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Abstract: Image segmentation plays a crucial role in many medical imaging applications. In this 

paper, we present a novel algorithm for fuzzy segmentation of magnetic resonance imaging (MRI) 

data. The algorithm is realized by modifying the objective function in the conventional fuzzy 

C-means (FCM) algorithm using a kernel-induced distance metric and a spatial penalty on the 

membership functions. Firstly, the original Euclidean distance in the FCM is replaced by a 

kernel-induced distance, and thus the corresponding algorithm is derived and called as the 

kernelized fuzzy C-means (KFCM) algorithm, which is shown to be more robust than FCM. Then 

a spatial penalty is added to the objective function in KFCM to compensate for the intensity 

inhomogeneities of MR image and to allow the labeling of a pixel to be influenced by its 

neighbors in the image. The penalty term acts as a regularizer and has a coefficient ranging from 

zero to one. Experimental results on both synthetic and real MR images show that the proposed 

algorithms have better performance when noise and other artifacts are present than the standard 

algorithms. 
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1.  Introduction 

With the increasing size and number of medical images, the use of computers in facilitating 

their processing and analyses has become necessary [1]. In particular, as a task of delineating 

anatomical structures and other regions of interest, image segmentation algorithms play a vital role 

in numerous biomedical imaging applications such as the quantification of tissue volumes, 

diagnosis, study of anatomical structure, and computer-integrated surgery [1-3]. Classically, image 

segmentation is defined as the partitioning of an image into non-overlapping, constituent regions 

which are homogeneous with respect to some characteristics such as intensity or texture.  

Because of the advantages of magnetic resonance imaging (MRI) over other diagnostic 

imaging [2], the majority of researches in medical image segmentation pertains to its use for MR 

images, and there are a lot of methods available for MR image segmentation [2-3, 5-7]. Among 

them, fuzzy segmentation methods are of considerable benefits, because they could retain much 

more information from the original image than hard segmentation methods [3]. In particular, the 

fuzzy C-means (FCM) algorithm [4], assign pixels to fuzzy clusters without labels. Unlike the 

hard clustering methods which force pixels to belong exclusively to one class, FCM allows pixels 

to belong to multiple clusters with varying degrees of membership. Because of the additional 

flexibility, FCM has been widely used in MR image segmentation applications recently. However, 

because of the spatial intensity inhomogeneity induced by the radio-frequency coil in MR image, 

conventional intensity-based FCM algorithm has proven to be problematic, even when advanced 

techniques such as non-parametric, multi-channel methods are used [2]. To deal with the 

inhomogeneity problem, many algorithms have been proposed by adding correction steps before 

segmenting the image [5, 6] or by modeling the image as the product of the original image and a 



 3

smooth varying multiplier field [2][7]. Recently, many researchers have incorporated spatial 

information into the original FCM algorithm to better segment the images. Tolias et al. [8] 

proposed a fuzzy rule-based system to impose spatial continuity on FCM, and in another paper [9], 

they used a small positive constant to modify the membership of the centre pixel in a 3x3 window. 

Pham et al. [10] modified the objective function in the FCM algorithm to include a multiplier field 

containing the first and second order information of the image. Similarly, Ahmed et al. [11] 

proposed an algorithm to compensate for the intensity inhomogeneity and to label a pixel by 

considering its immediate neighborhood. A rather recent approach proposed by Pham [12] is to 

penalize the FCM objective function to constrain the behavior of the membership functions, 

similar to methods used in the regularization and Markov random field (MRF) theory. 

On the other hand, there is a trend in recent machine learning work to construct a nonlinear 

version of a linear algorithm using the 'kernel method ', e.g., SVM [14-16], KPCA [18] and KFD 

[17]. And this 'kernel method' has also been applied to unsupervised clustering [26] [20, 21]. 

