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a b s t r a c t

In this paper, we present a novel approach to deal with the problem of detecting whether the eyes in a
given still face image are closed, which has wide potential applications in human–computer interface
design, facial expression recognition, driver fatigue detection, and so on. The approach combines the
strength of multiple feature sets to characterize the rich information of eye patches (concerning both
local/global shapes and local textures) and to construct the eye state model. To further improve the
model's robustness against image noise and scale changes, we propose a new feature descriptor named
Multi-scale Histograms of Principal Oriented Gradients (MultiHPOG). The resulting eye closeness
detector handles a much wider range of eye appearance caused by expression, lighting, individual
identity, and image noise than prior ones. We test our method on real-world eye datasets including the
ZJU dataset and a new Closed Eyes in the Wild (CEW) dataset with promising results. In addition, several
crucial design considerations that may have significant influence on the performance of a practical eye
closeness detection system, including geometric normalization, feature extraction, and classification
strategies, are also studied experimentally in this work.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the most salient facial features, eyes, which reflect the
individual's affective states and focus attention, have become one
of the most important information sources for face analysis.
Efficiently and accurately understanding the states of the eyes in
a given face image is therefore essential to a wide range of face-
related research efforts, such as human–computer interface
design, facial expression analysis, driver fatigue monitoring, live-
ness detection.

The task of eye closeness detection is to decide whether the
eyes are closed.1 This task is challenging since the degree of eye
closeness may be different for each face and there are many
ambient factors that may significantly change the appearance of
the eyes, such as lighting, pose, scales and imaging conditions [2]
(as shown in Fig. 1). In addition, inaccurate eye localization may
introduce a great difficulty to this problem.

Previously, eye closeness was commonly served as the trigger
of a series of affection states and also physiology states in many
applications [4–11]. However, many of these works did not focus
on the task of eye closeness detection but simply treated it as a
preprocessing step in the overall pipeline of a particular applica-
tion. In these methods (we call them feature-based methods in the
remaining text), typical geometrical characteristics, such as visible
iris and elliptical shape of eyelids [10–16,5,4,7], are extracted as
the evidence distinguishing closed eyes from open ones. Other
commonly used features are distinct intensity-distribution pat-
terns between open eyes and closed eyes caused by the presence/
absence of iris and eye white. For example, by accumulating gray
intensity along the horizontal or vertical direction on the coarse
eye region, the resulted projection curves show different shapes
between the closed eyes and the open ones [17–19,8,20]. Such
curves actually reflect the global intensity distribution and are
vulnerable to inaccurate eye region localization and various
ambient environment changes.

Appearance-based methods for eye states detection have
attracted much attention recently, which try to extract useful
visual features from the photometric appearance of the eyes. One
major advantage of this type of methods compared to feature-
based ones is that they could provide richer and more reliable
information for the subsequent classification, particularly so for
low-quality images. In particular, these methods first extract
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various kinds of mid-level features depicting basic shape and
texture information of the target images (see Fig. 2), such as Local
Binary Patterns (LBP) [21–23], Gabor wavelets [24–27], and then
automatically analyze discriminant patterns by resorting to
advanced machine learning tools, such as Adaboost [28,29,23],
Support Vector Machine (SVM) [21,25,22,26] and neural network
[24]. Consequently, appearance-based methods behave robustly
even under very challenging imaging conditions.

While the aforementioned methods are very efficient and
successful in dealing with input images that are in relatively good
condition ensuring that the needed features are captured clearly,
they may be vulnerable to inaccurate eye position estimation,
illumination changes, image blur, and eye occlusion. More robust
methods are hence desired, especially under the challenging real-
life application scenarios. To meet these requirements, we have
acquired a new eye state dataset called Closed Eyes in the Wild
(CEW) from the Internet. Contrary to datasets that are collected
systematically in the laboratory, very few preconditions are set in
our dataset except that the faces with close eyes in the acquired
images are detectable by the state-of-the-art Voila-Jones face
detector [32] and the eyes in the face are localizable by our eye
localizer [33]. As illustrated in Figs. 1 and 8, the eyes in our dataset
contain much wilder variations than previous datasets such as the
BoiID [34], AR [35], and CAS-PEAL [36]. Regarding the size of our
dataset, there are over 1000 faces with the eyes closed available.
More details about our dataset will be given in Section 3.

To address the problem of eye closeness detection under
uncontrolled conditions, this paper intends to integrate various
feature descriptors for robust and discriminant representation. In
particular, we combine the strength of multiple feature sets to
characterize local/global shapes and local textures of eye patches,
and construct the eye state model based on such representation.
To further improve the model's robustness against image noise
and scale changes, we propose a new feature descriptor named
Multi-scale Histograms of Principal Oriented Gradients (Multi-
HPOG). Extensive experimental results on real-world eye datasets
including the ZJU dataset and a new Closed Eyes in the Wild
(CEW) dataset show that the proposed approach handles a much
wider range of eye appearance caused by expression, lighting,
individual identity, and image noise than prior ones. In addition,
several crucial design considerations that may have significant
influence on the performance of a practical eye closeness detection
system, including geometric normalization, feature extraction, and
classification strategies, are identified and investigated experi-
mentally in this work. A preliminary version of this work appeared
in [37].

In what follows, we present the architecture of our eye
closeness detection system in Section 2. Under this architecture,
we describe the feature descriptors used in this work besides the
newly proposed one in Section 2.2 and discuss our classifiers in
Section 2.3. Extensive experimental results are given in Section 3.
Finally, we conclude this work in Section 4.

Fig. 1. Illustration of some commonly encountered challenges in the task of eye closeness recognition in real-scenarios with variations caused by individuals, lighting, blur,
occlusion, and disguise. The first row shows face images in our CEW dataset with eyes closed, while the second row shows face images from the LFW dataset [3] with both
eyes open.

