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Abstract
We present a simple but effective method for data cleaning and classification in the presence
of label noise. The fundamental idea is to treat the data points with label noise as outliers of
the class indicated by the corresponding noisy label. This essentially allows us to deal with the
traditional supervised problem of classification with label noise as an unsupervised one, i.e.,
identifying outliers from each class. However, finding such dubious observations (outliers)
from each class is challenging in general. We therefore propose to reduce their potential
influence using class-specific feature learning by autoencoder. Particularly, we learn for each
class a feature space using all the samples labeled as that class, including those with noisy
(but unknown to us) labels. Furthermore, in order to solve the situation when the noise is
relatively high, we propose a weighted class-specific autoencoder by considering the effect
of each data point on the postulatedmodel. To fully exploit the advantage of the learned class-
specific feature space, we use a minimum reconstruction error based method for finding out
the outliers (label noise) and solving the classification task. Experiments on several datasets
show that the proposed method achieves state of the art performance on the task of data
cleaning and classification with noisy labels.

Keywords Class-specific autoencoder · Label noise · Classification · Data cleaning ·
Outliers

1 Introduction

Classification is one of the most basic and core tasks in pattern recognition and machine
learning. A classifier is first trained based on a labeled training set and is then used to predict
the label of the test set. Since collecting reliably labeled data is often expensive and time-
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consuming, nowadays people tend to use alternative simple and convenient methods, such
as crowdsourcing [18], Amazon Mechanical Turk [14] and some other non-expert methods.
However, the data collected in this way may result in a certain degree of label noise [21], i.e.,
some samples are incorrectly labeled. Figure1 shows some images with label noise when
harvesting specific category of data from the Internet web. Similar problems also exist in
scenes where it is difficult to obtain completely correct labels, e.g. in some medical diagnosis
problems [27].

The consequences of label noise are important and diverse.When the data set is polluted by
label noise, it directly affects the performance of the classifier [26,46], and more samples are
needed for effective learning.Moreover, inaccurate label information can seriously deteriorate
the data quality, making the learning algorithm unnecessarily complex as it needs to handle
additional uncertainty [1,5]. Some related tasks are also adversely affected by label noise,
e.g., feature learning and feature selection [44]. Due to the above reasons, the problem of
data cleaning and classification in the presence of label noise have recently attracted a lot of
attention from researchers [9].

In this paper, we present a novel, simple but effective method for data cleaning and
classification in the presence of label noise. Our key idea is based on the observations that
the data points with label noise are highly likely to be the outliers of the class indicated by
the corresponding noisy label. This conceptual connection between label noise and outliers
essentially allows us to deal with the traditional supervised problem of classification with
label noise as an unsupervised one, i.e., outliers analysis per class. To this end, we proposed
a robust class-specific autoencoder based method to deal with label noise problem.

Fig. 1 Illustration of searching images using keyword ‘horse face’ from the Internet web. Images with noisy
labels are marked with a red square. (Color figure online)
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Particularly, we learn a separate feature space by using autoencoder for each class—note
that although each class contains some portion of points that actually do not belong to it
due to label noise, the influence of these points is supposed to be reduced by the class-
specific autoencoder, hence yielding reliable feature space. For cases with higher label noise,
we also propose a weighted class-specific autoencoder by robust optimization method which
considers the impact of each data point on the postulated model. The verification experiments
indicate that the proposed weighted optimization method can get a more robust feature
representation. Based on the well learned class-specific feature space, the data cleaning and
classification tasks can be solved in a unified and effective way. To our knowledge, it is the
first attempt to use class-specific feature learning to deal with the label noise problem. To
fully exploit the advantage of the learned class-specific feature space, we use a minimum
reconstruction error based method to find out the outliers (label noise) in the training set
and classify the data in the test set. Experiments on several datasets show that the proposed
method achieves the state-of-the-art data cleaning results and gets an excellent performance
on the task of classification with noisy labels.

The remaining parts of this paper are organized as follows. Section2 briefly reviews the
related work about autoencoder and label noise problem. Details of the proposed method are
described in Sect. 3. The extensive experimental results are presented in Sect. 4. We conclude
in Sect. 5 with a summary and directions for future work.

2 RelatedWork

In Sect. 2.1, we briefly review autoencoder and its extensions. Recent advances in solving
the label noise problem are also reviewed in Sect. 2.2.

