Steps 3)-4) until the following termination criterion is satisfied:  

new old ε− <V V  

where [ , ,..., ]1 2 c=V v v v  are the vectors of cluster centroids. 

III. Fuzzy c-means with spatial constraints based on kernel-induced distance 

A. The kernel methods and kernel functions 

   Let : ( ) ( )d HX R F R d HΦ ∈ ⊆ Φ ∈ ⊆x x6 �  be a nonlinear transformation 

into a higher (possibly infinite)-dimensional feature space F. In order to explain how 

to use the kernel methods, let us recall a simple example[13]. If [ ]1 2, Tx x=x and 

2 2
1 1 2 2( ) , 2 ,

T
x x x x Φ =  x , where xi is the ith component of vector x. Then the inner 

product between Φ(x) and Φ(y) in the feature space F are: Φ(x)T Φ(y)=[(x1)2, 2 x1 x2, 

(x2)2]T [(y1)2, 2 y1 y2, (y2)2]=(xTy)2=K(x, y). Thus, in order to compute the inner 

products in F, we can use kernel representation K(x, y), without explicitly using 

transformation or mapping Φ (thus overcoming curse of dimensionality). It is a direct 



consequence from [11]: every linear algorithm that only uses inner products can be 

easily extended to a nonlinear version only through the kernels satisfying the Mercer’s 

conditions [11]. In the following are given typical radial basis function (RBF) and 

polynomial kernels: 

1
2

( )
( , ) exp

d
a b

i i
i

x y
K

σ
=

 
− − 

 =
 
 
 

∑
x y                               (9) 

where d is the dimension of vector x; 21;0 ≤≤≥ ba . Obviously, ( , ) 1K =x x for all x 

and the above RBF kernels, and a polynominal with degree of p 

( , ) ( 1)T pK = +x y x y                                   (10) 

From Eq.(1b), we can now use kernel functions to substitute the inner products there 

to realize an implicit mapping into some feature space so that their corresponding 

kernelized versions are constructed. Actually, there are two ways to kernelize FCM 

and FCM_S: one is to view every centroid as a mapped point in the feature space and 

use their dual forms, i.e., a linear combinatin of all data samples, to replace original 

certroids to get clustering results in the feature space but not in the original space as in 

[21-22]. In this way, the resulting clustering are not easily interpreted intuitively in 

the original space. The other [18] is to still view every centroid as a data point in the 

original space like given samples and directly transform them, together with the data 

samples, into the feature spaces and then carry out clustering. A advantage of doing so 

is that clustering is performed still in the original space and thus the results can easier 

be interpreted intuitively as will be done below. In this paper, we adopt the latter 

kernelizing way. 



B. FCM based on kernel-induced distance (KFCM) 

With the above formulations, we are now in position to construct the kernelized 

version of the FCM algorithm and modify its objective function with the mapping Φ 

as follows 
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Now through the kernel substitution, we have 
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in this way, a new class of non-Euclidean distance measures in original data space 

(also a squares norm in the feature space) are obtained. Obviously, different kernels 

will induce different measures for the original space, which leads to a new family of 

clustering algorithms. In particular, if the kernel function ( , )K x y  is taken as the RBF 

in Eq.(9), Eq. (12) can be simplified to ( )( )2 1 ,k iK− x v . Furthermore, for sake of 

conveinence of manipulation below and robustness, in this paper, we only consider 

the Gaussian RBF(GRBF) kernel with a=2 and b=1 in Eq. (9) (in fact, by means of 

the Huber’s robust statistics [19], [23], we can prove that the measures based on Eqs. 

(9) are robust but those based on polynomials are not), then Eq. (11) can be rewritten 

as 
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Therefore an algorithm in [23] immediately becomes a special case of ours, where the 

distance measure is not induced from a viewpoint of the kernel but just is a direct 



definition. In addition, when the parameter σ in Eq. (9) is a sufficient large positive 

constant, we can again obtain the FCM and its robust versions such as the 

Lp-norm-based clustering algorithms [28]-[30] because from Eq. (9), we have 
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Eq. (13). Obviously if a=p and b=1/p, mJ Φ  reduces to the objective function based on 

the Lp norm. 

