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Abstract 

Semi-supervised classification from pairwise 

constraints is a challenge in pattern recognition, since 

the constraints just represent the relationships between 

data pairs rather than the definite labels. In the last 

few years, several methods have been proposed, 

however, they still utilize either the discriminability 

within the constraints or the abundant unlabeled data 

insufficiently. In this paper, we present a novel 

discriminative indefinite kernel classifier. We first 

transform the constrained data pairs into newly-

labeled samples by an outer product transformation, 

and then introduce an indefinite discriminative 

regularizer in the transformed space in order to further 

embed the discriminative and structural information 

involved in the newly labeled and unlabeled samples 

into the classifier design. We validate that such 

classifier naturally lies in the more general 

Reproducing Kernel Kreǐn Space rather than the 

common Reproducing Kernel Hilbert Space. 

Experiments show the superiority of our method. 

 

1. Introduction 

Practical pattern recognition is often confronted 

with the situations where few labeled data together 

with abundant unlabeled data are available [1, 2]. 

Furthermore, in some tasks, it is possible to obtain 

discriminative information in the form of pairwise 

must-link and cannot-link constraints which are more 

general than labels [1]. This problem has been widely 

investigated in many research fields in the last decade, 

such as dimensionality reduction [3], clustering [4], 

image segmentation [5].  

However, the study on classification with pairwise 

constraints is relatively scarce due to the difficulty in 

extracting the discriminative information from the 

constraints, which just represent the relationships 

between data pairs rather than the labels. Consequently, 

the constraints are hard to be directly incorporated into 

common classifier models. Recently, some solutions 

have been proposed. Zhang and Yan first combined the 

pairs into some single samples and then designed a 

least square classifier based on the value of the 

constraints as the labels for these samples [6]. Yan et al. 

incorporated the constraints into a margin-based 

learning framework through defining another new loss 

function in order to model the decision boundary [7]. 

Although these methods have shown better 

classification performance, they more likely extract the 

prior information from the constraints insufficiently, 

such as discriminative and structural information. 

Furthermore, they basically neglect the utilization of 

unlabeled data, whose distribution is vital in semi-

supervised learning [8]. 

In this paper, we propose a novel discriminative 

indefinite kernel classifier. In order to convert the 

classification with pairwise constraints and unlabeled 

data into a common semi-supervised problem that can 

be solved more conveniently, we transform the pairs 

into some newly-labeled samples by outer product due 

to the attractive properties of the product to guarantee 

solution consistency [6], as well as the unlabeled data. 

Then we introduce an indefinite discriminative 

regularizer into the classifier instead of the traditional 

smoothness regularizer, which embeds both 

discriminative and structural information involved in 

the new samples simultaneously. We further validate 

that such classifier is naturally in the generalized 

Reproducing Kernel Kreǐn Space (RKKS) [9] induced 

from the so-defined indefinite regularizer.  

The rest of the paper is organized as follows. 

Section 2 presented the proposed classifier. The 

corresponding indefinite kernel analysis is derived in 
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Section 3. In Section 4, the experimental comparisons 

are given. Some conclusions are drawn in Section 5. 

2. Discriminative Indefinite Kernel 

Classifier (DIKC) 

Given the pairwise constraints {          ̃  }   
  , 

where  ̃  {    } indicates the must-link and cannot-

link constraints respectively,      . Moreover, 

{  }     

 
 are the unlabeled data. For each pair, we 

define a new single vector [6] 

                            (1) 

where         is the outer product. The operator vech 

[6] returns the upper triangular elements of the matrix 

        in order of row to construct   whose 

dimension is          . As a result, the 

constraints are converted into some labeled samples 

{     ̃  }   
  in the transformed space  ̃. 

For the unlabeled data, we make the similar 

transformation 

        (     )   (2) 

Up to now, the classification problem with pairwise 

constraints has been changed to design a semi-

supervised binary classifier in  ̃. Sugiyama et al. [8] 

have pointed out that both the global structure of 

unlabeled data and class information brought by the 

labeled data are important for classification. So we 

further introduce a discriminative regularizer instead of 

the smoothness regularizer into the classifier to embed 

such prior information sufficiently. 

Assume that the classifier has linear form 

              (3) 

We use the total scatter measure to reflect the global 

structure [8] 
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where     
     . 

Then we define the local discriminative structure of 

the labeled data by the improved intra-class and inter-

class scatter measures [8] 
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where        
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and        
denotes the k nearest neighbors of

 
  . 

We bridge the two kinds of structural information 

into two new scatter measures [8] 
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where   is the regularization parameter that regulates 

the relative significance of such information,     
 , and I is the identity matrix to avoid the ill-

conditioned     . 

 Then we define the discriminative regularizer as 

               [               ]       (9) 

where    is the regularization parameter,      . 