2.1 Autoencoder and Its Extensions

A vanilla autoencoder [3] is a neural network that tries to reconstruct its input, i.e., the
expected output of the autoencoder is the input of the model. Assuming that we have a set of
training samples X = {x1, x2, . . . , xn} and xi ∈ Rd , an autoencoder first encodes an input x
to a hidden representation and then decodes it back to a reconstruction x̂. The x̂ is formulated
as Eq. (1):

x̂ = g(W2 f (W1x + b1) + b2) (1)

where W1 and b1 are weight matrix and bias for encoder while W2 and b2 are for decoder.
The activation function for f (·) and g(·) is sigmoid function. To learn the autoencoder which
can well reconstruct the training samples, the loss function is written as Eq. (2):

L(θ;X) = 1

n

n∑

i=1

||x̂i − xi ||2 (2)

where θ = {W1,W2,b1,b2}. The loss function shown in Eq. (2) can be solved easily by
mini-batch gradient descent method since the sigmoid function is smooth and continuously
differentiable. After learning the encodingweights, we get compressed feature representation
z = f (W1x+ b1) from the hidden layer which can be seen as a feature extractor [16], since
the number of neurons in the hidden layer is inferior to the input ones in general.

Over time some variations and extensions are proposed based on the vanilla autoencoder.
To discover more robust features and prevent it from simply learning the identity, a denoising

123



W. Zhang et al.

autoencoder [38] reconstructs the input from a corrupted version by randomly setting part
of the neurons to zero. By manually zeroing all but few strongest hidden unit activations,
Makhzani and Frey [23] imposes sparsity on the hidden units to get themost useful features of
the input data. Rifai et al. [31] adds explicit regularizer in the objective function for avoiding
the problem of overfitting. Also, Kingma and Welling [17] extends the vanilla autoencoder
to a generative model which can generate various images by regulating hidden variables.
Moreover, autoencoder can be stacked to form a deep autoencoder [39] which captures more
complicated and abstract features. This kind of deep network has achieved great success in
various applications, such as feature learning [24], object recognition [10] and etc.

2.2 Label Noise Problem in Survey

In the literature of solving the label noise problem, there exist two main approaches, which
are label noise cleaning algorithms and label noise robust algorithms respectively.

(1) Label noise cleaning algorithms Typically, to reduce the influence of data points with
noisy labels, one can clean the data first, which is the so-called data cleaning techniques,
or filter approaches. Particularly, they turn the noisy training set into a cleaned training
set by removing or relabeling suspicious instances and conduct the classification task in
the cleaned training set. Jeatrakul et al. [15] learns a complementary neural network by
using the training set with label noise and removes all the instances that are misclassified
by both the Truth NN classifier and Falsity NN classifier. A similar attempt is proposed
by Pruengkarn et al. [28] for SVM classifier. Hoz et al. [12] introduces a multi-objective
optimization method for feature selection based on Growing Hierarchical Self-Organising
Maps (GHSOMs) which can be used as a cleaning or relabeling method in outlier detection
problem. However, the label noise cleaning algorithms based on classification results may
remove some correctly labeled instances, and onlyminoritymislabeled instances are removed
because of the misclassification of the classifier. In fact, these methods may suffer from a
chicken-and-egg dilemma, since learning from a polluted training set may get poor classifiers
and noise cleaning technique highly relies on good classifiers.

To solve the above problem, based on the fact that support vectors of an SVM contain
almost all of the mislabeled data, Fefilatyev et al. [8] introduces a human expert to check
and verify the suspicious instances from the support vectors and relabel the instances which
are likely mislabeled. Also, an improved method is proposed by Ekambaram et al. [7] for
reducing the number of examples to be reviewed by the human expert. Although the human
expert based methods can get the state-of-the-art cleaning results in real datasets, human
experts are hard to get in most of the applications, and we can’t guarantee that the new label
is correct.

(2) Label noise robust algorithmsAlternatively, onemaymake those data pointswith noisy
labels less harmful using various robust methods. Some early approaches try to solve the label
noise problem by avoiding overfitting, such as ensemble learning [19,33] and regularization
techniques [35]. These methods try to make classifier not too sensitive for training data which
can relieve label noise problem to a certain degree. However, experiments show that this kind
of methods are still affected by label noise, which can only suit for simple cases where label
noise is highly correlated with overfitting problem.