Fig. 2. Visualization of three kinds of descriptors for an open eye (top) and a closed eye (bottom). The original eye images are shown in the leftmost column and their three
feature descriptors are listed from the left to the right: Local Ternary Patterns (LTP) [30], Gabor wavelet [31] and Histograms of Principal Oriented Gradients (HPOG)
(proposed in this paper).
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2. Overall architecture of the proposed system

The overall architecture of the proposed eye closeness detec-
tion system is given in Fig. 3. For a given test image, we detect and
crop the face portion by a Haar-like feature based ensemble
detector used by Viola and Jones [32], then adopt the discrimina-
tive pictorial structural model [33] to localize eyes. With the
localized position of the eye, we further refine the eye region
and align it by an information-theory geometric normalization
method used in [38]. On the aligned eye patch, various feature sets
are extracted and are input into the classifier for the final decision.

2.1. Eye patch alignment

One of the key components of our system lies in the inclusion
of the eye patch alignment module. This is based on the following
considerations: (1) eyes in a face image may undergo various in-
plane/out-of-plane pose changes or scale changes, and most
feature sets (e.g., Histograms of Oriented Gradients (HOG) [39],
Local Ternary Patterns (LTP) [30], and Gabor wavelets [31]) are not
fully invariant to such variations; (2) evenwe have discarded those
patches with very low positive responses from further analysis
(about 0.5% of all images), our automatic eye localizer may not
perform so accurate in any case. Therefore, performing geometric
alignment is necessary as a preprocessing step to improve robust-
ness against pose and scale changes and against inaccurate eye
localization.

However, one difficulty of this approach is that it is hard to find
anchor points for eye patches and hence the traditional anchor-
points-based alignment method cannot be applied. Here, we adopt
an information-theory geometric normalization method originally
proposed for medical image registration, i.e., the congealing
method [38]. This is an unsupervised image normalization method
which learns a particular affine transformation for each eye patch
such that the entropy of a group of them is minimized. Fig. 17 gives
some illustrations of eye patches normalized using this method,
from which we can see that the locations of the eyes are centered,
and their sizes are scaled.

2.2. Feature sets

In this work, we consider three types of feature descriptors,
which can capture rich image information such as the local shape,
the global shape, and the local texture even under difficult
conditions. In particular, we use a variant of Histograms of
Oriented Gradients (HOG) [39], Local Ternary Patterns (LTP) [30],
and Gabor wavelets [31] feature sets for our purpose.

2.2.1. Local shape descriptor
One typical local shape descriptor is the Histogram of Oriented

Gradients (HOG) proposed by Dalal and Triggs [39], which has
proved a very successful feature descriptor in computer vision. The
key idea of this descriptor is to pool the local orientation (shape)
information instead of the magnitude of small image patches. In
particular, an image is divided into sets of small spatial regions
called “cells”, and several neighboring cells constitute a larger local
region called “block”, which is the basic component of the
descriptor. The local shape information is first extracted on every
pixel of a cell by calculating its gradient, and is pooled in that cell
as well as in other cells within the same block (but with different
weights according to the spatial distance), which helps to improve
the “smoothness” of the resulting distribution representation
(a histogram actually). The final histogram of each block is under-
gone a contrast-normalization before being concatenated to form
the final descriptor. This makes the descriptor robust against small
changes in illumination or shadowing.

In this work, we present two variants of the HOG descriptor,
named Histograms of Principal Oriented Gradients (HPOG) and
multi-scale HPOG (MultiHPOG). Fig. 4 gives the flow chart of these
descriptors, which will be detailed in what follows.

Histograms of Principal Oriented Gradients (HPOG): Note that
HOG does not consider the unstableness of the computed gradi-
ents. This is because pixel-wise gradients are sensitive to appear-
ance changes caused by image blur, noise, low resolution, and so
on. To address this problem, instead of using the pixel-based
gradient computation directly, we consider the possibility to do
this in a larger scope and propose the Histograms of Principal
Oriented Gradients (HPOG) descriptor.

Input
Images

Face
Detection

Eye
Localization

Decision
Making

Feature
Extraction

Eye
Alignment

Eye
Cropping

ClassifierEyeClosed

Fig. 3. The overall architecture of the proposed eye closeness detection system.
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Fig. 4. The flow chart of the proposed Histograms of Principal Oriented Gradients (HPOG) descriptor and its multi-scale variant (MultiHPOG).
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Let us denote the gradient values at the pixel zi on both
horizontal and vertical directions as ðgxðziÞ; gyðziÞÞ, and the corre-

sponding magnitude and angle of the gradient as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2x ðziÞþg2yðziÞ

q

and arctanðgyðziÞ=gxðziÞÞ respectively. Here, we first analyze the
gradient distribution of a neighboring region and explore such
information for gradient smoothing. In particular, we compute the
covariance matrix C of pixels gradients on a local neighboring
rectangle region NðziÞ centered at the current pixel zi as follows
(assume that the gradients are normalized with zero mean):

C ¼
⋮ ⋮

gxðzjÞ gyðzjÞ
⋮ ⋮

2
64

3
75
T ⋮ ⋮

gxðzjÞ gyðzjÞ
⋮ ⋮

2
64

3
75

¼ ∑
zj ANðziÞ

g2x ðzjÞ gxðzjÞgyðzjÞ
gyðzjÞgxðzjÞ g2yðzjÞ

2
4

3
5; j¼ 1;…;m ð1Þ

where zj is a neighbor in NðziÞ of the zi (in our experimental
setting, the local region is set as 3�3 pixels), and m is the number
of pixels in NðziÞ. Then the largest eigenvector of the covariance
matrix is used to replace the gradients of the current pixel in HOG
for local shape information pooling (cf., Fig. 4). Hence the name
“Histograms of Principal Oriented Gradients” (HPOG). Note that
except the way to represent local shape information, the other
components remain the same as the standard HOG method.
Illustration of HPOG can be seen from the last column in Fig. 2.

