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Bi-subject kinship verification addresses the problem of verifying whether there exists some kind of kin
relationship (i.e., father–son, father-daughter, mother–son and mother–daughter) between a pair of
parent–child subjects based purely on their visual appearance. The task is challenging due to the in-
volvement of two different subjects possibly with different genders and ages. In addition, collecting
sufficient training samples for each type of kinship is difficult. In this work, we present a novel method to
address these issues by considering each type of kin relation verification as one task and learning them at
one time in the framework of multi-task learning, by sharing feature sets and useful structures among
the tasks.

Particularly our contributions are three folds: first, we introduce a new type of learning problem,
called mixed bi-subject kinship verification, to the topic of bi-subject kinship verification: instead of
simply verifying whether some fixed kinship relationship (e.g., mother–son) can be established for a
given pair of parent–child images, we try to figure out whether any type of the four kinship relations can
be established according to the visual features of the image pair, with no need to know the genders of the
subjects to be verified beforehand. Second, we propose a novel multi-task learning method to address
this problem with two transformation matrices – one is shared amongst all the tasks and the other is
unique to each task. Both matrices are simultaneously learned in a joint framework, which enables our
algorithm to utilize the common knowledge of the four tasks. Third, we propose a multi-view multi-task
learning(MMTL) method to perform multiple feature fusion to improve the mixed bi-subject kinship
verification performance. Extensive experiments on the large scale KinFaceW kinship database de-
monstrate the feasibility and effectiveness of the proposed algorithm.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The aim of kinship verification in the field of computer vision is
to predict whether a few given subjects have certain kind of kin
relation purely through their visual appearance. Applications of
this include face image retrieval [6,22,37], face annotation [28,57],
face images organization, face recognition [36,40], social media
analysis [45,55], children adoptions [18], and so on.

However, the problem of kinship verification is challenging,
since it involves multiple subjects possibly with different genders
and ages, rather than multiple images of the same subject as in the
traditional face verification. On the other hand, the researches in
the field of human visual signal processing [7,9] have provided
nce and Technology, Nanjing
10016, China.
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strong evidence that facial appearance is a useful cue for genetic
similarity – children look more similar to their parents than other
adults of the same gender. There exists some progress in finding
distinguishable cues from facial appearance [11,15,42,43,27,47,53].
While most of them focus on bi-subject kinship verification, i.e.
father–son, father–daughter, mother–son and mother–daughter,
Qin et al. [32] tackle the problem of tri-subject kinship verification,
i.e., father/mother–son and father/mother–daughter. However, all
these works assume that the genders of the pair of subjects be
known before doing verification. In other words, they can only
verify one kind of kinship at one time.

In this work, we introduce a new type of learning problem,
called mixed bi-subject kinship verification. That is, instead of
simply verifying whether one fixed kinship relationship (e.g.,
mother–son) can be established for a given pair of parent–child
images, we try to figure out whether any type of the four kinship
relations can be established according to the visual features of the
image pair, with no need to know the genders of the subjects to be
erification via multi-view multi-task learning, Neurocomputing
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verified beforehand. This is not only a step toward more practical
kinship verification, but also imposes interesting challenges onto
this topic – without knowing the genders of subjects, the problem
of bi-subject kinship verification can not be simply treated as a
binary classification problem. In addition, existing works show
that the gender plays a significant role in kinship verification
[11,27,32,47,53]. And earlier psychological research results also
indicate that the kin recognition signal is different under different
gender [31].

According to the studies of human genetics, we know that
some facial features, such as eye or hair color or dimples have been
proposed to be specifically linked to paternity confidence [34].
Hair, skin and eye colors are highly heritable and visible traits in
humans [38]. Thus, we think that different kinship relations may
have some common genetic characteristics. Motivated by these
researches, we propose a novel multi-task learning method to
address this problem with two transformation matrices – one is
shared amongst all the tasks and the other is unique to each task.
Both matrices are simultaneously learned in a joint framework,
which enables our algorithm to utilize the common knowledge of
the four tasks. Further, compared to single task learning, the ad-
vantage of multi-task learning is usually more visible when we
only have a few training examples per task. We expect that even if
only a few training samples are available for each task, the use of
multi-task learning can compensate discriminative information by
transferring from one task to the others. To make better use of
multi-feature descriptors, we propose a multi-view multi-task
learning (MMTL) method to perform multiple feature fusion to
improve the mixed bi-subject kinship verification performance.
Extensive experiments on the large KinFaceW kinship database
demonstrate the feasibility and effectiveness of the proposed al-
gorithm. The contributions of this work are summarized as
follows:

(1) A new type of learning problem called mixed bi-subject kin-
ship verification is proposed to the topic of bi-subject kinship
verification. We try to figure out whether any type of the four
kinship relations can be established according to the visual
features of the image pair, with no need to know the genders
of the subjects to be verified beforehand.