On the other hands, some algorithms are particularly designed for label noise problem
using various robust statistics techniques, e.g., robust loss functions [4,22,25] and robust
optimization methods [40,43]. However, these are mainly supervised methods in which the
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effect of each data point on the postulated model is carefully controlled by design but at the
risk of reduced learning efficiency.

Particularly, Rolnick et al. [32] studies the behavior of standard neural network training
procedures in settings with massive label noise. Plenty of experiments prove that neural
networks are robust to label noise which can learn from data that has been diluted by amount
of label noise. Inspired by their conclusion, we use and modify a specific neural network
(i.e., autoencoder) to find the difference between data with correct label and wrong label.

3 The ProposedMethod

In this section, we first explain how to connect the label noise and outliers in conceptual.
Then we verify that our proposed class-specific autoencoder is robust to outliers. Finally, a
minimum reconstruction error based method is proposed to find out the outliers (label noise)
in training set and classify the data in test set.

3.1 Label Noise as Outliers

Assume that we have N labeled training data, {xi , yi }, i = 1, . . . , N in K classes, and some
portions ε of the training data contain label noise, i.e., their labels are incorrectly annotated.
Our goal is to learn a classifier f that assigns a new data point x to one of the K categories,
in spite of the data contamination by label noise.

To reduce the influence of samples with noisy label, a natural idea is to separate them
from the whole dataset. Since the label generation process is complicated, it is hard to
identify mislabeled samples from a global perspective. However, if we think it locally (i.e.
we consider the subset of the whole dataset where each subset has the same label), finding
label noise samples would be much easier—they are just like outliers in its corresponding
subset. Hereby “outliers”, we mean it by Hawkins’s definition as follows, ‘An outlier is an
observation which deviates so much from the other observations as to arouse suspicions
that it was generated by a different mechanism’ [11].1 This conceptual connection between
label noise and outliers inspires us to solve label noise problem by using outlier detection
methods. There are numerousmethods in the literature on this topic [2,6], which can therefore
be immediately borrowed to handle the label noise problem.

Moreover, we would like to justify the proposed “class-specific” idea for label noise from
the aspect of methodology. Indeed, it can be understood with the well-known “divide and
conquer” principle—the proposed method essentially partitions the data points with label
noise by class and handle them separately, hence avoiding the error accumulating effect if a
global loss function is adopted. A similar idea also exists in the previous literatures [34].

3.2 Class-Specific Autoencoder

Despite the simplicity of the concept of outliers, in practice it is not always obvious how to
quantify ‘deviates so much’ as this has a deep connection with the underlying model and its
training procedure (which in turn could be biased by the outliers themselves). Fortunately,
we can bypass the issue by robust feature learning method, i.e., class-specific autoencoder.

1 In general, the nature of outliers can be hard to grasp and actually there is no unanimous definition of outlier
in literature [13,37].
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(a) (b) (c)

Fig. 2 The reconstruction results for correct labeled images and mislabeled images respectively. Each pair of
the images is the digit image and its reconstruction. Images in the first row are the correct labeled images,
while the others are the mislabeled images. a Labeled “1”, b labeled “3” and c labeled “8”

For N labeled training data, {xi , yi }, i = 1, . . . , N in K classes, we first separate them
based on their corresponding label (note that some of the samples actually do not belong to
it due to label noise), and then learn separately autoencoder by the loss function shown in
Eq. (3):

L(θ;X) = 1

n

n∑

i=1

||x̂i − xi ||2 + λ||θ ||2 (3)

In Eq. (3), the first term is the average reconstruction error and the second term is an L2
regularization loss since avoiding overfitting can relieve label noise to a certain degree.
Hereby, λ is used to balance the model complexity and reconstruction ability. This kind of
loss function can be easily solved by mini-batch gradient descent shown in Eq. (4):

θ j+1 = θ j − α
1

m

m∑

k=1

∇θ f (xk) (4)

where θ is the model parameter, α is the learning rate, m is the batch size, and f (·) is the
loss function for the model.

