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In their paper [1], Wu and Yang proposed two alternative (hard) c-means and fuzzy c-means 

clustering algorithms, by replacing the original Euclidean distance in the c-means and fuzzy 

c-means algorithm with a new Gaussian function based distance. Although the new distance 

function is more robust than the Euclidean distance, we will show in this comment that the 

distance Wu and Yang used is not a metric.  

Suppose x, y∈X, and X is a compact subset of Rn. Let d(x, y) denote the distance function 

between two vectors x and y, then the Euclidean distance is represented by d(x, y) =||x-y|| , where 

||•|| denote the two norm. Wu and Yang [1] defined a new distance as 

)2||||exp(1),( yxyxd −−−= β .                                        (1) 

To prove a distance function d(x, y) is a metric, the necessary and sufficient condition is that d(x, y) 

satisfies the following three conditions [2] 

(i) 0),(,,0),( =≠∀> xxdyxyxd , 

(ii) ),(),( xydyxd = , 

(iii) zyzdzxdyxd ∀+≤ ),,(),(),( . 

Wu and Yang [1] claimed that the distance function in equation (1) is a metric, i.e, the above three 

conditions were satisfied. However, we will show in Theorem 1 that it is not true. 
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Theorem 1. The distance function in equation (1) is not a metric. 

 

Proof.  To prove the distance is not a metric, we just need to find a counterexample for which 

one of the above conditions (i)-(iii) don’t satisfied any more. Let x= [0.2 0.2], y= [0.4 0.4], z= 

[0.3 0.3] and β=1, then according to equation (1), d(x, y) =0.0769, d(x, z) =0.0198, d(z, y) 

=0.0198, so d(x, y) =0.0769> d(x, z) + d(z, y) =0.0396, i.e., the condition (iii) is not satisfied any 

more, thus the distance function in equation (1) is not a metric.                       □ 

 

The reason why the distance function in equation (1) is not a metric is that it is a type of 

squared distance, and a squared distance is not necessarily a metric. For example, the Euclidean 

distance is a metric, while the squared Euclidean distance is not necessarily a metric. So in order 

to remedy the mistake, we propose a new distance function as follows 

)||||exp(1),( 2yxyxd −−−=
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β .                                       (2) 

 

Theorem 2. The distance function in equation (2) is a metric. 

 

Proof.  We prove Theorem 2 from another viewpoint, i.e., kernel-based learning method in 

machine learning community [3]. 

Define Gaussian kernel function K(x, y) =exp (-β||x-y||2), and according to the Mercer theorem [3], 

there exists some nonlinear map Φ: X→ F (here F is a compact subset of Hilbert space), 

satisfying K(x, y) =Φ(x) T Φ(y), where (.)T is vector transpose.  From the definition of K, we have 
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K(x, x) =K(y, y) =1, Thus  

)),(1(2),(2),(),(                         
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.           (3) 

According to (2) and (3), and the definition of Gaussian kernel function, the following can be 

derived 
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According to (2), yx ≠∀ , d(x, y)=d(y, x)>0, and d(x, y)=0, so condition (i) and (ii) are satisfied. 

And from (4) 
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Thus condition (iii) is satisfied due to the properties of the norm. So the distance function in 

equation (2) is a metric.                                                       □ 
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