(2) A novel multi-task learning method is proposed to address our
proposed problem with two transformation matrices – one is
shared amongst all the tasks and the other is unique to each
task. Both matrices are simultaneously learned in a joint fra-
mework, which enables our algorithm to utilize the common
knowledge of the four tasks.

(3) A multi-view multi-task learning method is developed to
perform multiple feature fusion to improve the mixed bi-
subject kinship verification performance.

In what follows, we briefly review some of the related work in
Section 2 and detail our proposed method in Section 3. Experi-
mental results are given in Section 4. We conclude this paper in
Section 5.
2. Related work

Existing works on kinship learning can be roughly be divided
into two categories: kinship classification and verification. Fang
et al. [14] tackle the former one, i.e., given a query face image,
asking which family it belongs to. They do this with a minimum
sparse reconstruction method.

Most of the works are about kinship verification. In an early
attempt, Fang et al. [15] use various features including the skin,
hair and eye color, facial structure measures and local/holistic
Please cite this article as: X. Qin, et al., Mixed bi-subject kinship v
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texture. Later, researchers evaluate various types of feature de-
scriptors including DAISY [18], Gradient Orientation Pyramid
(GGOP) [55], Gated Autoencoder [10], Self Similarity Representa-
tion (SSR) [23], prototype-based discriminative feature learning
(PDFL) method [48], a spatial pyramid learning-based feature de-
scriptor Zhou et al. [54], dense stereo matching [36] and attributes
[43]. Dibeklioglu et al. [11] propose to describe facial appearance
over smile expression.

In [27], the authors show that combining several types of
middle-level features is useful. For that purpose, they introduce a
multi-view neighborhood repulsed metric learning method
(MNRML) by learning a distance metric. Yan et al. [47] and Hu et al.
[20] extract multiple features to characterize kin face images. The
Politecnico di Torino (Polito) [26] group first combines different
textural features and then selects the most relevant variables to
provide an effective characterization of the samples. The LIRIS-
University of Lyon (LIRIS) [26] group applies the Triangular Simi-
larity Metric Learning method to make similar vectors parallel and
dissimilar vectors opposite. Recently, a scalable similarity learning
method [56] is proposed to learn a diagonal bilinear similarity
model by online truncated gradient learning. Another way to re-
duce the appearance similarity gap is to use intermediate samples
which bridge the two sides with large divergence. In [35,39,42,44],
such a bridge is constructed by facial images of parents at the si-
milar ages of their children. However, it is not easy to collect such
an image set in practice.

While most of the above works focus on the bi-subject kinship
verification, Ghahramani et al. [16] deal with the one-versus-multi
kinship verification, i.e., predicting whether a query face image has
kin relation with multiple family members, by fusing similarity of
each member's facial image segments. Qin et al. [32] tackle the
verification of the most basic unit that forms a family, that is tri-
subject kinship verification, by incorporating the prior knowledge
that a child may resemble a particular parent more than the other.
Zhang et al. [53] solve the group membership prediction problem,
that is predicting whether or not a collection of instances share a
certain semantic property, by a probability model which consists
of view-specific and view-shared random variables.

This work is different from the ones mentioned above in that
we focus on the mixed bi-subject kinship verification, i.e., given a
pair of query face images with genders unknown, predicting
whether there is a kin relationship or not between them.

Multi-task learning (MTL) refers to the joint training of multiple
problems, enforcing a common intermediate parameterization or
representation. If the different problems are sufficiently related,
MTL can lead to better generalization and benefit all of the tasks
Evgeniou and Pontil [13,21,30,2,3,33]. To learn such common
structures, some authors propose to group multiple tasks into
disjoint clusters [5,12,46]. Kumar and Daume III [24] allow two
tasks from different groups to overlap to some degree under the
concept of latent basis tasks. Instead, Goncalves et al. [17] and
Zhang and Yeung [52] propose to jointly learning the task re-
lationship structures and the task parameters without grouping
them.