However, a drawback of these kernel clustering algorithms using the dual representation for 

clustering prototypes (that is, each prototype is formulated as a linear sum of after-mapped dataset 

elements, and hence the parameters to be optimized are not original prototypes anymore but 

linearly-combined coefficients) is that the clustering prototypes lie in high dimensional feature 

space and hence clustering results lack clear and intuitive descriptions as in the original space. In 

this paper, a novel kernelized fuzzy C-means (KFCM) algorithm is proposed to compensate for 

such a lack and then applied to the MR image segmentation. It is realized by replacing the original 

Euclidean distance in the FCM algorithm with a kernel-induced distance and adding a novel 

spatial penalty also. The penalty term acts as a regularizer and a coefficient associated with the 
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term is ranging from zero to one. It is shown that the proposed algorithm has better segmentation 

results on simulated or real MR images corrupted by noise and other artifacts than the standard 

algorithms such as FCM. 

The rest of this paper is organized as follows. In Section 2, some basic concepts on the 'kernel 

method' are briefly introduced. In Section 3, the KFCM is derived from the original FCM based 

on the 'kernel method'. The KFCM with spatial constraints is presented in Section 4 to segment the 

MR images. Some experimental comparisons are presented in Section 5. Finally, Section 6 gives 

our conclusions and several issues for future works. 

2.  The 'kernel method' 

In the last years, a number of powerful kernel-based learning machines, e.g. Support Vector 

Machines (SVM) [14-16], Kernel Fisher Discriminant (KFD) [17] and Kernel Principal 

Component Analysis (KPCA) [18] were proposed and have found successful applications such as 

in pattern recognition and function approximation. A common philosophy behind these algorithms 

is based on the following kernel (substitution) trick, that is, firstly with a (implicit) nonlinear map, 

from the data space to the mapped feature space, ))((  : xxFX Φ→→Φ , a dataset 

{ } Xxx n ⊆,...,1  (an input data space with low dimension) is mapped into a potentially much 

higher dimensional feature space or inner product F , which aims at turning the original nonlinear 

problem in the input space into potentially a linear one in rather high dimensional feature space so 

as to faciliate problem solving as proved by Cover [19]. 

A kernel in the feature space can be represented as a function K below  

)(),(),( yxyxK ΦΦ=                                            (1) 

where )(),( yx ΦΦ denotes the inner product operation .  
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An interesting point about kernel function is that the inner product between )(xΦ and )(yΦ  

can be implicitly computed in F , without explicity using or even knowing the mappingΦ . So, 

kernels allow computing inner products in the space, where one could otherwise not practically 

perform any computations. Three commonly-used kernel functions in literature are [13] 

(1)  Gaussian Radial basis function (GRBF) kernel 
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(2)  Polynomial kernel 

( )dyxyxK ,1),( +=                                             (3) 

(3)  Sigmoid kernel 

( )βα += yxyxK ,tanh),(                                        (4) 

where βασ ,,,d  are the adjustable parameters of the above kernel functions. For the sigmoid 

function, only a set of parameters satisfying the Mercer theorem can be used to define a kernel 

function. 

3. Kernelized fuzzy C-means algorithm 

The standard FCM objective function for partitioning a dataset { }N
kkx 1= into c  clusters is 

given by 
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where { }c
iiv 1=  are the centers or prototypes of the clusters and the array { } )( Uuik =  represents a 

partition matrix satisfying 
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The parameter m is a weighting exponent on each fuzzy membership and determines the 
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amount of fuzziness of the resulting classification. In image clustering, the most commonly used 

feature is the gray-level value, or intensity of image pixel. Thus the FCM objective function is 

minimized when high membership values are assigned to pixels whose intensities are close to the 

centroid of its particular class, and low membership values are assigned when the point is far from 

the centroid. 

From the discussion in Section 2, we know every algorithm that only uses inner products can 

implicitly be executed in the feature space F . This trick can also be used in clustering, as shown in 

support vector clustering [26] and kernel (fuzzy) c-means algorithms [20,21]. A common ground 

of these algorithms is to represent the clustering centre as a linearly-combined sum of all ( )k xΦ , 

i.e. the clustering centres lie in feature space. In this section, we construct a novel kernelized FCM 

algorithm with objective function as following 

∑∑
= =

Φ−Φ=
c
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ik
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ikm vxuJ

