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Abstract. This paper presents an unsupervised fuzzy-kernel learning vector 
quantization algorithm called FKLVQ. FKLVQ is a batch type of clustering 
learning network by fusing the batch learning, fuzzy membership functions, 
and kernel-induced distance measures. We compare FKLVQ with the well-
known fuzzy LVQ and the recently proposed fuzzy-soft LVQ on some artificial 
and real data sets. Experimental results show that FKLVQ is more accurate and 
needs far fewer iteration steps than the latter two algorithms. Moreover 
FKLVQ shows good robustness to outliers.  

1   Introduction 

The self-organizing map (SOM) due to Kohonen [1] is an ingenious neural network 
and has been widely studied and applied in various areas. The SOM network uses the 
neighborhood interaction set to approximate lateral neural interaction and discover 
the topological structure hidden in the data. The unsupervised learning vector quanti-
zation (LVQ) [2] can be seen as a special case of the SOM, where the neighborhood 
set contains only the winner node. Such learning rule is also called the winner-take-
all principle. 

LVQ has attracted a lot of attentions because of its learning simplicity and effi-
ciency. However, LVQ suffers from several major problems when used for unsuper-
vised clustering. Firstly, LVQ is sequential, so the final result severely depends on the 
order which the input patterns are presented to the network and usually a lot of num-
bers of iteration steps are needed for termination. Secondly, LVQ suffers the so-
called prototype under-utilization problem, i.e., only the winner is updated for each 
input. Finally, because of adopting Euclidean distance measure,  LVQ can cause bad 
performance when the data is non-spherical distribution, and especially contains 
noises or outliers. 

To solve the first problem, the batch LVQ is proposed, which comes from the no-
tion of batch SOM [1]. And fuzzy membership functions are introduced to original 
LVQ to overcome the second problem. For example, Yair et al. [3] proposed a soft 
competitive learning scheme to LVQ. To simultaneously address the above two prob-



lems some batch version of fuzzy LVQs are proposed. Bezdek et al. [2, 4] proposed 
the well-known fuzzy LVQ (FLVQ). Wu and Yang [5] presented a fuzzy-soft LVQ 
(FSLVQ). However, both FLVQ and FSLVQ use the Euclidean distance measure, 
and hence they are effective only when data set is spherical alike distributed. In addi-
tion, according to Huber's robust statistics [6], the Euclidean distance measure is not 
robust, i.e., sensitive to noises and outliers. To solve this problem, a sequential kernel 
SOM was proposed in one of our recent works, where a kernel-induced distance 
measures replaces original Euclidean one in order to improve robustness to outliers 
[7]. 

In this paper, we advance the sequential kernel SOM to the batch type of clustering 
learning network and call it a fuzzy-kernel LVQ (FKLVQ). Our goal aims to making 
FKLVQ simultaneously solve the three problems of LVQ by fusing the batch learn-
ing, fuzzy membership functions, and kernel-induced distance measures together. We 
made comparisons between FKLVQ and other types of batch LVQ on some artificial 
and real data sets.  

2   Fuzzy-Kernel Learning Vector Quantization 

As already mentioned in the previous section, FKLVQ consists of three main parts, 
i.e. batch learning, fuzzy memberships and kernel-induced distance measures. Before 
presenting FKLVQ algorithm, we first introduce the batch LVQ, fuzzy membership 
function and kernel-induced distance measures used in FKLVQ. 

2.1   Batch LVQ 

The LVQ for unsupervised clustering is a special case of the SOM network [5]. Sup-
pose Wi in Rs is the weight vector of the node i and the input sample xk in Rs is pre-
sented online at time t, sequential LVQ updates its neuron i as follows: 

( )( ) ( 1) ( ) ( 1)i i ik k iW t W t t h x W tα= − + − − . (1) 

Here α(t) is the scalar-valued learning rate, 0<α(t)<1, and decreases monotonically 
with time. hik is an indicative function whose value is 1 if i is the winner node j, and 0 
otherwise, where the winner node j is computed as follows: 

,    || ( 1) || || ( 1) ||k j k ii x W t x W t∀ − − ≤ − − . (2) 

Suppose that the sample set are X={x1,…,xn}, where n is fixed. the sequential LVQ 
can be replaced by the following batch  version which is significantly faster and does 
not require specification of any learning rate α(t). 

Assume that the online algorithm will converge to a stationary state Wi
*, then the 

expectation values of Wi(t) and Wi(t-1) must be equal as t goes to infinity. In other 
words, in the stationary state we must have 



( )* 0ik k iE h x W − =  . (3) 

Applying the empirical distribution to solve the above equation, we have the batch 
learning formula of LVQ with [5] 
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Since the determination of hik still depends on Wi
* according to Eq. (2), an alternate 

iteration between Eqs. (2) and (4) is used to approximate the explicit solution of Wi
*. 