Hereby, we do a toy example to prove that the proposed class-specific autoencoder is
effective and robust to label noise problem. 1000 images with 100 per class are randomly
selected in MNIST dataset which is a well-known digit dataset [20]. We inject 10% label
noise into these images following the widely used criteria [9]: (1) randomly select some
portion of instances per class and (2) flip their labels into one of the other remaining labels.
After introducing label noise, digits which are labeled “1”, “3” and “8” are chosen to learn
three class-specific autoencoders. The reconstruction results for correct labeled images and
mislabeled images are visualized in Fig. 2. It can be shown that the correct labeled images
are well reconstructed, although it exists 10% label noise when we learn the class-specific
autoencoder.However, the reconstruction ofmislabeled images is blurry and inaccuratewhich
also reflects that the robustness of the proposed method to a certain degree. Furthermore,
we also analyze the distribution of reconstruction error by using boxplot from a statistical
perspective and the result is shown in Fig. 3. We can see that the reconstruction error for the
correctly labeled images is much lower than the error for mislabeled images, which means
our proposedmethod can effectively distinguish outliers from normal data. On the other hand,
the perspective of reconstruction error may also give a suitable answer to how to quantify
‘deviates so much’ for outliers.
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Fig. 3 The distribution of reconstruction error for data with 10% label noise

However, when the noise level is relatively high, simply learning a feature space by class-
specific autoencoder is not enough. One can further improve the quality of the learned feature
space using some label noise-robust methods [22,40]. Considering the effect of each data
point on the postulated model, we propose a weighted class-specific autoencoder. Specifi-
cally, when updating the parameters of the class-specific autoencoder, a weighted mini-batch
gradient descent is used as Eq. (5):

θ j+1 = θ j − α

m∑

k=1

wk∇θ f (xk) (5)

where θ is the parameter of an autoencoder, α is the learning rate, m is the batch size, f (·)
is the loss function and wk is the importance weight for xk , which is calculated by Eq. (6):

wk = e−||x̂k−xk ||2
∑m

i=1 e
−||x̂i−xi ||2 . (6)

Different from the traditional mini-batch gradient descent where each data point plays the
same role as shown in Eq. (4), we assign a weight w to consider their corresponding impor-
tance to the model based on the reconstruction error. The greater the reconstruction error of
xk, the more it likely to be a data with noisy label which should get a lower importance in
updating the gradient. Note that the proposed method is similar to the cost-sensitive learn-
ing, since they both consider different weights for different samples. However, our method
is emphasized as a robust weighted optimization method where the importance weights for
each samples are changeable during the training process.

Additional verification experiment is conducted to show the effectiveness of the proposed
optimization method. The experiment settings are the same as the above toy example except
that the label noise expands to 30%. Specifically, we analyze the distribution of reconstruction
error when considering the importance weight and compare it with the original one. Note that
the weighted optimization method is used to fine-tuning the model of the original one. The
results are shown in Fig. 4. For Fig. 4a, it is clear to see that discrimination of reconstruction
error for mislabeled data and correctly labeled data is reduced compared with the case of 10%
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Fig. 4 The distribution of reconstruction error for datawith 30% label noise. aResults for original optimization
method, b results for weighted optimization method

importance weight
high low

Fig. 5 The importance weight for some samples after finishing the training process based on the weighted
optimization method. Each row has the same label which are ‘1’, ‘3’ and ‘8’ respectively. The mislabeled data
are marked with a red square. (Color figure online)

label noise shown in Fig. 3, since a higher label noise can further affect the feature learning.
However, when using theweighted optimizationmethod, the discrimination of reconstruction
error shown in Fig. 4b is improved which has less overlap between the error for mislabeled
data and correctly labeled data compared with the original one in Fig. 4a.

On the other hand, after finishing the training process based on the weighted optimization
method, we visualized the images according to the order of importance weight from largest
to smallest and the results are shown in Fig. 5. Figure5 reflects that the mislabeled samples
all get a low importance weight, although few correctly labeled samples also get a lowweight
since higher ambiguity. The above experiment results show that our proposed optimization
method can actually get a more reliable feature space where the impact of label noise is
further reduced.