In this work, we propose a new multi-task learning scheme by
simultaneously learning two types of structures, one is shared
amongst all the tasks and the other is unique to each task. Both are
simultaneously learned in a joint framework, which enables our
algorithm to utilize the common knowledge of the four tasks.
3. Mixed bi-subject kinship verification

In this section, we present our method for mixed bi-subject
kinship verification. For bi-subject kinship verification problem,
we mainly consider four types of kin relations, i.e., father–son (F–
erification via multi-view multi-task learning, Neurocomputing
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S), father–daughter (F–D), mother-son (M–S) and mother–daughter
(M–D). For each type of relations ( ≤ ≤ = )t t T T1 , 4 , we denote its
Nt samples as {( )} =x x y, ,ti

p
ti
c

ti i
N

1
t , where ∈x x R,ti

p
ti
c d respectively de-

notes the i-th sample of a parent and a child and ∈ { + − }y 1, 1ti
indicates whether this child has a valid kinship relation with the
corresponding parent. Our goal is to learn a function

( ) → { + − }f x x: , 1, 1p c from the training data to check whether a
kinship could be established for two previously never seen images
( )x x,p c , without knowing the genders of the parent and the child.
3.1. Single task bi-subject kinship verification

For single task bi-subject kinship verification, all of the four kin
relations share a common transformation matrix. LetW denote the
correlation between child-parent, our learning cost function takes
the following form:

∑ ∑ γ( ( )) + ( )
( )= =

y S x x Wmin , ,
1W

t

T

i

N

ti W ti
p

ti
c

1 1

t

where (· ·), is the empirical loss function, ( )W is a regulariser
and γ is a trade-off parameter balancing the effects of these two
terms. In order to make W smooth we choose ( ) = ∥ ∥W W F

1
2

2

where ∥ ∥W F is the Frobenius norm of matrix W.
We define (· ·) ≡ [ ] ≡ { }+a a, max 0, , = − ( )a y S x x1 ,ti W ti

p
ti
c . The

score function ( )S x x,W ti
p

ti
c measures the similarity between the

parent and the child according to their visual appearance, which
takes the following bilinear function [32],

( ) = ( ) ≡ 〈 〉 ( )S x x x Wx x x, , 2W
p c p T c p c

W

where the transformation matrix W essentially captures the cor-
relation between a parent and a child, to be learned from the
training data. In what follows, we use the notation of ‘STL’ to de-
note the single task learning method for mixed bi-subject kinship
verification.
3.2. From single task to multi-task

Under the viewpoint of multi-task learning, each of the four
types of kin relations(F-S, F-D, M-S and M-D) is treated as a se-
parate task but are learned together. In this work, each single task
is formulated as a bilinear function ft, i.e., ( ) = ( ) ⁎f x x W xt

p T
t

c , where
∈⁎ ×W Rt

d d is the parameter to be learnt.
Many multi-task learning methods are based on some formal

definition of the notion of relatedness of the tasks. This related-
ness is mostly application-dependent. For example, Hierarchical
Bayes [1,4] assume that all task matrices ⁎Wt come from a parti-
cular probability distribution such as a Gaussian. This implies that
all ⁎Wt are “close” to some mean function W0. While the studies of
human genetics have declared that some facial features, such as
eye or hair color or dimples have been proposed to be specifically
linked to paternity confidence [34]. Hair, skin and eye colors are
highly heritable and visible traits in humans [38]. Thus, we think
that different kinship relations may have some common genetic
characteristics. Motivated by these researches, we decide to model
each task in two parts,

= + ( )⁎W W W 3t t0

where the transformation matrix Wt is unique to each task, while
all the tasks share a common structure W0.

To learn these two structures, we solve the following optimi-
zation problem:
Please cite this article as: X. Qin, et al., Mixed bi-subject kinship v
(2016), http://dx.doi.org/10.1016/j.neucom.2016.06.027i
∑ ∑
( )

λ η

λ η

( ) =

{ − ( ) ( + ) } + ∥ ∥ + ∥ ∥
= = 4

W W

max y x W W x W W

min , , ,
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2 2
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N
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p T

t ti
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t F F

,
0

1 1
0

2
0

2

t

t

0

where λ and η are positive regularization parameters. Intuitively,
for a fixed value of η, a large value of the ratio υ = λ

η
will char-

acterize the scale of the final model. Particularly, when λ tends to
infinity the problem reduces to solving one single-task learning
problem as in Eq. (1). On the other hand, when η tends to infinity
the problem reduces to solving the T tasks independently.