1 1

2||)()(||                                  (7) 

whereΦ is an implicit nonlinear map as described previously. Unlike the Refs.[20, 21], ( )i vΦ  

here is not expressed as a linearly-combined sum of all ( )k xΦ  anymore, a so-called dual 

representation, but still reviewed as an mapped point (image) of i  v in the original space, then 

with the kernel substitution trick, we have 
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Below we confine ourselves to the Gaussian RBF kernel, so 1),( =xxK . From Eq. (8),  Eq. (7) 

can be simplified to 
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Formally, the above optimization problem comes in the form 
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Eqs.(6)  subject to      ,min
1}{, mvU
J

c
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                                (10) 

In a similar way to the standard FCM algorithm, the objective function mJ can be minimized under 

the constraint of U. Specifically, taking the first derivatives of mJ with respect to iku  and iv , and 

zeroing them respectively, two necessary but not sufficient conditions for mJ  to be at its local 

extrema will be obtained as the following 
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Here we use only the Gaussian RBF kernel for the simplicity of derivation of the Eqs (11) and 

(12) and hence the algorithm in [22] is just a special case of our algorithm. For other kernel 

functions, the corresponding equations are a little more complex, because their derivatives are not 

as simple as the Gaussian RBF kernel function. 

The proposed kernelized fuzzy C-means (KFCM) algorithm can be summarized in the 

following steps. 

Step 1) Fix c , maxt , 1>m and 0>ε  for some positive constant.  

Step 2) Initialize the memberships 0
iku . 

Step 3) For t =1,2,…, maxt , do:  

(a) Update all prototypes t
iv with Eq. (12);  

(b) Update all memberships t
iku with Eq. (11); 

(c) Compute ||max 1
,

−−= t
ik

t
ikki

t uuE , if tE ≤ ε , stop; 

end; 
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According to Huber [23], a robust procedure should have the following properties: 1) it 

should have a reasonably good accuracy at the assumed model; 2) small deviations from the 

model assumptions should impair the performance only by a small amount; 3) larger deviations 

from the model assumptions should not cause a catastrophe. It has been shown that FCM is not a 

robust estimator from the robust statistical point of view [30]. In the literature, there are many 

robust estimators [27,30]. In Appendix A, we show that the above mentioned KFCM using the 

kernel in Eq. (2) is a robust estimator. Here we can give an intuitive explanation for the robustness 

of KFCM. By Eq. (12), the data point kx  is endowed with an additional weight ),( ik vxK , which 

measures the similarity between kx  and iv . When kx  is an outlier, i.e., kx  is far from the other 

data points, ),( ik vxK will be very small, thus the weighted sum of data points shall be suppressed 

and hence more robust. Note that when σ  in Eq. (2) tends to zero, ),( ik vxK  turns into an 

impulse function with the value of 1 only at k ix v=  and 0 elsewhere. In this extreme case, each 

given data point will have no longer neighborhood but become a “singleton” and the distance 

between any two points in the feature space approaches a common value of 1, leading to 

difficulties in clustering them. On the other hand, when sigma tends to infinity, the distance 

between any two points in the feature space will approaches zero and thus all data will cluster 

together, leading to a difficulty in separating them. In short, we should avoid such extreme cases 

in practice and choose an appropriate value for sigma neither too large nor too small by 

trial-and-error technique or experience or prior knowledge. In this paper, we choose the sigma by 

the trial-and-error technique. 

4.  Spatially constrained KFCM for image segmentation 

Although KFCM can be directly applied to image segmentation like FCM, it would be helpful 
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to consider some spatial constraints on the objective function. 

We propose a modification to Eq. (7) by introducing a penalty term containing spatial 

neighborhood information. As mentioned before, this penalty term acts as a regularizer and biases 

the solution toward piecewise-homogeneous labeling. Such regularization is helpful in segmenting 

images corrupted by noise. The modified objective function is given by 

( ) ( )∑∑ ∑∑∑
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where kN stands for the set of neighbors that exist in a window around kx (do not include kx itself) 

and RN is the cardinality of kN . The parameter α controls the effect of the penalty term and lies 

between zero and one inclusive. The relative importance of the regularizing term is inversely 

proportional to the signal-to-noise ratio (SNR) of the MRI data. Low SNR would require a higher 

value of α , and vice versa. The new penalty term is minimized when membership value for a 

particular class of a pixel is large and the membership values for that cluster should be also large 

at neighboring pixels, and vice versa. In other words, a pixel's membership value is correlated to 

those of the other pixels at its neighborhood. It is interesting to note that Eq. (13) is reminiscent of 