By an optimization way similar to the FCM, mJ Φ can be minimized under the 

constraint of U same as (2). Specifically, if we take its first derivatives with respect to 

iku  and iv , and zero them respectively, two necessary but not sufficient conditions for 

mJ Φ  to be at local minimum will be obtained as below 

( )

( )

1/( 1)

1/( 1)

1

1 ( , )

1 ( , )

m
k i

ik c m

k j
j

K
u

K

− −

− −

=

−
=

−∑
x v

x x
                               (14) 

1

1

( , )

( , )

n
m
ik k i k

k
i n

m
ik k i

k

u K

u K

=

=

=
∑

∑

x v x
v

x v
                                     (15) 

It is evident that the obtained centroids or prototypes {vi} still lie in the original 

space and not in the transformed higher dimensional feature space, thus the 

computational simplicity is still retained. In addition, it is shown that the KFCMs 

resulted from Eq. (11), i.e., Eq. (13), are robust to outliers and noise according to 

Huber’s robust statistics [19], [23]. This characteristic can also give an intuitive 

explanation from (15): the data point kx  is endowed with an additional weight 

( , )k iK x v , which measures the similarity between kx  and iv , and when kx  is an 



outlier, i.e., kx  is far from the other data points, ( , )k iK x v will be very small, so the 

weighted sum of data points shall be suppressed and hence result in robustness. Our 

experiments also confirm that new algorithms are indeed more robust to outliers and 

noise than FCM.  

C. FCM with spatial constraints based on kernel-induced distance (KFCM_S) 

In this subsection, we will construct the corresponding kernelized version of the 

FCM_S algorithm. Similar to the derivation of KFCM, we kernelize criterion (3) and 

obtain the following new objective function through the newly-induced distance 

measure substitution,  
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where ( , )K x y is still taken as GRBF, kN , kx , α and RN are defined as before. 

An iterative algorithm of minimizing (16) with respect to iku and vi can similarly 

be derived again 
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In practical realization of the algorithm, we use Eq. (18b) below to replace (18a) 

so as to further reduce computation of Eq. (18a). In fact, such a simplification is not 

able to cause bad effective to clustering results as shown in our experiments. 
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Similarly, a kernelized modification to Eq. (6) is 
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where kx is defined as before and directly viewed a data point in the original space to 

be mapped byΦ  and thus can be computed in advance and stored. And the objective 

function in (19) is minimized using the following alternate iterations 
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In the rest of the paper, we name the algorithm using (17) and (18) as KFCM_S, 

the algorithms using (20) and (21) with mean or median filter as KFCM_S1 and 

KFCM_S2 respectively. The above algorithms can be summarized in the following 

unified steps. 

Algorithm 2: 

Step 1) Fix the number c of these centroids or clusters and then select initial class 

centroids and set 0>ε to a very small value. 

Step 2) For KFCM_S1 and KFCM_S2 only, compute the mean or median filtered 

image. 

Step 3) Update the partition matrix using Eqs. (17) (KFCM_S) or Eqs. (20) 



(KFCM_S1 and KFCM_S2). 

Step 4) Update the centroids using Eqs. (18b) (KFCM_S) or Eqs. (21) (KFCM_S1 

and KFCM_S2). 

Repeat Steps 3)-4) until the following termination criterion is satisfied:  

new old ε− <V V  

where V are defined as before. 

   The optimization flowcharts described in Algorithm 1 and Algorithm 2 are called 

a fixed-point iteration (FPI) or alternate optimization (AO) as in FCM and [23], the 

iteration process will terminate to the user-specified number of iteration or local 

minima of the corresponding objective functions. Consequently optimal or locally 

optimal results can always be ensured. 

IV. Experimental results 

In this section, we describe the experimental results on several synthetic and real 

images. There are totally eight algorithms used in this section, i.e., standard FCM, 

KFCM, FCM_S, KFCM_S, FCM_S1, KFCM_ S1, FCM_S2 and KFCM_ S2. The 

kernel used in KFCM _S, KFCM _S1 and KFCM _S2 is the Gaussian RBF kernel. 