The object function λ η( )W W, , ,t0 is convex with respect to W0

and { }Wt . To obtain W0 and { }Wt we optimize E.q. 4 using sto-
chastic gradient descent method, which is commonly used to
minimize risk function. The gradients of W0 and { }Wt are calcu-
lated respectively as follows:

η

λ

∇ = ∇ (· ·) +

∇ = ∇ (· ·) + ( )

W W

W W

,

, 5

W

t W t

0 0
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0

where ∇ (· ·),W0 and ∇ (· ·),Wt are the subgradients of with
respect to W0 and Wt, respectively, which can be computed by:
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We first optimize the objective function with respect to { }Wt

when W0 is fixed, and then optimize it with respect to W0 when
{ }Wt is fixed. This procedure is repeated until convergence. We set
μ = 0 and the initial value of W0 and { }Wt to I which corresponds
to the assumption that all the crossed positions of ( )x x,p c are
unrelated.

3.3. Mixed kinship verification

When the transformation matrices W0 and { }Wt are obtained
from the training samples with genders known, it is very
straightforward to make a decision for given query images with
the corresponding { }Wt for t-th task as in multi-task learning.
However, in the mixed kinship verification, the genders of the
query images are unknown, which means that we don't know
which task to perform in the first place.

To address this, in our experiments the verification function
( )f x x,p c is modeled as the linear combination of four pieces of

evidence, i.e., the confidence of ( )x x,p c under each task, respec-
tively

∑ β( ) = ( ) +
( )=

⁎f x x S x x b, ,
6

p c

t

T

t W
p c

1
t

where the combination coefficients βt are four scalars and b is the
similarity threshold term. To learn these parameters, we maximize
the conditional likelihood through a sigmoid function, i.e.,

σ( = | ) = ( ( ))p y x x f x x1 , ,p c p c , with L2 regularization added where
sigmoid function s is defined to be σ ( ) = + −x

e
1

1 x .

3.4. Multi-view multi-task learning for mixed kinship verification

Previous face verification /recognition, hand detection and
palm vein recognition studies have shown that multiple feature
erification via multi-view multi-task learning, Neurocomputing
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descriptors could provide complementary information from dif-
ferent viewpoints [29,49–51], and hence it is desirable to utilize
multiple feature information for our mixed kinship verification
task. However, multiple feature descriptors generally have multi-
ple modalities. Our MTL method is designed for single feature
representation and can not be used to deal with multi features
directly. A nature solution for MTL with multi-feature is to directly
concatenate different features into a new feature vector and then
apply MTL for verification learning. However, such an operation is
not desirable and it sacrifices the diversity of different descriptors.
To address this problem, we propose a new multi-view MTL
(MMTL) method to seek multiple transformation matrices to per-
form multiple features fusion.

Assume there are V views of feature representations, and
{( )} =x x,ti

pv
ti
cv

i
N

1
t denotes the v-th view set of Nt pairs of kinship

images from the t-th task, where ∈x Rti
pv d and ∈x Rti

cv d are the i-th
parent and child images from the v-th view, respectively, and

= …v V1, 2, , , = …t T1, 2, , . The aim of MMTL is to learn multiple
transformation matrices …W W W, , , V

0
1

0
2

0 and { … }W W W, ,t t t
V1 2 so

that the property of MTL in all feature spaces can be jointly
exploited.

In order to achieve this goal, we impose a nonnegative
weighted vector β β β β= [ … ], , , V1 2 for each feature and formulate
MMTL as follows:

∑

∑

β λ η

β β

( )

= ≥
( )

β =

=

W W

subject to

min , , ,

1, 0
7

W W v

V

v v
v

t
v v v

v

V

v v

, , 1
0

1

v t
v

v0

where λ η( )W W, , ,v
v

t
v v v

0 is the object function of MTL for the v-th
feature, which is computed according to Eq. (4).

The trivial solution of Eq. (7) is β = 1v , which corresponds to the
minimum λ η( )W W, , ,v

v
t
v v v

0 and β = 0v otherwise. This means that
only the best view is selected by our method, such that the com-
plementary information of different features has not been
exploited. To address this problem, we modify βv to be β ( > )u 0v

u ,
and the new objective function for MMTL is defined as:

∑

∑

β λ η

β β

( )

= ≥
( )

β =

=

W W

subject to

min , , ,

1, 0
8

W W v

V

v
u

v
v

t
v v v

v

V

v v

, , 1
0

1

v t
v

v0

To our best knowledge, there is no closed-form solution to Eq.
(8) and there are ⁎( + )V T 1 matrices to be optimized simulta-
neously, we solve it in an iterative manner.