The final optimization function of DIKC in  ̃ can be 

formulated as  

      ̃  
 

 
∑ ( ̃       )

  
                   (10) 

In order to classify unseen samples in the original 

space, we should apply an inverse operation of vech to 

the discriminative vector   obtained in  ̃ [6] 

                                   (11) 

Then we perform the eigen-decomposition to the 

matrix  , and select the largest eigenvalue    and 

corresponding eigenvector    as the sign-insensitive 

estimator   √    of  ̂  [6], which is the 

discriminative vector in the original space. 

The real sign of  ̂ can be determined by few labeled 

examples            (     ) [6] 

      ̂  {
   
   

 
∑      

       ⌈  ⁄ ⌉ 
   

         
 (12) 

where     
 
is the set indicator function and ⌈  ⁄ ⌉ is the 

ceil function.  

For an unseen sample  , the predicted class label is 

        ̂  ̂                      (13) 

3. Justification 

The discriminative regularizer embeds the global 

and local discriminative structures of the samples 

simultaneously, however, it is obviously indefinite. In 

this section, we will validate that such regularizer 

actually satisfies a generalized inner product definition 

〈   〉 ̃  〈     〉  
 〈     〉  

in the RKKS, 

which admits the inner product indefinite and thus is 

more general than the common Reproducing Kernel 

Hilbert Space (RKHS) [9]. 
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Proposition 1. The discriminative regularizer can be 

formulated as an inner product in the RKKS, that is,  

             〈   〉 ̃      
 (14) 

Proof. Recall that 

               [               ]   

Decompose the joint matrix                  into  

                𝒁𝑼𝜦𝑼 𝒁        (15) 

So                   𝒁𝑼𝜦𝑼 𝒁   

                                𝑼𝜦𝑼    

  (∑ 𝜆         
  ∑ 𝜆         

 )    (16) 

Let  𝜞  𝑼 𝜦 𝑼 
 , 𝜞  𝑼 𝜦 𝑼 

 , obviously, 
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that is, 𝜞  and 𝜞  are orthogonal.  
Decompose        , where    𝐻       𝜞  , 

   𝐻        𝜞   , then 

                 [𝜞    𝜞  ] 
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We can formulate the discriminative regularizer as  

             〈     〉  
 〈     〉  

 

   〈   〉 ̃      
                                  

Consequently, DIKC is actually an inherent 

indefinite kernel classifier in RKKS, which induces the 

indefinite kernel from the regularizer itself. The 

corresponding solution    admits the generalized 

Representer Theorem in RKKS and thus the 

optimization boils down to the general smoothing 

problem which can be solved analytically [9]. 

4. Experiments 

We conduct experiments on the IDA database to 

evaluate the proposed DIKC by comparing with the 

two methods mentioned in the Introduction section: 

Pariwise Kernel Logistic Regression (PKLR) [7] and 

classifier On the Value of Pairwise Constraints (OVPC) 

[6]. We also select regularized least square classifier as 

the Baseline. The database consists of thirteen datasets, 

which all contain two classes. We use the training and 

testing sets offered by the database. The constraints are 

randomly created depending on whether the class 

labels of the pairs are same or not, whose number is 

changed from 10 to 50. In DIKC, the number of the k 

nearest neighbors is selected from {5,10,15,20}. The 

regularization parameters in PKLR and OVPC are 

chosen from {2
-10

, 2
-9

,…,2
9
, 2

10
}. And the parameters 

in DIKC are selected in [0,0.1,…,0.9,1]. All the 

selections are done by cross-validation. Since labeled 

samples are only used to determine the sign, we only 

select one sample from each class. 

Figure 1 shows the average classification accuracies 

of the compared methods. The accuracies of PKLR, 

OVPC and DIKC are basically improved with the step-

by-step increased constraints. However, DIKC 

outperforms the other methods almost in all datasets 

due to the further utilization of the discriminative and 

structural information involved in the constraints and 

unlabeled data. 

5. Conclusion 

In this paper, we propose a novel indefinite kernel 

classifier DIKC from pairwise constraints and 

unlabeled data. DIKC first transforms the constraints 

into some single samples and then designs a 

discriminability-driven regularizer in order to fully 

capture the discriminative and structural information in 

the data. Experimental results demonstrate the 

effectiveness of DIKC. 
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(a) Banana                                     (b) Breast-cancer                                   (c) Diabetis                                     (d) Flare-solar   

 
 (e) German                                          (f) Heart                                       (g) Ringnorm                                     (h) Thyroid     

 
(i) Titanic                                     (j) Twonorm                                     (k) Waveform                                      (l) Image 

              
(m) Splice 

Figure 1. Classification performance comparisons of Baseline, PKLR, OVPC and DIKC in the IDA datasets 
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