Rajesh Dave's approach to robust fuzzy c-means [30]. However, there are at least two differences 

between Eq. (13) and Dave's robust fuzzy c-means (see Eq. (12) in [30]). Firstly, the membership 

iku  in Eq. (13) is still constrained by Eq. (6), while in Dave's robust fuzzy c-means, there are no 

constraints on the memberships other than the requirement that they should be in [0,1]. Another 

difference is that in Eq. (13) we emphasize more the effect of the neighbors on the memberships 

of a pixel, while in Dave's robust fuzzy c-means no such neighbors exists. 

An iterative algorithm of minimizing Eq. (13) can be derived by evaluating the centroids and 

membership functions that satisfy a zero gradient condition like the KFCM. A necessary condition 
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on iku for Eq. (13) to be at a local minimum or an saddle point is 
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Because the penalty function does not depend on iv , the necessary conditions under which 

(13) attains its minima is identical to that of KFCM, i.e., Eq. (12). An alternating iterations 

between the two necessary conditions will result in convergence of the algorithm to the minima of 

Eq. (14), which is almost identical to the KFCM, except in Step 3. (b), using Eq. (14) instead of 

Eq. (11) to update the memberships. 

In the above discussion, we confine ourselves to only Gaussian RBF kernel. In fact, in terms 

of Chapelle [24], we can also use more general RBF kernels as below 

( )),(exp),( yxdyxK ρ−=                                         (15) 

),( yxd  can be chosen to be the following general form 

( )20||),( ≤<−= ∑ byxyxd
i

baa
ii

                                 (16) 

Obviously, the generalized RBF kernels satisfy 1),( =xxK , and when they are used in Eq. (13), the 

iterative equations are similar as Eqs. (12) and (14). Appendix B gives the detailed derivations of 

the two necessary conditions (Eqs. (14) and (12)) for Eq. (13) to be at a local minimum or a saddle 

point. 

5.  Results and discussions 

In this section, we describe some experimental results to compare the segmentation 

performance of the following algorithms, i.e. FCM, FCM with spatial constraints [12] (SFCM), 

KFCM, and KFCM with spatial constraints (SKFCM). We test the four methods on three different 

datasets. One is a simple synthetic image, another is the classical simulated brain database of 
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McGill University [25], and the last one is real MR slices. Only the Gaussian RBF kernel is used 

for KFCM and SKFCM, and because of the large dynamic range of the parameter value in SFCM , 

we use the value recommended in [12].  

 

(a) 

    

                        (b)                           (c) 

    

                      (d)                             (e)    

Fig. 1 Comparison of segmentation results on a synthetic image corrupted by 5% Gaussian noise. 

(a) The original image, (b) using FCM, (c) using KFCM, (d) using SFCM, (e) using SKFCM. 
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The synthetic image is shown in Fig. 1(a).. It contains a two-class pattern corrupted by 5% 

Gaussian noise. The intensity values of the two classes are 0, and 90 respectively, and the image 

size is 64x64 pixels. Fig. 1(b)-(e) show the segmentation results of FCM, KFCM, SFCM and  

 

(a) 

    

                      (b)                             (c) 

    

                       (d)                            (e) 

Fig. 2 Comparison of segmentation results on a synthetic image corrupted by 5% Gaussian noise 

and sinusoidal intensity inhomogeneity. (a) The original image, (b) using FCM, (c) using KFCM, 

(d) using SFCM, (e) using SKFCM. 
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SKFCM respectively. Here we set the parameter 150=σ (Gaussian RBF kernel 

width), 7.0=α , 2=m , 8=RN ( a 3x3 window centered around each pixel, except the central pixel 

itself). These values will be used in the rest of this paper if no specific value is explicitly stated. As  

 

(a) 

     

                       (b)                            (c) 

     

                       (d)                            (e) 

Fig. 3 Comparison of segmentation results on a simulated brain MR image corrupted by 3% noise. 