First, we fix β and update W. When β is fixed, the optimization
problem in Eq. (8) can be rewritten as:

∑ β λ η( )
( )=

W Wmin , , ,
9W W

v

V

v
u

v
v

t
v v v

,
1

0v t
v

0

We sequentially optimize ( { })W W,v
t
v

0 with the fixed ( { })W W, t0
1 1 ,

( { }) … ( { })− −W W W W, , , ,t
v

t
v

0
2 2

0
1 1 , ( { }) … ( { })+ +W W W W, , , ,v

t
v V

t
V

0
1 1

0 .
Then, Eq. (9) can be rewritten as:

β λ η( )
( )

W Wmin , , ,
10W W v

u
v

v
t
v v v

,
0v t

v
0

Now, ( )W W,v
t
v

0 can be solved as that we deal with Eq. (4).
Then, we update β with the fixed W. We construct the fol-

lowing Lagrange function:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑β ξ β λ η ξ β( ) = ( ) − −

( )= =

W W, , , , 1
11v

V

v
u

v
v

t
v v v

v

V

v
1

0
1
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Let =β ξ
β

∂ ( )
∂ 0,

v
and =β ξ

ξ
∂ ( )

∂ 0, , we have

β λ η ξ( ) − = ( )−u W W, , , 0 12v
u

v
v

t
v v v1

0

∑ β − =
( )=

1 0
13v

V

v
1

Combining Eqs. (12) and (13), we can obtain βv as follows:

β λ η
λ η

= ( ( ))
∑ ( ( )) ( )

( − )

=
( − )

W W

W W

1/ , , ,

1/ , , , 14
v

v
v

t
v v v u

v
V

v
v

t
v v v u

0
1/ 1

1 0
1/ 1

We repeat the above two steps until the algorithm meets a
certain convergence condition. The proposed MMTL algorithm is
summarized in Algorithm 1.

Algorithm 1. MMTL.
erific
ut:

raining images: {( )} =x x,ti
pv

ti
cv

i
N

1
t be the v-th view set of Nt pairs

of kinship images from the t-th task;
arameters: regularization term λv, ηv, u, iteration number

Nu, and convergence error τ
tput:

metric transformation matrix { … }W W W, , , V
0
1

0
2

0 ,

{ … }W W W, ,t t t
V1 2 and wights β1, β2,…,βV;

tep1: Initialization:
Set β = = = = … = …V W W t T v VI I1/ , , , 1, , , 1, 2, ,v

v
t
v

0 .;

Calculate the loss (· ·),0 ;
Step2: Local optimization:
For = …r Nu1, 2, , , repeat
Compute ( )W W,v

t
v

0 in Eq. (10);

Obtain βv by using Eq. (14);
Calculate the loss (· ·),r ;
f >r 2 and τ| − | <−r r 1 , go to Step3.;
Step3: Output transformation matrices and weighting
vector:

output { … }W W W, , , V
0
1

0
2

0 , { … }W W W, ,t t t
V1 2 and wights β1, β2,

…,βV;.
4. Experimental results and analysis

To validate the effectiveness of the proposed approach we
conducted experiments on the KinFaceW-I [27] and KinFaceW-II
[27] database.

4.1. Database and experimental settings

The KinFaceW-I database [27] consists of 156 FS (Father–Son),
134 FD (Father–Daughter), 116 MS (Mother–Son) and 127 MD
(Mother–Daughter) pairs, while the KinFaceW-II [27] contains 250
pairs of these bi-subject kin relations each. The major difference
between KinFaceW-I and KinFaceW-II lies in that each pair of faces
in KinFaceW-I comes from the same photo while from different
photos in KinFaceW-II. Fig. 1 gives some examples of this database.

For each face image, we extracted three different features:
(1) SIFT: We sampled SIFT descriptors on each 16�16 patch with a
grid spacing of 8 pixels. Then, we concatenated these SIFT de-
scriptors to form a 6272-dimensional feature vector. (2) LBP: We
divided each image into 4�4 non-overlapping blocks, where the
size of each block is 16�16. Then, we extracted a 256-dimensional
uniform pattern LBP feature for each block and concatenated them
to form a 4096-dimensional feature vector. (3) HOG: We divided
ation via multi-view multi-task learning, Neurocomputing



Fig. 1. Illustration of face images in the KinFaceW database. From top to bottom each row respectively shows Father–Son (F–S), Father–Daughter (F–D), Mother–Son (M–S)
and Mother–Daughter (M–D) relation. The first four columns of images are from KinFaceW-I, and the last four columns of images are from KinFaceW-II.