Multi-scale HPOG (MultiHPOG): Another problem is related to
the face detector and eye localizer – the coarsely estimated face
region and eye locations may lead to eye patches with varying
scales. Therefore, scale invariant features are needed for such
scenarios. Geometric alignment may alleviate scales difference to
some extent. Alternatively, one can estimate the scale first and
then extract scale-specific features, as in Scale-Invariant Feature
Transform (SIFT) [40]. However, it is unclear how to generalize this
idea to HOG. Probably the easiest way to obtain the multi-scale
description is to collect several patches with different scales at the
same location and then extract features normally from those
patches [41].

In this work, we adopt the latter method but do it at the feature
level, i.e., extracting several HOG (HPOG) features by changing
model parameters (using different sizes of cell or block). Local
pooling size has a close relationship to the sensitivity and
specificity of descriptors to the local eye region, although com-
monly a fixed default setting is adopted. Actually, a small cell
makes the local pooling more specific but might be stuck to
detailed feature changes, and vice versa. Consequently, it is
difficult to choose an appropriate cell scale adaptive to each image,
especially for objects with large scale changes – as mentioned

before; this may be simply caused by inaccurate eye localization.
Using multiple cell sizes could thus be a simple but effective way
to bypass this issue. In our experiments, we use three sizes (scales)
as 3�3, 5�5, and 7�7 (pixels), and set the size of each block as
2�2 (cells). The overall flow chart to extract MultiHPOG descrip-
tor from a given image is shown in Fig. 4, and the extracted
MultiHPOG descriptor from a closed eye is illustrated in Fig. 5,
where we also show the multi-scale HOG descriptor for
comparison.2

2.2.2. Local texture descriptor
One typical and classic local texture descriptor is the Local

Binary Patterns (LBP) proposed by Ojala et al. [42], which takes a
local neighborhood around each pixel, thresholds the pixels of the
neighborhood at the value of the central pixel and uses the
resulting binary valued image patch as a local image descriptor.
LBP is resistant to lighting effects in the sense that they are
invariant to monotonic graylevel transformations, and they have
been shown to have high discriminative power for texture classi-
fication [42].

Local Ternary Pattern (LTP) proposed by Tan and Triggs [30] as a
simple generalization of LBP has proved its improved performance.
In particular, LTP extends LBP to 3-valued codes in the discretiza-
tion of the difference between the central pixel and its surround-
ing pixels (cf. Fig. 6), where the new added value encodes the
small difference in an interval of [�t t] (t is an experiential
threshold). In such a way, more detailed gradient information is
explored with promising performance for tackling challenging
conditions such as uneven illumination and image noise. In this
study, we set the threshold t as 5, and divide each 24�24 eye
patch into 3�6 blocks and represent each block as a 59-
dimensional histogram. Therefore, for each eye patch we have a
3776-dimensional LTP vector (32� 59� 2 for the positive and
negative halves of LTP coding). Illustration of LTP can be seen from
the second column in Fig. 2.

Fig. 5. Illustration of multi-scale HOG (the first row) and multi-scale HPOG (the second row). The original eye images are shown in the leftmost column, and their multi-scale
representations are listed from the left to the right with different cell size: 3�3, 5�5, and 7�7 (pixels).

Fig. 6. Illustration of the mechanism of the LTP descriptor [30].

2 A Matlab implementation of both the HPOG and MultiHPOG is available at
http://parnec.nuaa.edu.cn/xtan/data/ClosedEyeDatabases.html.
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2.2.3. Global shape descriptor
Gabor wavelets were originally developed to model the recep-

tive fields of simple cells in the visual cortex and in practice, they
capture a number of salient visual properties including spatial
localization, orientation selectivity and spatial frequency selectiv-
ity quite well. They have been widely used in face recognition.
Computationally, they are the results of convolving the image with
a bank of Gabor filters with different scales and orientations, and
taking the “energy image” (pixel-wise complex modulus) of each
resulting output image. The most commonly used filters in face
recognition have the form

Ψμ;νðzÞ ¼
Jkμ;ν J2

s2 e� Jkμ;ν J 2 J z J 2=ð2s2Þ½eikμ;νz�e�s2=2� ð2Þ

where μ and ν define the orientation and scale of the Gabor
kernels, respectively, z¼ ðx; yÞ represents the coordinate of a pixel,
J � J denotes the norm operator, and the wave vector kμ;ν is
defined as kμ;ν ¼ kνeiφμ , where kν ¼ kmax=f

ν and φμ ¼ μπ=8. kmax

is the maximum frequency, and f is the spacing factor between
kernels in the frequency domain [31]. We use 40 filters with eight
orientations and five scales on 24�24 eye patches, then down-
sampling the resulting vector by 16 to a 1440-dimensional vector.

2.3. The classifiers

Classifier is an important component in the proposed archi-
tecture of the appearance-based eye closeness detection system
(as shown in Fig. 3). In this work, we use the Nearest Neighbor,
Support Vector Machine and Adaboost as our classifiers. The
nearest neighbor method is a simple and effective non-
parametric classification method and is used in this paper as our
baseline.