Note that the kernel width σ  in Gaussian RBF has a very important effect on 

performances of the algorithms. However, how to choose an appropriate value for the 

kernel width in Gaussian RBF is still an 'open problem'. In this paper, we adopt the 

'trial-and-error' technique and set the parameter 150=σ . We also find that for a wide 

range of σ  around 150 (e.g. from 100 to 200), there seem no apparent changes in 

results. Thus we use this constant value in all experiments throughout the paper. In 



addition, we set the parameters 2=m , 0.001ε = , 9=RN ( a 3x3 window centered 

around each pixel, used in FCM_S and KFCM_S only) in the rest experiments. 

Our first experiment applies these algorithms to a synthetic test image. The image 

with 64x64 pixels includes two classes with two intensity values taken as 0 and 90. 

We test the algorithms’ performance when corrupted by 'Gaussian' and ' Salt & 

Pepper' noises respectively and the results are shown in Table 1 and Fig. 1. Table 1 

gives the segmentation accuracy (SA) of the eight algorithms on two different noisy 

images, where SA is defined as the sum of the total number of pixels divided by the 

sum of number of correctly classified pixels [9]. Fig. 1 shows the result on 'Salt & 

Pepper' noise corrupted image. Here the parameters 2c = , 3.8α = . From Table 1 

and Fig. 1, KFCM achieves nearly the same result as FCM, and neither can algorithm 

remove the disturbances of noises due to no spatial information used in both 

algorithms. On the other hand, the kernel versions with spatial constraints are superior 

to the corresponding classical algorithms, especially on the 'Salt & Pepper' corrupted 

image. 

We take a set of values for α  to test its effect on performance. Fig. 2 and 3 show 

the comparisons of classification errors of FCM_S, KFCM_S, FCM_S1, KFCM_ S1, 

FCM_S2 and KFCM_ S2 under different values of α  on the synthetic image 

corrupted by 'Gaussian' and 'Salt & Pepper' noises respectively. From Fig. 2, as α  

increases, the numbers of misclassified pixels of all six algorithms reduce under 

'Gaussian' noises, and there are no apparent changes after 3α = . It can also be seen 

from Fig. 2 that the kernel version algorithms are superior to the corresponding 



classical algorithms. According to Fig. 3, we know that under 'Salt & Pepper' noises, 

the kernel version algorithms, i.e. KFCM_S, KFCM_ S1, and KFCM_ S2, still achieve 

much better performance than FCM_S, FCM_ S1, and FCM_S2. From Fig. 3, for 

KFCM_S and KFCM_ S2, there are no apparent changes after 3α = , implying 

performance to be stable, and most of these algorithms reach minima between 3α =  

and 4α = . 

Fig. 4 presents a comparison of segmentation results on a real image [20]. Fig. 

4(a) is the original image corrupted by 'Gaussian' and 'Salt & Pepper' noise 

simultaneously. Fig. 4(b)-(i) show the results applying the eight algorithms on Fig. 4(a) 

respectively. We use 2c =  and 3.8α =  in the experiment. In this case, the margins 

of the segmented image of FCM_S1 and KFCM_S1 are a little blurred because of the 

use of mean filter. It can be easily seen that KFCM_S, KFCM_S1 and KFCM_S2 

achieve much better segmentation in the presence of hybrid noise, compared to the 

corresponding FCM_S, FCM_S1 and FCM_S2 algorithms. 

Fig. 5 and 6 present a comparison of segmentation results of the eight algorithms 

applied on T1-weighted MR phantom [32]. We use a high-resolution T1-weighted 

phantom with slice thickness of 1mm, 3% noise and no intensity inhomogeneities. 

Two slices in the axial plane with the sequence of 121 and 91 are shown in Fig. 5(a) 

and Fig. 6(a) respectively. The segmentation results on two slices using the eight 

methods with eight classes are shown in Fig. 5(b)-(i) and 6(b)-(i) respectively. And 

Table 2 gives the quantitative comparison scores corresponding to Fig. 5(a) and 6(a) 

using eight methods for gray matter, white matter and cerebrospinal fluid, where the 



comparison scores are calculated as 

ij refj
ij

ij refj

A A
s

A A
=

∩
∪

                                  

where ijA  represents the set of pixels belonging to the jth class found by the ith 

algorithm and refjA  represents the set of pixels belonging to the jth class in the 

reference segmented image. In the experiment, we use the parameter α =0.8 for all 

algorithms with spatial constraints. From Fig. 5 and 6 and Table 2, the kernel version 

algorithms outperform the corresponding classical algorithms.  