Table 1
Correct verification rates (%) for different methods on the KinFaceW-I and KinFa-
ceW-II database.

Method Features KinFaceW-I KinFaceW-II

Concatenated LBP 51.570.2729 52.570.5196
þSVM HOG 52.970.5660 53.470.3194

SIFT 53.370.2773 55.170.6658
Concatenated LBP 52.870.6684 53.270.9839
þkernel SVM HOG 55.770.2694 59.770.3070

SIFT 61.370.5422 63.170.4563
STL LBP 65.770.4343 67.770.6319

HOG 66.070.3651 68.870.4213
SIFT 67.270.3144 71.170.4281

MTL LBP 69.070.6851 70.770.4053
(proposed) HOG 70.170.4522 72.670.7012

SIFT 72.770.2597 74.370.3543
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each image into 8�8 non-overlapping blocks with the size of
2�2 pixels. Then, we extracted a 9-dimensional HOG feature for
each block and concatenated them to form a 576-dimensional
vector. For these three features, we apply PCA to reduce each
feature into 300 dimensions to remove some noise components.

We evaluated our proposed methods with the image-restricted
setting and followed the evaluation protocol as proposed in Lu
et al. [26] which includes pre-specified training/testing split and
independently for 5-fold cross validation. For face images in each
fold, we consider all pairs of face images with the four kinship
relations. Hence, the positive samples are the total true pairs of
face images and the negative samples are the total false pairs of
images from the four kin relations.

Note that for the parameters(λ, η, u, Nu and τ) of our method, we
use 5-cross validation to set the value from a range of { }0.001, 0.01 for
λ, { × × }−1 10 : 10: 1 104 3 or { × × }−1 10 : 10: 1 103 4 for η according
to the value of λ, { × × }−1 10 : 10: 1 102 3 for u, and we set Nu¼200,
τ = 0.1.

4.2. Results and analysis

4.2.1. Baseline results
We design some baselines. One is concatenating the feature

vectors of two visual entities, learning a linear SVM for each kin
relation, then aggregating these meta-decisions through linear
SVM for the final verification judgement. We denote this method
as ‘concatenatedþSVM’. Generally, the nonlinear SVM might get
better results than the linear one, so we use a Gaussian kernel SVM
for each kin relation and denote this method as ‘con-
catenatedþkernel SVM’. The third one is ‘STL’ as in Eq. (1).

Table 1 summarizes the results. One can see that SIFT de-
scriptor achieves the best performance among these features.
Thereafter, we will use this feature without a specific explanation.

The baseline ‘ConcatenatedþSVM’ algorithm with SIFT feature
gives an accuracy of 53.3% and 55.1% on the KinFaceW-I and Kin-
FaceW-II database, indicating that the mixed bi-subject kinship
verification is a challenging problem. ‘STL’ method with SIFT fea-
ture improves the performance about 14% and 16% on the KinFa-
ceW-I and KinFaceW-II database which indicates that STL method
is effective. MTL method can improve the performance about 5%
and 3% on the KinFaceW-I and KinFaceW-II database. The reason is
Please cite this article as: X. Qin, et al., Mixed bi-subject kinship v
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that MTL method utilizes the common knowledge of different kin
relations as supplementary information to facilitate decision
making while STL has not effectively utilized this information.

To further demonstrate the effect of our MTL method, we vi-
sualize the similarity distribution over 4000 positive and 4000
negative pairs from the KinFaceW-II database for ‘STL’ and MTL
methods in Fig. 2. One can see that, the similarity of kinship and
non-kinship pairs overlaps heavily in the learned space through
‘STL’ method in Fig. 2(a). However, these two similarity distribu-
tion histograms become more separate in the learned space
through MTL method in Fig. 2(b), so that more discriminative in-
formation is exploited.

4.2.2. Proposed vs. different feature fusion strategies
We compare our method with three other different feature

fusion strategies: (1) Single MTL(MTL): we learn a single model by
using our MTL method with each single feature representation.
(2) Concatenated MTL(CMTL): we first concatenate different fea-
tures into a longer feature vector and then learn a single model by
using our MTL method with the augmented feature representa-
tion. (3) Equal weight MTL(EMTL): we learn the model for each
feature representation by our MTL method and then use the equal
weight to compute the similarity of two face images.