Support Vector Machines: Support Vector Machine (SVM) is the
state-of-the-art large margin classifier which has gained popular-
ity within visual pattern recognition. One problem we should
handle is the imbalance problem. That is, the number of images of
closed eyes and open eyes is different,3 which tends to increase
the bias of trained SVM classifier to the class with more samples.
To overcome this problem, before training, we set the penalty
respective coefficients for the positive and negative samples to be
ω1 ¼ ðNþ þN� Þ=2Nþ , ω2 ¼ ðNþ þN� Þ=2N� , where Nþ is the
number of positive samples and N� is the number of negative
samples. We used the LIBSVM package [43] with RBF kernel for the
SVM-related experiments.

Adaboost with pixel-comparison: We use the Adaboost as the
second classifier to be compared. It provides a simple yet effective
approach for stage-wise learning of a nonlinear classification
function. In this study, we use the “difference of intensities of
pixels” proposed in [44] as our features. These pixel-comparison
features are efficient to compute and when combined with
Adaboost, the most discriminative patterns in pixel differences
between open eyes and closed eyes could be selected among a
huge set of candidates (see below).

More specifically, we used five types of pixel comparison
operators (and their inverses) [44]:

(1) pixeli4pixelj;
(2) pixeli within 5 units (out of 255) of pixelj;
(3) pixeli within 10 units (out of 255) of pixelj;
(4) pixeli within 25 units (out of 255) of pixelj;
(5) pixeli within 50 units (out of 255) of pixelj.

The binary result of each comparison, which is represented
numerically as 1 or 0, is used as features. Thus, for an eye patch of
24�24 pixels, there are 2n5nð24n24Þnð24nð24�1ÞÞ ¼ 3;179;520
pixel-comparison features.

For feature selection, we use Adaboost while learning a strong
classifier at the same time. This is done by mapping each feature to a
weak classifier and then selecting the most discriminative weak
classifier increasingly for an additive strong classifier. For more details,
see [44]. In the training process, we investigate the influence of
different number of boosted weak classifiers and also different
number of candidate features for selecting the most discriminative
weak classifier in each iteration, e.g., setting totally boosted classifiers
as 1000 and 2000, and setting the candidate features number as 1%,
10% and 100% of all possible weak classifiers per iteration.

3. Performance evaluation

In this section, we first introduce two datasets for algorithm
exploration and verification (note that other publicly available
datasets, such as BioID [34], AR [35], and CAS-PEAl [36], contain
face images with eyes closed as well), then go on to verify the
performance of different descriptors on these datasets, under the
proposed architecture described in Section 2. Finally, an investiga-
tion on the details of our method is conducted.

3.1. Data and settings

ZJU dataset: The first dataset for our experiments is collected
from the ZJU Eyeblink Database [1]. There is a total of 80 video
clips in the blinking video database from 20 individuals, four clips
for each individual: one clip for frontal view without glasses, one
clip with frontal view and wearing thin rim glasses, one clip for
frontal view and black frame glasses, and the last clip with an
upward view without glasses. We manually select images in each
blinking process, including eye images of open, half open, closed,
half closed. In addition, images of the left and the right eyes are
collected separately. Some samples of the dataset are shown in
Fig. 7. We can see that these images may be blurred, with low
resolution or occluded by glasses.

The collected eye images are then divided into two separate
sets for training and test purpose. The training set consists of
images from the first 16 individuals. The test set consists of the
images from the remaining 4 subjects. Note that there is no
overlapping in images of subjects between the training set and
the test set. To further increase the diversity of training samples,
various transformations such as rotation, blurring, contrast mod-
ification, and addition of Gaussian white noise are applied to the
initial set of training images, yielding about 6600 new images in
total. Finally, the training set contains 7334 eye images in all, with
1574 closed eye images and 5770 open eye images. The test set is
constructed with 410 closed eyes and 1230 open eyes. All these
images are geometrically normalized into images of 24�24 pixels.

CEW dataset: Considering that the unconstrained real-world
application scenario is full of challenging variations caused by
individual difference and kinds of environment changes, including
lighting, blur, occlusion, and disguise, to investigate the perfor-
mance of the proposed method in these conditions, we collected a
database for eye closeness detection in the wild. In particular, this
dataset contains 2423 subjects, among which 1192 subjects with
both eyes closed are collected directly from the Internet, and 1231
subjects with eyes open are selected from the Labeled Faces in the
Wild (LFW [3]) database. Illustration of eyes images in this dataset
can be seen in Fig. 8.

As mentioned before, eye patches are collected based on the
coarse face region and eye position automatically and respectively

3 In practice, it is much easier to collect images of open eyes than those of
closed eyes.
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estimated by the face detector and eye localization. We first resize
the cropped coarse faces to the size 100�100 (pixels) and then
extract eye patches of 24�24 centered at the localized eye
position. We randomly choose 100 faces with closed eyes and
100 faces with open eyes for training and all the remaining for
testing (i.e., 2223 faces), and repeat such process ten times for
mean performance reporting. Since there is great similarity
between the left and right eyes, this strategy ensures that the left
and right eyes from the same subject cannot be appeared in the
training set and the test set simultaneously (e.g., one for training
and the other for testing).

The final distributed datasets consist of the grayscale eye patches
and the corresponding color face images.4 For converting a color
image into its grayscale counterpart, we eliminate its hue and
saturation information while retaining its luminance (equal to the
weighted sum of the R, G, and B components: 0.2989*R þ 0.5870*G þ
0.1140*B).