(a) Original T1-weighted image, (b) using FCM, (c) using KFCM, (d) using SFCM, (e) using 

SKFCM. 
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shown in Fig. 1(b) and (c), without spatial constraints, neither FCM nor KFCM can separate the 

two classes, while SFCM nearly and SKFCM completely succeed in correcting and classifying the 

data as shown in Fig. 1 (d) and (e). Note that because of the injection of the kernel, KFCM need 

more execution time than FCM, and correspondingly, SKFCM is slower than SFCM. Typically, 

the algorithms without kernel are several times faster than those with injection of kernels. 

 
(a) 

     
                       (b)                            (c) 

     
                       (d)                            (e) 

Fig. 4 Another simulated brain MR example. (a) Original T1-weighted image corrupted by 3% 

noise, (b) using FCM, (c) using KFCM, (d) using SFCM, (e) using SKFCM. 
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Fig. 2(a) is the synthetic test image corrupted by 5% Gaussian noise and intensity 

inhomogeneity which is simulated by a sinusoid function. Fig. 2(b)-(e) show the results of FCM, 

KFCM, SFCM, and SKFCM respectively. As in Fig. 1, SKFCM acquires the best segmentation 

performance. In order to obtain a quantitative comparison, Table 1 gives the segmentation  

 

(a) 

     

                         (b)                             (c) 

     

                         (d)                              (e) 

Fig.5 Brain MRI example. (a) Original MR image corrupted by 5% Gaussian noise, (b) FCM 

result, (c) KFCM result, (d) SFCM result, (e) SKFCM result. 
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accuracy of four methods on Fig. 1(a) and Fig. 2(a), where the segmentation accuracy (SA) is 

defined as the sum of the total number of pixels divided by the sum of number of correctly 

classified pixels [11]. 

 

(a) 

     

                         (b)                             (c) 

     

                          (d)                             (e) 

Fig.6 Another Brain MRI example . (a) Original MR image corrupted by 5% Gaussian noise, (b) 

FCM result, (c) KFCM result, (d) SFCM result, (d) SKFCM result. 
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Fig. 3 and 4 present a comparison of segmentation results between FCM, KFCM, SFCM and 

SKFCM, when applied on T1-weighted MR phantom [25]. The advantages for using digital 

 
(a) 

         

                      (b)                                 (c) 

         
                      (d)                                 (e) 

Fig.7 A T1-weighted Brain MRI example. (a) Original MR image corrupted by slight intensity 

inhomogeneities, (b) FCM result, (c) KFCM result, (d) SFCM result, (e) SKFCM result. 
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Table 1  
Segmentation accuracy (SA %) of four methods on synthetic image  
 FCM KFCM SFCM SKFCM 
Fig. 1(a) 96.02 96.51 99.34 100 
Fig. 2(a) 94.41 91.11 98.41 99.88 
 
Table 2  
Comparison scores for Fig. 3(a) using four methods with eight classes  
 Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 
FCM 0.46 0.75 0.51 0.39 0.47 0.35 0.65 0.17 
KFCM 0.63 0.86 0.73 0.66 0.75 0.60 0.88 0.26 
SFCM 0 0 0 0 0.00 0 0.59 0.31 
SKFCM 0.66 0.86 0.72 0.72 0.69 0.47 0.88 0.29 
 
Table 3  
Comparison scores for Fig. 5(a) and Fig. 6(a) using four methods with three classes  

 Fig .5(a) Fig. 6(a) 
 Class1 Class2 Class3 Class1 Class2 Class3 
FCM 0.88 0.32 0.93 0.87 0.29 0.92 
KFCM 0.79 0.19 0.91 0.79 0.17 0.91 
SFCM 0.99 0.75 0.94 0.98 0.62 0.92 
SKFCM 1.00 0.78 0.95 0.99 0.68 0.94 

 

phantoms rather than real image data for validating segmentation methods include prior 

knowledge of the true tissue types and control over image parameters such as modality, slice 

thickness, noise and intensity inhomogeneities. Here in our experiments, we use a high-resolution 

T1-weighted phantom with slice thickness of 1mm, 3% noise and no intensity inhomogeneities. 