Table 2 summarizes the results. One can see that CMTL strategy
obtains the worst result among the three multi-view strategies.
erification via multi-view multi-task learning, Neurocomputing



Fig. 2. Similarity distribution over 4000 positive and 4000 negative pairs from the KinFaceW-II database. (a) The distribution in the learned space through STL method.
(b) The distribution in the learned space through MTL method. The histograms with the red color and the blue color represent the pairs with kinship and non-kinship,
respectively. Through STL, the similarity of kinship and non-kinship pairs overlaps heavily. However, these two similarity distribution histograms become more separate in
the learned space through MTL method, so that more discriminative information is exploited. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)

Table 2
Correct verification rates (%) for different feature fusion strategies on the KinFa-
ceW-I and KinFaceW-II database.

Method KinFaceW-I KinFaceW-II

MTL(LBP) 69.070.6851 70.770.4053
MTL(HOG) 70.170.4522 72.670.7012
MTL(SIFT) 72.770.2597 74.370.3543
CMTL 71.670.3446 73.070.5143
EMTL 73.170.3448 74.470.5586
MMTL (proposed) 73.770.3800 77.270.5751

Table 3
Correct verification rates (%) for different methods on the KinFaceW-I and KinFa-
ceW-II database.

Method KinFaceW-I KinFaceW-II

STL 67.270.3144 71.170.4281
No-group MTL [25] 69.270.3747 72.070.3683
GO-MTL [24] 71.670.3479 73.070.3215
MTL (proposed) 72.770.2597 74.370.3543
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The reason may be that directly concatenate different features into
a new longer feature vector may sacrifice the diversity of different
descriptors. EMTL strategy can further improve the performance
over MTL method with SIFT descriptor which indicates that dif-
ferent feature descriptors can provide complementary informa-
tion. With the learned nonnegative weighted vector for each fea-
ture, our MMTL can obtain the best result.

4.2.3. Proposed vs. existing multi-task learning
We carry out empirical comparisons with following two com-

peting subspace regularized multi-task learning approaches:
(1) No-group MTL [25]: all tasks are assumed to be related, and the
task parameters are assumed to lie in a low dimensional subspace.
This is done by penalizing the Lq,1-norm of weight matrix. (2) GO-
MTL [24]: a recently proposed approach that assumes each task
parameter vector is a linear combination of a finite number of
underlying basis tasks.

Table 3 summarizes the results. One can see that all the multi-
task learning approaches are able to outperform single task
learning (STL) method, indicating that common information re-
levant to prediction can be shared among these tasks and learning
them jointly can result in better generalization performance than
independently learning each task.

By incorporating over-lapping group structure, GO-MTL method
improves the performance about 2.4% and 1.0% on the KinFaceW-I and
KinFaceW-II database which indicates that the GO-MTL method is
effective. MTL method can improve the performance about 1.1% and
1.3% on the KinFaceW-I and KinFaceW-II database. The reason is that
Please cite this article as: X. Qin, et al., Mixed bi-subject kinship v
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MTL method does not assume any grouping structure, and tasks are
allowed to overlap with each other through sharing one common
matrix. This is a more realistic assumption since we can have tasks in
our pool that are not related enough still share some information that
can be exploited for better learning.

4.2.4. Proposed vs. state-of-the-art
To the best of our knowledge, there are very few works that tackle

the mixed bi-subject kinship verification problem, and it is very dif-
ficult to find an existing method directly comparable to ours.

We have compared our methods with three existing state-of-
the-art separate kinship verification models, i.e., neighborhood
repulsed metric learning (NRML) [27], Polito [26] and LIRIS [26].

Furthermore, considering that the similarity modeling is re-
lated to metric learning, we also include two classical metric
learning algorithms, i.e., Information-theoretic metric learning
(ITML) [8] and large margin nearest neighbor classification
(LMNN) [41] as the base models.

Although they deal with a different problem, the image set based
face verification bears some similarities to the problem of kinship
verification from the respect of methodology, i.e., both involve simi-
larity matching between multiple faces. Hence in this work, we also
adopt one of the best performers on the YouTube Face database, i.e.,
DDML (Discriminative Deep Metric Learning) [19], to score the pair-
wise similarity between a child and his/her parent. Particularly, we
train a deep metric learning network with three layers using our own
implementation, with the threshold τ, the learning rate μ and reg-
ularization parameter λ set to be − −3, 10 , 103 2, respectively.