3.2. Extensive experimental results

3.2.1. Performance comparison among various feature sets
In this section, we first make a comparison between feature-

based methods and appearance-based methods for eye closeness

detection. One representative method of the former is the intensity
projection method. Such method usually exploits heuristics that
open eyes usually have a low brightness area in the eye center
adjacent to two high brightness areas, corresponding to the iris and
the eye whites respectively. Given a M by N image IM�N , a vertical
projection curve (a vector) is calculated by accumulating gray values
of pixels in each column and defined as∑M

i ¼ 1Iði; jÞ, where i is the row
number, and j is the column number. Recent work [8] proposed a set
of rules for judging eye states according to the shape of the vertical
projection curve. In particular, for an open eye, the location of the
valley (indicated as “Xmin” in Fig. 9) should at the center position
around, and the value of the minimal adjacent summit (indicated as
“Ysmax” in Fig. 9) should be higher enough than that of the valley
(indicated as “Ymin” in Fig. 9); otherwise it is decided to be a closed
eye. We implement the method in [8] and test it on our two datasets.

Fig. 10 gives the results. We can see that this method achieves
performances of 77.8% and 70.1% on ZJU dataset and CEW dataset
respectively. It can also be observed that its performance lag
largely behind the appearance-based methods. To gain more
understanding on this, we give some typical errors made by it in
Fig. 9. It can be seen that poor imaging conditions, such as low
resolution, blur, uneven light, may lead to ambiguous appearance
of eyes, and this in turn results in the shape deterioration of the
projection curve. This also explains why its performance on CEW
dataset is poorer than that on ZJU dataset.

Next, we compare the performance among various descriptors
mentioned in Section 2.2 with the same settings (with SVM

Fig. 8. Illustration of the closed eyes images (the top four rows) and the open eye images (the bottom four rows) in CEW dataset. Note that these eyes images are full of
variances caused by individual, lighting, blur, occlusion, and disguise.

Fig. 7. Illustration of some positive (the top two rows) and negative (the bottom two rows) samples from ZJU dataset.

4 Publicly available at http://parnec.nuaa.edu.cn/xtan/data/ClosedEyeData
bases.html.
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classifier) and the same datasets. Fig. 10 gives results. We can see that
the best performers on ZJU dataset and CEW dataset are the newly
proposed HPOG and MultiHPOG feature sets, respectively. This

indicates that the proposed two extended HOG features are effective
in extracting robust local shape features for the task of eye closeness
detection. LTP feature sets perform better than both the original HOG
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Fig. 10. Comparative accuracy of different kinds of features (a) on ZJU dataset; (b) on CEW dataset.
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feature and the Gabor features on ZJU dataset. Fig. 11 gives the ROC
(Receiver Operating Characteristic) curves of those features on the
two datasets. It can be seen that the MultiHPOG feature performs
best in terms of AUC (Area Under the ROC Curve) values on both
datasets, followed by HPOG, which further verifies that our exten-
sions to HOG are beneficial to this task.

Table 1 gives a comprehensive performance comparison of
various feature sets in terms of recognition accuracy, AUC, Equal
Error Rate (EER), and also the time cost (millisecond for testing
each eye patch). Several observations can be made from this table.

1. We can see that LTP obtains the lowest EER value of 5.04 on ZJU
dataset, while the Gabor feature performs worst (except the

gray feature) with the highest EER values of 7.16 and 10.31 on
the two datasets, respectively. One possible explanation is that
the LTP features give a detailed account of the appearance of
eye regions while being insensitive to the lighting changes.
Actually, when one screws up his eyes, it is difficult to make a
decision on whether his eyes are closed with a coarse account
of the global shape information (as Gabor features do). In such
cases, it would be better to look at feature sets capturing the
local texture or the local shape information.

2. One may notice from Fig. 11(b) that, with deteriorating image
quality (e.g., those in CEW dataset), the difference between
various feature sets becomes less evident. This may imply that
there is a performance boundary of each feature set in dealing

Table 1
Comparative performance of various features and classifiers on the two datasets.

Approach ZJU dataset CEW dataset

Acc. (%) AUC (%) EER (%) Time (ms) Accu. (%) AUC (%) EER (%) Time (ms)

NN
Gray 84.74 – – 0.50 74.3170.85 – – 0.0470.01
LBP 89.19 – – 1.59 81.0070.97 – – 0.8570.01
LTP 91.39 – – 3.36 83.5971.45 – – 1.6470.02
Gabor 85.04 – – 14.87 85.5371.22 – – 13.7970.02
HOG 90.90 – – 7.76 90.3570.38 – – 6.8270.01
MultiHOG 90.72 – – 13.79 90.4770.39 – – 12.6770.02
HPOG 90.42 – – 13.57 89.9370.42 – – 12.7070.01
MultiHPOG 90.72 – – 32.59 90.5070.46 – – 30.3870.02

SVM
Gray 89.62 95.92 11.55 1.68 82.8571.08 89.4870.81 18.3871.06 0.3270.02
LBP 94.51 98.17 5.37 4.05 91.1270.50 95.1470.40 10.6170.57 1.9670.06
LTP 94.69 98.41 5.04 12.14 92.9470.65 96.0670.40 8.8370.64 16.6771.22
Gabor 93.04 97.89 7.16 16.85 91.1670.33 95.6170.24 10.3170.38 17.6570.84
HOG 93.89 98.22 6.27 12.24 93.1070.41 96.3770.24 8.6970.31 12.6170.43
MultiHOG 94.26 98.31 6.35 19.08 93.3170.34 96.4970.22 8.5270.39 19.8170.51
HPOG 95.91 98.58 6.18 18.17 93.1370.45 96.3970.21 8.6070.42 18.5570.29
MultiHPOG 95.60 98.68 6.27 37.57 93.5170.36 96.5970.21 8.1770.39 38.4770.53

Ada. (1000)
1% 92.06 96.48 8.30 0.034 87.0970.86 94.2870.52 12.9870.85 0.02970.003
10% 92.91 96.52 8.71 0.036 87.0170.76 94.1470.57 13.0270.82 0.02870.002
100% 92.31 96.50 8.45 0.042 86.7470.86 94.0870.61 13.3270.83 0.02570.002

Ada. (2000)
1% 92.37 96.67 7.65 0.063 87.7470.76 94.5070.54 12.2170.89 0.06070.009
10% 92.67 96.73 7.48 0.063 86.7070.71 94.0770.59 13.0770.69 0.04870.002
100% 93.47 97.01 7.08 0.065 86.6670.65 93.9770.66 13.4770.71 0.04570.002

Table 2
Comparative performance of various feature fusion schemes (with the SVM classifier) on the two datasets. “(s)” indicates feature fusion at the score level otherwise at the
feature level.