3.3 Data Cleaning and Classification with Minimum Reconstruction Error

After feature learning by class-specific autoencoder, we obtain two sets of mappings. Each
of the first set of mappings f j (x), j = 1, . . . , K projects a new point x into the j th feature
spaces, while each of the second set of mappings g j (z), j = 1, . . . , K reconstructs a high-
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dimensional sample from the point z in the latent space, which can be regarded as compact
representation of some prototypes of the j th class. As the proposed class-specific autoencoder
has effectively reduced the influence of the label noise, meanwhile, the reconstruction error
can distinguish outliers from normal data, the data cleaning and classification tasks can be
solved in a unified way based on the minimum reconstruction error criterion.

Particularly, for the classification task, we predict the label yt of a test data xt by simply
calculating the reconstruction error on each autoencoder and then assign it to the class with
minimum reconstruction error, as follows:

yt = argmin j=1,2,3...,K ‖|g j ( f j (xt )) − xt ||2. (7)

For data cleaning task, whether a data contains label noise can be judged by an indicator
function,

I (x) =
{
1 y �= ŷ

0 otherwise
(8)

where y is the label of the data and ŷ is the predicted label by (6). A data will be regarded as
an outlier (i.e. a mislabeled data) if y is not equal to ŷ.

Note that the proposed pipeline for solving label noise problem can be extended to an
iterative one by (1) learning a class-specific autoencoder based on a training set. (2) cleaning
(relabeling) the training set based on the well learnt autoencoder. By iterating the two steps
repeatedly, we can find the mislabeled data as much as possible and get a more robust feature
representation for each class which suits for the classification task on the test set. Particularly,
we only iterate once for data cleaning task and iterate twice (i.e. retrain the autoencoder after
the noise data are removed or relabeled) for classification task. More details are shown in the
experiments section.

4 Experiments and Analysis

In this section, we evaluate the effectiveness of our proposed methods on two tasks: (1)
finding the mislabeled data in the training set, i.e., data cleaning, and (2) classifying the test
set based on the training set with label noise, i.e., classification in the presence of label noise.

4.1 Parameter Setting

In the implementation of the proposed methods, we use class-specific autoencoder and
weighted class-specific autoencoder for feature learning, which are respectively denoted
as CS-AE and CS-WAE. Parameter settings are mainly related to the model of autoencoder
and its training process. The hidden layer for autoencoder comprised 200 neurons. We set 0.1
for regularization weight λ and 0.01 for learning rate α. Batch size is equal to the number of
training samples in each class and epochs for training process is 100. Particularly, CS-WAE
is used to fine-tuning the model of CS-AE in our follow-up experiments.

4.2 Data Cleaning

In this section, we verify the performance of our method in the data cleaning task, i.e.,
identifying those points that most likely to be outliers and removing them. Particularly, we
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(a) (b)

Fig. 6 Illustration of artificial label noise for two pairwise confusing classes where each raw belongs to the
same class and images with noisy labels are marked in a red square. a “7” versus “9”, b “yo-yo” versus
“roulette-wheel”. (Color figure online)

Table 1 Noise removal performance (%) on pairwise confusing classes with different label noise

Pairwise classes Noise level (%) ICCN-SMO [30] TC-SVM [8] ALNR [7] CS-AE CS-WAE

7 versus 9 10 71.38 98.83 95.84 97.32 98.65

20 78.60 97.21 96.01 95.25 97.30

30 82.49 95.03 95.69 94.57 96.24

yo-yo versus roulette-
wheel

10 54.94 83.31 79.67 82.03 82.71

20 57.81 80.69 80.29 78.05 81.23

30 59.33 73.45 70.10 69.26 76.91

The best results are in bold

follow the experimental protocol outlined in [8] and carry out the experiments on two datasets
which areMNIST digit dataset and Caltech-10 image dataset. ForMNIST digit dataset, 1000
instances per class are chosen from digits “7” and “9” respectively, which are the two visually
confusing classes. For Caltech-10 image dataset, the confusing classes between “yo-yo” and
“roulette-wheel” are selected where 60 instances per class are randomly chosen. Label-noise
is randomly injected at the amount of 10%, 20%, and 30%, respectively. Samples with label
noise in two datasets can be seen in Fig. 6. In order to exclude the possibility of a biased
result caused by the instances of those two classes, we repeated the experiment 30 times and
randomly selected the instances each time.

The proposed methods are compared with three state of the art label noise removing
methods, i.e., ICCN-SMO [30], TC-SVM [8], and ALNR [7]. The settings of the hyper-
parameters are based on its corresponding paper. Note that these latter three methods learn
from the annotation from human expert to determine which samples are outliers, while in
this respect, our method is completely ‘unsupervised’ in the sense that we do not assume the
existence of such supervised information.