Two slices in the axial plane with the sequence of 91 and 121 are shown in Fig. 3(a) and Fig. 4(a) 

respectively. The segmentation results on two slices using the four methods with eight classes are 

shown in Fig. 3(b)-(e) and 4(b)-(e) respectively. And Table 2 gives the quantitative comparison 

scores corresponding to Fig. 3(a) using four methods with eight classes. Note that SFCM in fact 

finds 3 classes, but because Class 5 is too small compared with the other classes, its score is 

rounded to 0.00 in Table 2. The comparison scores (also named as degree of equality in [28]) for 
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each algorithm and for each class are calculated by the following equation 

ij refj
ij

ij refj

A A
s

A A
=

∩
∪

                                    (17) 

where ijA  represents the set of pixels belonging to the jth class found by the ith algorithm and 

refjA  represent the set of pixels belonging to the jth class in the reference segmented image. Here 

we choose 0.1α = , because the noise is relatively small. In this case, FCM and SFCM cannot 

correctly classify the images, while KFCM and SKFCM acquire satisfactory segmentation results. 

Fig. 5 and 6 present a comparison of segmentation results among FCM, KFCM, SFCM and 

SKFCM when applied on real MR slices corrupted by 5% Gaussian noise. These T1-weighted MR 

images are obtained using a General Electric Signa 1.5-Tesla clinical MR imager with in-plane 

resolution of 0.94 mm2 [11]. Fig. 5(a) and 6(a) show the artificially corrupted images, and Fig. 

5(b)-(e) and 6(b)-(e) are the results using FCM, KFCM, SFCM, and SKFCM with three classes 

respectively. Table 3 gives the corresponding comparison scores for Fig. 5(a) and Fig. 6(a) using 

four methods with three classes. From the images and Table 3, we can see that without spatial 

constraints, both FCM and KFCM are affected by the noise badly, while SFCM partially and 

SKFCM nearly completely eliminate the effect of noise. 

Finally, Fig. 7 shows a comparison of segmentation results of the four methods on a 

T2-weighted MR image corrupted by slight intensity inhomogeneities. Fig. 7(a) is the original 

image, and Fig. 7(b)-(e) are the results using FCM, KFCM, SFCM and SKFCM respectively. Note 

that SKFCM is much less fragmented than other algorithms and the incorporation of spatial 

constraints into the classification has somewhat the disadvantage of blurring of some fine details, 

but SKFCM had better result than SFCM, as shown in Fig. 7(d) and (e). 
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6.  Conclusion 

In this paper, a novel kernelized fuzzy C-means (KFCM) algorithm is proposed and applied to 

MR image segmentation. KFCM adopts a new kernel-induced metric in the data space to replace 

the original Euclidean norm metric in FCM and the clustered prototypes still lie in the data space 

so that the clustering results can directly be reformulated and interpreted in the original space. It 

has been proved that KFCM is a robust clustering approach in appendix A. 

Furthermore, we added a spatial constraint on the objective function of KFCM to effectively 

segment MR images corrupted by noise. Although the spatial constraint used in KFCM is similar 

to that used in [12], ours is simpler and computationally inexpensive. What's more, since the 

distance induced by a Gaussian RBF is constrained between zero and one, exactly consistent with 

the range of the membership value; we only need to adjust the regularizer coefficient between zero 

and one to control the relative importance of the regularizing term. 

The results presented in this paper are preliminary and further clinical evaluation is required. 

Because nearly all modified FCM algorithms for image segmentation are based on adding some 

type of penalty terms to the original FCM objective function, the KFCM can be applied in a 

reasonably straightforward manner to improve the performance of these algorithms. 
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Appendix A: Proof that KFCM using the kernel in Eq. (2) is a robust estimator. 

Proof: According to Huber [23], there are many robust estimators, e.g. M-, L-, and R-estimator. In 

this section, we are only interested in M-estimator and follow the process of proof in [22]. Let 

{ }nxxx ,,, 21 "  be an observed dataset and θ  an unknown parameter to be estimated. A 

M-estimator for the location estimation can be generated by minimizing the following objective 

function 

∑
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−=
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i
ixJ
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)()( θρθ                        (A1) 

where ρ is a function and taken as ),(1 θxK− in this proof and only dependent on )( θ−ix . 