Approach ZJU dataset CEW dataset

Acc. (%) AUC (%) EER (%) Acc. (%) AUC (%) EER (%)

LTPþGabor 95.54 98.81 4.88 94.0170.65 96.7570.30 7.7170.64
LTPþGabor(s) 95.48 98.77 4.88 93.8970.61 95.0070.69 7.9470.53
HPOGþLTP 96.40 99.01 4.56 93.9470.43 96.7170.23 7.8970.39
HPOGþLTP(s) 95.91 98.66 4.80 94.1370.39 95.4970.40 7.7970.44
HPOGþGabor 96.58 99.03 4.56 93.9170.39 96.7270.17 7.9370.35
HPOGþGabor(s) 95.18 98.52 5.78 93.6670.39 95.6170.50 7.9070.41
MultiHPOGþLTP 96.46 99.14 4.23 93.9470.35 96.7270.21 7.9070.41
MultiHPOGþLTP(s) 96.21 98.65 4.23 94.3170.44 95.6170.43 7.6270.45
MultiHPOGþGabor 96.40 98.88 5.37 93.8270.32 96.7270.20 8.0670.30
MultiHPOGþGabor(s) 95.79 98.66 5.13 94.0370.46 95.7270.61 7.7070.37
HPOGþLTPþGabor 96.64 99.04 3.99 94.4170.44 96.9370.19 7.4870.46
HPOGþLTPþGabor(s) 95.91 89.22 3.58 94.5470.54 96.1570.40 7.3370.50
MultiHPOGþLTPþGabor 96.83 99.27 3.09 94.4570.48 96.9470.19 7.4770.40
MultiHPOGþLTPþGabor(s) 96.40 96.67 4.64 94.7270.48 95.1970.40 7.2670.47
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Fig. 12. ROC curves of various feature fusion strategies using the SVM classifier (a) on ZJU dataset; (b) on CEW dataset. AUC values are given at the end of corresponding
legend text.

Fig. 13. Examples of some typical success and failure cases of our method. For each face image shown in the top four rows ((a) and (b)), its eye locations are automatically
located and are marked as cross signs, based on which, the eye patches are extracted and are illustrated in the bottom four rows ((c) and (d)). All the eye states of the images
on the left side ((a) and (c)) are successfully recognized while those on the right side ((b) and (d)) are failed. The images in the upper two rows of (b) and (d) illustrate the
false-negative cases (i.e., the system regards the closed eyes as the open ones, marked by the red circles), and those in the lower two rows give the false-positive examples
(i.e., the open eyes are incorrectly recognized as the closed eyes, marked by the red crosses). For all the images in this figure, those above the dashed line are from ZJU dataset
and below it from CEW dataset. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Fig. 14. Illustration of eye images contaminated by different degrees of Gaussian noise (from left to right the variance are 0, 0.01, 0.03, and 0.05).
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with images with low quality. One way to address this issue is
to fuse the (weak) information captured by different feature
sets, as described in the next section.

3. Although the SVM-based methods outperform the Adaboost-based
ones in terms of recognition accuracy, they run much slower than
the latter ones at the test time. In particular, one can see from the
table that the Adaboost-based methods run at least 100 times
faster than SVM without hurting the ROC performance (AUC
values) too much. This suggests that the Adaboost with the
difference of pixel features is a very attractive candidate in practice,
especially in cases where real time test is of importance.

3.2.2. Fusion feature sets for difficult images
To investigate the possible benefits of feature fusion for images

under uncontrolled conditions, we conducted a series of experiments
on both ZJU dataset and CEW dataset by fusing various descriptors.
Feature fusion could be performed either at the feature level or the
score level, and we tested both in this work. Table 2 gives the overall
results. Comparing this with the results shown in Table 1, one can see
that fusing features improves performance in general. For example,
on ZJU dataset, the accuracy of Gabor wavelets and LTP is 93.04% and
94.69%, respectively, while combining them at the feature level
improves this to 95.54%. For HPOG features, its performance

improves from 95.91% to 96.40% when combined with the LTP
features, which is further improved to 96.64% if the Gabor features
are added. Similar results can be observed on CEW dataset, as well.
For example, combining Gabor and LTP features improves the
performance to 94.01% from 91.16% and 92.94%, respectively. Overall,
fusing the MultiHPOG, LTP, and Gabor features gives the best result
on both ZJU dataset and CEW dataset. Further details of ROC curves
of feature fusion strategies are given in Fig. 12.

Fig. 13(a) and (c) illustrates several typical successful examples
of our “MultiHPOG / LTP / Gabor þ SVM” method. One can see that
although those images are taken under uncontrolled conditions
and their appearance changes largely, our method correctly
identifies these eyes as closed. In addition, Fig. 13(b) and (d) gives
some representative failure cases, including both the false-positive
and false-negative ones. From those images, one can see that they
look even confusing to human beings when deciding whether
these eyes are closed. This helps us to understand the challenges of

Table 3
Comparative accuracy (%) of HPOG and HOG at different Gaussian noise levels on
the two datasets.