Table1 gives the average results, where only the outlier detection accuracy is given. It can
be seen that although no human expert correction, our proposedmethod achieves comparable
results with the state-of-the-art methods. This shows that the proposed method captures well
the characteristics of instances in spite of the deliberate disturbance imposed on. Moreover,
the proposed CS-WAE method gets a higher accuracy compared with the CS-AE method
which shows that the optimization method proposed in CS-WAE can reduce the effect of
label noise on the feature space.

Note that our proposed method may suffer a problem that some of the correctly labeled
instances are erroneously predicted asmislabeled samples. To further understand the behavior
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Table 2 ER1 (%) for CS-AE and
CS-WAE (in bold) on MNIST
dataset

Data size Noise level

10% 20% 30%

N=500 2.67 2.40 3.25 3.00 4.00 3.71

N=1000 0.89 0.78 2.38 2.13 2.86 2.43

N=2000 0.39 0.39 1.44 1.31 1.86 1.64

N=4000 0.28 0.28 0.97 0.84 1.39 1.29

CS-WAE results are in bold for simple to compare

Table 3 ER2 (%) for CS-AE and
CS-WAE (in bold) on MNIST
dataset

Data size Noise level

10% 20% 30%

N=500 14.00 14.00 17.00 16.00 18.67 18.00

N=1000 11.00 11.00 13.00 12.00 14.00 12.67

N=2000 4.00 3.50 8.25 7.50 9.33 8.33

N=4000 3.50 3.25 4.63 4.13 6.75 5.58

CS-WAE results are in bold for simple to compare

of the proposedmethod,we conduct amore challenge experiment on theMNISTdigits dataset
where all of the class are considered. The size of training data is set within a range of {500,
1000, 2000, 4000}. We also use three performance metrics for evaluation, i.e.,

ER1 = # of correctly labeled instances which are removed

# of correctly labeled instances
(9)

ER2 = # of mislabeled instances which are not removed

# of mislabelled instances
(10)

NEP = # of mislabeled instances which are removed

# of removed instances
. (11)

ER1 (Type 1 errors) reflects the percentage of correctly labeled instances which are wrongly
removed while ER2 (Type 2 errors) reflects the percentage of mislabeled instances which are
not found out. The lower values of these two metrics get, the better model we obtains. As for
NEP (noise elimination precision), it reflects the percentage of removed instances which
are actually mislabeled, and a higher value of NEP means a more effective model.These
three performance metrics are commonly used in the label noise cleaning problem [9].

Tables2, 3 and 4 give the results. One can see that regardless of the noise level and training
data size, the ER1 performance of our method is less than 4%, which shows our class-specific
feature representation rarely changes the correct label. More importantly, it can be observed
that the ER1 and ER2 get lower while the NEP gets higher with the increase of training data
size, indicating that our method is more effective when the size of training samples is larger.
Compared with CS-AE, the CS-WAE gets better performance, especially in high label noise
situation. This observation fully shows the benefit of our proposed optimization method in
CS-WAE.
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Table 4 NEP (%) for CS-AE
and CS-WAE (in bold) on
MNIST dataset

Data size Noise level

10% 20% 30%

N=500 78.18 79.63 86.46 87.50 89.71 90.44

N=1000 91.75 92.71 90.16 91.19 92.81 93.91

N=2000 96.48 96.50 94.10 94.63 95.44 95.99

N=4000 97.47 97.48 96.10 96.60 96.63 96.92

CS-WAE results are in bold for simple to compare

4.3 Classification in the Presence of Label Noise

We conduct our classification experiments on the MNIST digit dataset [20] and the Caltech-
10 image dataset [29], which are two popular classification benchmarks with ten classes.
Totally 600 images with 60 per class are randomly selected in both datasets, and they are
partitioned into training set and test set with equal number. We inject label noise at three
levels, i.e., 10%, 20% and 30%. Note that in our setting only training data contains label
noise, while the test set is kept clean.