Then the M-estimator is generated by solving the equation 
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∂ xx . If we take 2)()( θθρ −=− xx  and θθρ −=− xx )( , 

respectively, their M-estimators are the corresponding mean and median of the sample dataset. 

Eq. (A2) can be solved by rewriting as 
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=

n

i
ii xw θ                          (A3) 

where )/()( θθφ −−= iii xxw , called the weighted function. This gives the estimator as below 

∑
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1

1

θ                                  (A4) 

It is the weighted mean of the sample dataset. Note the result by solving Eq. (A4) may not be a 

closed form for 
∧

θ . We can apply the fixed-point iteration or alternate optimization to obtain a 

solution of Eq. (A4) iteratively. 

The influence function (IF) can help us to assess the relative influence of individual 
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observations toward the value of an estimate. The M-estimator has been shown that its influence is 

proportional to itsφ function [23]. Now we have IF of an M-estimator with 

∫ −
−

=
)()('

)(),;(
xdFx

xFxIF
Xθφ

θφθ                       (A5) 

where )(xFX stands for a distribution function of X. If an IF of an estimator is unbounded, an 

outlier might cause trouble. There are many measures of robustness derived from IF, one of which 

is the gross error sensitivity (GES) defined below 

),;(sup* θγ FxIF
x

=                                 (A6) 

This quantity can interpret the worst approximate influence that the addition of an infinitesimal 

point mass can have on the value of the associated estimator. For our case, the resulting solutions 

from Eq. (9) is an M-estimator if ),(1)( θθρ xKx −=− and ),( θxK is taken as Eq. (2). For 

simplicity, we only consider Eq. (2) with single variable, i.e. 

2

2

( )( , ) exp xK x θθ
σ

 − −
=  

 
                         (A7) 

Thus we have 

             ( )
2

2 2

( ) 2( ) exp xx xθφ θ θ
σ σ

 − − −
− = − 

 
        (A8) 

By applying the L’Hospital’s rule, the following limitations for Eq. (A8) can be derived 

             0)(lim =−
±∞→

θφ x
x

                                   (A9) 

And at the same time, we can get their bounded maximum and minimum by zeroing the derivative 

of the function in Eq.(A8). 

According to the above, the function in Eq. (A8) is bounded and continuous and thus the 

corresponding IF is also bounded and continuous, resulting in a finite gross error sensitivity. 

Hence our estimator based on Eq.(2) is robust. 
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Appendix B: Derivations of Eqs. (14) and (12).  

Proof: The constraint optimization problem in Eq. (10), where mJ  is defined in Eq. (13), can be 

solved by using the Lagrange multiplier method,. Now define new objective function as follow 

( ) ( )
1 1 1 1 1

1 ( , ) 1 1
k

c N c N c
mm m

m ik k i ik ir ik
i k i k r N iR

L u K x v u u u
N
α λ

= = = = ∈ =

 = − + − + − 
 

∑∑ ∑∑ ∑ ∑  (B1) 

where the kernel is define in Eq. (2), kN is the set of neighbors that exist in a window around kx , 

but do not include kx itself, and RN is the cardinality of kN . Taking the derivative of mL  with 

respect to iku  and setting the result to zero, we have, for 1m >  

( ) ( )
*

1 1 ( , ) 1 0
k

ik ik
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Solving for *
iku , we have 
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Since 
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Solving λ  from Eq. (B4) and substituting into Eq. (B3), we can get the zero-gradient condition 

for the membership as shown in Eq. (14). 

Similarly, Substituting Eq. (2) into Eq. (B1) and zeroing the derivative of mL  with respect to iv , 

we have 
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( )
*

( , ) 2( ) 0
i i

mm
ik k i k i

ki v v

L u K x v x v
v

=

 ∂
= − − = ∂ 
∑        (B5) 

According to Eq. (B5), Eq. (12) can be derived. 
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