Dataset and features Noise level

0.01 0.03 0.05

ZJU dataset
HOG 83.7 70.9 77.3 70.6 76.0 70.5
HPOG 86.2 70.6 80.2 70.5 78.1 70.4

CEW dataset
HOG 80.470.3 68.170.7 63.170.8
HPOG 82.9 70.6 70.8 70.8 65.6 70.7

Fig. 15. Illustration of eye patches with varying scales. The sizes of eye patches are 24, 30, and 36 from left to right.
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Fig. 16. Comparative accuracy of Multi-scale HOG and HPOG on ZJU dataset and
CEW dataset.
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eye closeness detection in the real world and further implies the
need of further research on these.

3.2.3. The robustness of HPOG against Gaussian noise
To verify the capability of the proposed HPOG descriptor against

image noise, we simulate the noise imaging conditions by adding
varying degrees of Gaussian noise to eye images (Fig. 14), and then
extract the HPOG feature sets from them. For the two datasets, we
follow the same experimental protocol for training and testing data
splitting as introduced previously with the SVM as the classifier, and
repeat the Gaussian noise process ten times and report the mean
performance with standard variance. Table 3 shows the results. It can
be observed that the performance of both HOG and HPOG decreases
with the increasing Gaussian noise level, which shows that Gaussian
noise affects the stableness of gradient information extraction. How-
ever, one can also see that the HPOG outperforms HOG by about 2% at
each Gaussian noise level consistently on the two datasets. This
indicates that it is beneficial to use more robust local shape estimators
when images contain noise.

3.2.4. Multi-scale extensions of HOG and HPOG
To investigate the effectiveness of the proposed multi-scale

extensions of both HOG and HPOG, we first simulate the multi-
scale scenario by collecting eye patches in three scales, i.e., 24�24,
30�30, and 36�36 (see Fig. 15), and then resize them to the
same size of 24�24 pixels. For CEW dataset, we randomly select
200 subjects with one image per person (100 with closed eyes and
100 with open eyes) for classifier training. This results in
200ðsubjectsÞ � 3ðscalesÞ � 2ðeyes per subjectÞ ¼ 1200 eye patches,
and eye patches from the remaining 2223 faces are used for
testing. Similarly, for ZJU dataset, 200 faces are randomly chosen
from the first 16 individuals, and the faces of the remaining
4 individuals are used for testing. Such processes are repeated 10
times for mean performance reporting with standard variance.
Fig. 16 gives the results. We can see from the figure that both
multi-scale HOG and multi-scale HPOG improve the performance
upon their original version. For example, on ZJU dataset, the
improvement of multi-scale version of HOG and HPOG is respec-
tively 1.4% and 1.5%, compared to the original one, while, on CEW
dataset, the improvement is 1.2% and 1.4% respectively.

3.2.5. The importance of eye patch alignment
Finally, we investigate the influence of the eye patch alignment on

the performance of the system. Fig. 17 illustrates the aligned eye

patches. Although the LTP feature is known to be rotation-invariant,
and the HOG feature is robust against a slight perturbation in the
image, they are not robust against general affine transformations.
Indeed, Table 4 shows that it is beneficial to do geometric normal-
ization for eye patches before extracting features from them.

3.3. Runtime performance evaluation

We evaluate the runtime performance of our approach on
video sequences of the ZJU Eyeblink database [1]. In particular,
on a laptop, we run the whole pipeline of our eye state detection
(cf. Fig. 3) on each frame of a randomly selected video sequence
consisting of 148 frames.5 Table 5 reports the average detection
speed and the detailed elapsed time per frame by each processing
step. The table reveals that the step of feature extraction takes
about 28.5% of the total time, while 62.9% of the time is due to the
preprocessing step. In practice, we may replace the preprocessing
step with a suitable eye tracking algorithm to save the time spent
on the steps of face detection and/or eye localization, and use a
more efficient patch alignment algorithm. Note that our imple-
mentation is based on the Matlab platform without any code
optimization and the actual runtime efficiency could be further
improved by using other low-level programming language such as
C and by using code optimization techniques.

3.4. Comparison with other methods

Due to the lack of common datasets and widely accepted
evaluation protocol, it is really hard to make a fair comparison
between our method and other methods. Despite this, Table 6 lists
some of the methods we are aware of, with corresponding experi-
mental settings such as the dataset tested on, major characteristics of

Fig. 17. Illustration of eye patches normalized with the congealing method [38], where patches in the top two rows are original images of closed eyes and their
corresponding normalized versions respectively, and patches in the bottom two rows are original images of open eyes and their corresponding normalized images,
respectively.

Table 4
Comparative accuracy of typical features with/without (w/o) eye alignment (with
the SVM classifier) on ZJU dataset.

Processing LTP Gabor HOG HPOG

Without alignment 94.3 89.23 89.5 93.04
With alignment 94.7 93.0 93.9 95.9

5 We also test several other sequences of this database, and they give similar
results.
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the dataset, training/test data partitions, and the performance. From
the table, we can see that while many of these methods were
evaluated on various datasets such as BioID [34], AR [35], CAS-PEAL
[36], what they all have in common is that the feature descriptors
adopted for eye representation are similar to or as same as those
mentioned in Section 2.2, such as LBP, Gabor, Haar, or their variants.
It can be seen that our method shows an advantage to the LBP-based
method [22] which obtains a performance of 90.37% on the ZJU
Eyeblink dataset [1]. This performance advantage may be attributed
to the proposed robust MultiHOPG descriptor and the multi-feature
fusion strategy. Both [28] and our methods are tested under totally
uncontrolled conditions with a similar performance. However, our
“MultiHPOGþLTPþGabor” feature fusion method is trained on a
much smaller dataset than that in [28] (about a 40-time reduction in
terms of the size of the training set).