To test the performances of the eight algorithms under other levels of noises on 

the simulated brain database [32], we do the following comparison experiments. Fig. 

7 and 8 show the relationship between the comparison scores of the eight algorithms 

and noise levels on two image slices in the axial plane with the sequence of 121 and 

91 respectively. Obviously, as the level of noises increases, performances of most 

algorithms gradually degrade, but the kernel version algorithms still surpass the 

corresponding classical ones. 

Fig. 9 and 10 show the comparison of segmentation results on real T1-weighted 

MR images with artificially added 'Gaussian' and 'Salt & Pepper' noises respectively. 

Note that MR images typically do not suffer from 'Salt & Pepper' noise, and we add 

such type of noise just for the comparison of robustness to noises of different 

algorithms. We do not consider KFCM algorithm in this experiment, because without 

spatial constraints, KFCM has the similar performance as that of FCM, as shown in 

Fig. 1 and 2. Fig. 9(b)-(i) and 10(b)-(i) show segmentation results from applying the 

seven algorithms on Fig. 9(a) and Fig. 10(a) respectively. Here the parameters 3c = , 



3.8α =  are used in the experiment. From Fig. 9 and 10, FCM_S and KFCM_S have 

bad performance in the presence of 'Gaussian' noise, while FCM_S1, FCM_S2, 

KFCM_S1 and KFCM_S2 achieve satisfactory results and the latter two are a little 

superior to the former two algorithms. On the other hand, when 'Salt & Pepper' noise 

is added, only KFCM_S and KFCM_S2 work well, while the other algorithms fail to 

remove the effect of added noises. On the whole, KFCM_S2 algorithm achieves better 

segmentation results under both noises. 

Finally, Table 3 gives the comparison of the running time on two MR images (see 

Fig. 5(a) and 6(a)) using FCM_S, KFCM_S, FCM_S1, KFCM_S1, FCM_S2 and 

KFCM_S2. We artificially add 'Gaussian' and 'Salt & Pepper' noises on both MR 

images and perform experiments on an IBM computer with 1.7 GHz Pentium 

processor using MATLAB (Mathworks, Inc). From Table 3, our proposed FCM_S1 

and FCM_S2 are much faster than the original FCM_S (typically 3-10 times faster), 

while their corresponding kernelized versions (KFCM_S1 and KFCM_S2) need no 

less run-time than KFCM_S in most cases, but still less than original FCM_S 

algorithm. 

V. Conclusions 

The well-known 'kernel methods' has been recently applied to unsupervised 

clustering [18], [21]-[22]. However, an unfavorable point of these existed kernel 

clustering algorithms is that the clustering prototypes lie in high dimensional feature 

space and hence clustering results are not easily interpreted as intuitively as in the 

original space. In this paper, based on one of our early works [22], we use a group of 



novel fuzzy clustering algorithms based on a family of kernel-induced distance 

measures for image segmentation. We discussed three types of spatial constraint on 

the objective function of original FCM to effectively segment images corrupted by 

noise and outliers. Synthetic and real images were used to compare the performances 

of these algorithms including segmentation evaluation and run-time requirements. On 

the whole, KFCM algorithms with spatial constraints (SC) have more robustness to 

noise and outliers than their counterparts without SC. In our opinions, we suggest 

using KFCM_S2 algorithm in practice considering the tradeoff between robustness to 

different noises and execution speed. 

The results reported in this paper show that the kernel method is an effective 

approach to constructing a robust image clustering algorithm. This method can also be 

used to improve the performance of other FCM-like algorithms based on adding some 

type of penalty terms to the original FCM objective function. Our further and ongoing 

works include clustering validity in our algorithms, adaptive determination for the 

clustering number and other applications, e.g., gain field estimation. 
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Figure Captions: 

 

Fig. 1 Comparison of segmentation results on synthetic test image. (a) Original image 

with 'Salt & Pepper' noise, (b) FCM result, (c) KFCM result, (d) FCM_S result, (e) 

KFCM_S result, (f) FCM_S1 result, (g) KFCM_S1 result, (h) FCM_S2 result, (i) 

KFCM_S2 result. 