For all these methods we learn a transformation matrix for each
kin relation first, then aggregate these meta-decisions through linear
erification via multi-view multi-task learning, Neurocomputing



Table 4
Correct verification rates (%) for different methods on the KinFaceW-I and KinFa-
ceW-II database.

Method KinFaceW-I KinFaceW-II

DDML [19] 64.470.5596 66.370.4000
ITML [8] 64.270.3188 67.070.5165
LMNN [41] 67.470.3856 67.970.0975
NRML [27] 62.770.3872 67.670.4222
Polito [26] 71.170.8273 71.870.7365
LIRIS [26] 72.170.2823 72.570.5635
MTL (proposed) 72.770.2597 74.370.3543
MMTL (proposed) 73.770.3800 77.270.5751

Table 5
Correct verification rates(%) for different methods with a gender detector as a pre-
processing on the KinFaceW-I and KinFaceW-II database.

Method KinFaceW-I KinFaceW-II

ConcatenatedþSVM 51.470.5184 51.870.3571
NRML Lu et al. [27] 61.270.7236 67.570.5123
Polito Lu et al. [26] 69.870.5334 70.470.6934
LIRIS Lu et al. [26] 71.670.3326 71.870.4430
DDML Hu et al. [19] 63.370.2917 66.070.4314
ITML Davis et al. [8] 65.970.2815 66.070.4393
LMNN Weinberger et al. [41] 66.670.4209 67.070.2031
MTL (proposed) 72.7 70.2597 74.370.3543

Fig. 3. Influence of the value of υ on the verification rates.
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SVM for the final verification judgement. And we tune the parameters
of all the compared methods to reach the best possible performance.

Table 4 summarizes the results. One can see that MTL con-
sistently outperforms the other compared methods. This is partly
due to the fact that the compared methods fail to model the re-
lation among the two visual entities with mixed kin relationship.
By contrast, ’MTL’ utilizes the common knowledge of different kin
relations as supplementary information to facilitate decision
making and achieves better verification performance.

MMTL can improve the verification performance of MTL. The
reason is MMTL can make use of multiple feature representations
such that some complementary information can be utilized for our
mixed kinship verification task.

4.2.5. Proposed vs. gender detector pre-processing
For mixed kinship verification, one can predict the genders of the

given query images through a stand-alone gender detector and then
make a decision for the image pair with the corresponding bi-subject
kinship verification model. Motivated by this, we compared our MTL
method with all the compared methods with a gender detector as a
pre-processing with our own implementation.

Table 5 summarizes the results. It can be seen that MTL can obtain
comparable or even better performance than the other compared
methods. This is because we emphasize two transformation matrices –
one is shared amongst all the tasks and the other is unique to each
task while others have not effectively utilized this information. An-
other reason is that although the gender detector can achieve high
performance, one must notice that only when the given query two
images are correctly predicted, the pair of images can be predicted
through the corresponding kin relation verification model, otherwise,
the given query two images may be decided through a mismatched
kin relation verification model which could not exploit this kin rela-
tion during training process.

4.2.6. Parameter analysis
We investigate the effect of the ratio υ = λ

η
, where we let λ fix

and η vary to see the effects. Fig. 3 shows the mean verification
accuracy of ‘MTL’ as a function of the value of υ. One can see that
when υ is large we get a relatively low performance, indicating
Please cite this article as: X. Qin, et al., Mixed bi-subject kinship v
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that the four kin relations should not be processed without dis-
tinction. Moreover, for KinFaceW-I the best result is obtained
when υ = × −1 10 3 while for KinFacW-II υ = × −1 10 1, hence it
appears that the KinFaceW-II is close to being from a single task.
5. Conclusions

In this work, we make the first attempt to investigate the
mixed bi-subject kinship verification problem. Instead of predict-
ing whether there is a kin relation between two given entities
with genders known, we try to answer this question without
knowing such information. We then propose a new multi-task
learning scheme to address this problem. The key idea of our
method is to decompose each single task model into two parts –

one is shared amongst all the tasks and the other corresponds to
the task-specific structure. The model can be efficiently solved
using the stochastic gradient descent method. Extensive experi-
ments on the large scale KinFaceW kinship database show that the
proposed methods significantly improve the performance of the
traditional kinship verification methods. How to explore more
discriminative features and combine them with our proposed MTL
and MMTL methods to further improve the verification perfor-
mance appears to be another interesting direction of future work.
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