In the implementation of the proposed methods, we try three methods based on CS-WAE
which are: (1) directly classification by the minimum reconstruction (2) removing the label
noise data before classification and (3) relabeling the label noise data before classification.
These three methods are denoted as WAE, WAE-Remove, WAE-Relabel respectively. Note
that WAE-Remove and WAE-Relabel methods need twice feature learning where the CS-
WAE will be retrained after removing or relabelling the noise data, while WAE method only
needs once.

We also learn a global PCA subspace using the whole training set (without partition for
each class) and classify the test set in it using K-NN. This naive method is named PCA-KNN
and is used as the baseline method. Besides these, we also compare our method with the two
types of methods, both of which are state of the art methods that are designed to handle the
label noise problem:

1. Label noise cleaning algorithms Including the classical PCA-based outlier detection
method (PCA-Outlier) [36] and Complementary Fuzzy SVM based noise cleaning method
(FSVM-Clean) [28].

2. Label noise robust algorithms Including L1-norm metric learning (L1-norm) [41],
Bayesian metric learning (BML) [42], and Robust Neighbourhood Component Analysis
(RNCA) [40].

Since the training samples are randomly selected in each experiment, we repeat thirty
times for excluding the possibility of a biased result. And in each experiment, the related
hyper-parameters of the comparison methods are selected by tenfold cross-validation. As for
the proposed method, the hyper-parameters are set based on Sect. 4.1. The mean accuracy
and standard deviation are reported in Fig. 7.

Figure7 shows that the WAE-Relabel method achieves the best mean accuracy among
the compared methods consistently at both low-level noise and high-level noise, indicating
the effectiveness of relabeling the label noise data. When the training set is clean, our WAE
method gets the best classification accuracy which shows that the minimum reconstruction
error based classifier is a suitable choice. On the other hand, the baseline PCA-KNNmethod
tolerates label noise to some degree when the noise level is relatively low, but its performance
decreases significantly if the noise level is beyond some threshold (e.g., 20%). The PCA-
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Fig. 7 Classification performance (%) on two dataset with varying degree of label noise. a Classification
performance (%) on MNIST digit dataset, b classification performance (%) on Caltech-10 image dataset

Outlier [36] and FSVM-Clean method [28] achieve higher accuracy compared with the
baseline method, as they have some built-in mechanism to deal with outliers and mislabeled
instances. As for the second type of methods, i.e., those label noise robust algorithms [40–
42], they achieve better results at 10% noise level compared with the state of the art first type
methods (i.e., label noise cleaning methods, e.g., [28]). However, these methods perform
worse at higher noise levels, especially in 30% label noise, highlighting the difficulty of
obtaining reliable point estimation (e.g., L1-norm [41], RNCA [40]) under the high-level
label noise.

Moreover, since the results provided by Fig. 7 are close to each other, the paired t test
between the proposed WAE-Relabel method and other comparison methods is added for
further analysis where the result of p values are shown in Table5. Specifically, our method
is compared with RNCA in the cases of 10% label noise while our method is compared with
FSVM in the cases of 20% and 30% label noise (since RNCA and FSVM get the second best
performance except the proposed method in its corresponding label noise level). It can be
seen that the P value is smaller than 0.001 in the case of 10% label noise which means that
our method has absolute improvement compared with RNCAmethod. For cases where label
noise are higher (i.e. 20% and 30%), the P value are also smaller than 0.05 which show the
differences between our method and FSVM-Clean method are statistically significant.
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Table 5 The t test results for different models

Methods (noise level) P value

MNIST Caltech-10

WAE-relabel versus RNCA (10%) < 0.001 < 0.001

WAE-relabel versus FSVM-clean (20%) 0.001 0.016

WAE-relabel versus FSVM-clean (30%) 0.003 0.027

5 Conclusion

In this paper, we proposed a simple but novel and effective method to deal with the label
noise problem in data cleaning and classification tasks. The key idea of our method is to
address the label noise problem from the perspective of feature learning by class-specific
autoencoder. This is based on our observation (assumption) of the connection between two
conceptually different problems: although one is the data contamination problem in the
output space (label noise) while the other is in the input space (outliers), locally data points
with noisy labels in some class are likely to be outliers of that class. We wish that this
simple observation could help to inspire more methods to deal with the less-studied label
noise problem. Extensive experiments on the MNIST and Caltech-10 datasets show that
our proposed method outperforms several state of the art methods in data cleaning task and
classification with label noise task.
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