Fig. 2 Comparison of classification errors on synthetic image with 'Gaussian' noise 

under different values of alpha. 

Fig. 3 Comparison of classification errors on synthetic image with 'Salt & Pepper' 

noise under different values of alpha 

Fig. 4 Comparison of segmentation results on a real image corrupted by hybrid 

'Gaussian' and 'Salt & Pepper' noise. (a) The original noisy image, (b) FCM result, (c) 

KFCM result, (d) FCM_S result, (e) KFCM_S result, (f) FCM_S1 result, (g) 

KFCM_S1 result, (h) FCM_S2 result, (i) KFCM_S2 result. 

Fig. 5 Comparison of segmentation results on a simulated brain MR image. (a) 

Original T1-weighted image, (b) using FCM, (c) using KFCM, (d) using FCM_S, (e) 

using KFCM_S, (f) using FCM_S1, (g) using KFCM_S1, (h) using FCM_S2, (i) using 

KFCM_S2. 

Fig. 6 Another simulated brain MR image example. (a) Original T1-weighted image, 

(b) using FCM, (c) using KFCM, (d) using FCM_S, (e) using KFCM_S, (f) using 

FCM_S1, (g) using KFCM_S1, (h) using FCM_S2, (i) using KFCM_S2. 

 



Fig. 7 Comparison scores of eight methods on simulated brain MR image under 

different level of noises. 

Fig. 8 Comparison scores of eight methods on another simulated brain MR image 

under different level of noises. 

Fig. 9 Brain MR image segmentation example. (a) Original image with 'Gaussian' 

noise, (b) FCM result, (c) FCM_S result, (d) KFCM_S result, (e) FCM_S1 result, (f) 

KFCM_S1 result, (g) FCM_S2 result, (h) KFCM_S2 result. 

Fig. 10 Another brain MR image segmentation example. (a) Original image with 'Salt 

& Pepper' noise, (b) FCM result, (c) FCM_S result, (d) KFCM_S result, (e) FCM_S1 

result, (f) KFCM_S1 result, (g) FCM_S2 result, (h) KFCM_S2 result. 
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Table 1 Segmentation accuracy (SA %) of eight methods on synthetic image  

 FCM KFCM FCM
_S 

KFCM
_S 

FCM
_S1 

KFCM
_S1 

FCM
_S2 

KFCM 
_S2 

Salt& 
Pepper 96.92 96.92 98.19 99.83 98.28 99.67 98.17 99.69 

Gaussian 93.97 94.58 99.83 99.89 99.72 99.81 99.86 99.86 
 
 

Table 2 Comparison scores of eight methods for Fig. 3(a) and 4(a)  

 Fig. 3(a) Fig. 4(a) 
FCM 0.9229 0.5412 0.5170 0.9088 0.4606 0.6576 
KFCM 0.9317 0.6485 0.8422 0.9301 0.6293 0.8780 
FCM_S 0.7944 0.0076 0.2254 0.7943 0.0102 0.3177 
KFCM_S 0.9314 0.6592 0.8966 0.9350 0.7016 0.9173 
FCM_S1 0.9526 0.6965 0.8828 0.9492 0.6790 0.8732 
KFCM_S1 0.9557 0.7490 0.9190 0.9532 0.7380 0.9155 
FCM_S2 0.9437 0.6612 0.8001 0.9391 0.6552 0.8861 
KFCM_S2 0.9494 0.7084 0.9026 0.9443 0.6911 0.9198 
 
 

Table 3 Comparisons of running time of six algorithms on two MR images (x 103 

seconds) 

 FCM_S KFCM_S FCM_S1 KFCM_S1 FCM_S2 KFCM_S2

Gaussian 1.6729 1.2056 0.2673 1.2458 0.2135 1.3797 Slice 
1 Salt & 

Pepper 1.5637 2.1205 0.5722 1.7527 0.5870 1.3920 

Gaussian 2.4367 0.7930 0.3488 2.3074 0.2275 1.0275 Slice 
2 Salt & 

Pepper 3.4214 0.7027 0.3554 1.5369 0.3036 1.2005 

 