To further verify the effectiveness of the proposed method,
besides ZJU dataset, we also conduct a series of experiments on
several public face datasets, including BioID [34], CAS-PEAL [36],
and AR [35]. Particularly, we run our closeness detector trained on
ZJU dataset directly on these datasets, without any fine-tuning on
them, and report the accuracy according to the manually labeled
ground truth.6 The last three rows of Table 6 give the detailed
experimental settings and the corresponding results. Note that
since the definition of ground truth is different on these tested

datasets by different authors, results listed in Table 6 are not
directly comparable. Nevertheless, it is clear that our method gives
excellent detection accuracy on the AR and the CAS-PEAL dataset,
and slightly worse results on the BioID. This demonstrates the
generalization capability of the proposed approach since we did
not train on these datasets but only test our model on them.

It is worth mentioning that Pan et al. [1] has reported eye-blink
detection rate on the ZJU Eyeblink dataset.7 Particularly, they
achieved a two-eye-blink detection rate of 93.3% (84.1% for one
eye), further improved to 95.7% (88.8% for one eye) by taking
contextual eye state information into account. This implies that
eye blink detection could be made tolerant to the mis-recognition
of individual eye state (such as eye closeness), benefiting from the
dynamic information provided by the nearby state. On the other
hand, we obtain accuracy of 96.8% for eye closeness detection on
ZJU dataset without using any dynamic contextual information. It
will be interesting to investigate whether the performance of an
eye-blink detector (an activity recognizer, actually) could be
further improved if an enhanced individual eye state detector like
ours is used as its component. However, this is beyond the scope of
the current paper and will be the focus of our future work.

Table 5
Typical time cost (ms/frame) for each step of the proposed method for eye closeness detection on the ZJU Eyeblink database [1].

Preprocessing (ms) Feature extraction (ms) Prediction (ms) Total (ms)

Face detection Eye localization Alignment LTP Gabor MultiHPOG

13 11 180 5 21 67 29 326

Table 6
Comparison of some state-of-the-art appearance-based methods for eye closeness detection.

Approach Dataset Challenge #Train: open
(o) closed (c)

#Test: open
(o) closed (c)

Eye size Acc.
(%)

LBIIPH þ Adaboost [23] Mixed data from CAS-PEAL [36], RPI ISL
eyes [45], AR [35] and BioID [34]

Varying sizes, skin colors,
orientations, illuminations

2000(o) 1000(c) 2979(o) 1479
(c)

40�20 99.84

LBP þ SVM [21] CAS-PEAL [36] Variations in expression,
background, accessory

200(o) 200(c) 5738(o) 552(c) 40�20 96.50

Color correlogram þ
Adaboost [29]

WebCam data Varying illumination 1500(o) 700(c) 1618(o) 812(c) 60�30 98.39

Gabor þ SVM [25] BioID [34] Varying skin color,
illumination, gender

738(o) 316(c) 300(o) 100(c) 40�20 94.00

Gabor þ SVM [26] Surveillance data Varying illuminations, races,
eye colors

– 2810(o) 1280
(c)

30�20 95.59

LBP þ SVM [22] ZJU eyeblink dataset [1] varying pose, lighting,
accessory

Front clips Rear clips 0.74�0.37 (ratio to
eyes distance)

90.37
Clips type 1, 2 Clips type 3, 4 84.32

Haar þ Adaboost [28] Web data Varying resolution 9000(o) 7400(o) 5754 24�24 94.71
MultiHPOG þ LTP þ

Gabor þ SVM (ours)
ZJU dataset Variations in pose, lighting,

accessory
5770(o) 1570(c) 1230(o) 410(c) 24�24 96.83

Web data Variations in lighting, blur,
occlusion, disguise

200(o) 200(c) 2262(o) 2184
(c)

94.72

BioID [34] Varying skin color,
illumination, gender

5770(o) 1570(c)
(ZJU dataset)

2910(o) 132(c) 97.14

CAS-PEAL [36] Variations in expression,
background, accessory

7292(o) 782(c) 99.05

AR [35] Variations in lighting,
expression

3028(o) 512(c) 99.75

6 The labels are available at http://parnec.nuaa.edu.cn/xtan/data/ClosedEyeDa
tabases.html.

7 Note that this dataset is different from the ZJU dataset used in this work – the
latter is specially designed for eye closeness detection on the basis of the former.
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4. Conclusion

Eye closeness detection has wide applications in practice includ-
ing fatigue detection and anti-blink system with cameras, but this
problem is far from being solved, especially when the images are
captured from uncontrolled real-world scenarios. In this work, we
first investigate several typical feature descriptors to understand
their respective capability of distinguishing closed eyes from open
ones, and find that the HOG-type descriptors (i.e., the new features
that we have proposed, HPOG and its Multi-scale version named
MultiHPOG) and LTP descriptors are competent even when the
quality of eye images is decreasing (as shown in Fig. 8), and
MultiHPOG is the best individual feature in our experiments.

We also evaluate different combinations of features in our
experiments and find that local texture (LTP) and local shape
(MultiHPOG) features are important, and adding the global shape
feature (Gabor wavelets) further improves the performance.
Furthermore, we show that the geometric normalization and
feature extraction at multiple scales are of importance in dealing
with the issues caused by the inaccurate eye localization.

Last but not least, considering that one major reason that most
current work on eye closeness detection could not be directly
comparable is due to the lack of common datasets for evaluation,
we contribute two new large eye-state databases in this regard.
We are currently working on more effective descriptors and more
efficient detection model under the proposed appearance-based
eye closeness recognition architecture.
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