2.2   Fuzzy Membership Function 

The above batch LVQ is in fact equivalent to traditional k-means (also called hard c-
means) clustering algorithm, whose fuzzy extension is the widely used fuzzy c-means 
algorithm (FCM) [8]. The key point of FCM is the use of membership function which 
originally exists in fuzzy sets. Given X={x1,…,xn}, FCM obtains a fuzzy c-partition of 
X with {u1,…,uc}, where uik = ui (xk) takes value in the interval [0,1] such that ∑i uik =1 
for all k. By optimizing the objective function of FCM, one can obtain the alternate 
iterative equations. When the Euclidean distance is used, the update equation of the 
membership uik  is as follows [8]: 
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Here m>1 denotes the degree of fuzziness, and as m approximate to 1+, FCM degen-
erate into crisp k-means algorithm.  

Inspired by the success of FCM, many researchers also introduced the fuzzy mem-
bership to original batch LVQ in a similar way [2, 5, 9]. That is often achieved by 
representing hik with some monotone functions of uik  and afterwards alternately iter-
ating between hik  and Wi, e.g. the FLVQ due to Bezdek et al. [2] and the FSLVQ 
proposed by Wu and Yang [5]. 

2.3   Kernel-induced Distance Measures 

Given input set X and a nonlinear mapping function Φ, which maps xk from the input 
space X to a new space F with higher or even infinite dimensions. The kernel function 
is defined as the inner product in the new space F with: K(x,y) = Φ(x)TΦ(y), for x, y in 
input space X. 

An important fact about kernel function is that it can be directly constructed in 
original input space without knowing the concrete form of Φ. That is, a kernel func-
tion implicitly defines a nonlinear mapping function. There are several typical kernel 
functions, e.g. the Gaussian kernel: K(x,y)=exp(-||x-y||2/σ2), and the polynomial kernel: 
K(x,y)=(xTy + 1)d. From a kernel K, we have 
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Here d(x, y) defines a class of kernel-induced non-Euclidean distance measures with 
varying kernel functions. In our early works, the kernel-induced distance measures 
have been adopted in sequential kernel SOM [7], clustering [10, 11] and image de-
noising [12] respectively. And it has been proved that the measure induced by the 
Gaussian kernel is more robust to noises and outliers compared with original Euclid-
ean measure [11]. Hereafter, we only discuss the Gaussian kernel in the rest of the 
paper. For Gaussian kernel, we have K(x,x)=1 for all x. Thus the distance measure in 
Eq. (6) can be simplified as d(x,y) = sqrt (2(1-K(x,y))). 

2.4   The Proposed FKLVQ 

We are in position to propose the FKLVQ algorithm now. Define the objective func-
tion between the weight vector Wi and the input sample xk as follows: 
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Minimizing Eq. (7) by gradient descent, we obtain the update equation for Wi as: 
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Especially for the Gaussian kernel K(x,y)=exp(-||x-y||2/σ2), K(Wi,Wi)=1, so we have 
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Here α(t) is defined before, but  hik is calculated as follows: 
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where uik  is the fuzzy membership under kernel-induced measures. In a similar way 
to FCM, for the Gaussian kernel, uik  can be derived as follows [10]: 
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So far, we have derived the sequential fuzzy-kernel LVQ algorithm. Its batch ver-
sion can be constructed in a similar way to that of batch LVQ. From Eq. (9), in the 
stationary state we must have 
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Applying the empirical distribution to solve the above equation, we have the batch 
learning formula of fuzzy-kernel LVQ with 
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Here hik is determined by Eq. (10), and by alternately iterating between Eqs. (11), (10) 
and (13), we get the FKLVQ algorithm. 

3   Experimental Results 

In this section, we make numerical comparison between the proposed FKLVQ and 
other batch algorithms such as FCM, FLVQ and FSLVQ on some artificial and real 
data sets. The Gaussian kernel is used for FKLVQ. 

The fist example is an artificial data set which contains two clusters. Two clusters 
contain respectively 50 and 49 sample patterns and are separately centered at the 
points (0,0) and (3,0) with Gaussian distributions. Besides the two clusters, there 
exists an outlier at (200, 0). In this experiment, the parameters used in the algorithms 
are set to m=2, c=2, σ =20, and the maximum number of iterations is 50. Fig. 1 shows 
the comparison of four algorithms. From Fig. 1, results of FCM, FLVQ and FSLVQ 
are severely affected by the outlier, and the numbers of misclassified samples are all 
49. However, FKLVQ successfully avoids the disturbance of the outlier and correctly 
classified the two clusters.  
 

   

Fig. 1. Comparisons of performances of the four algorithms on artificial data set with outlier 
(not plotted in the figure): Left is the result by FCM, FLVQ and FSLVQ, where samples from 
both real clusters are classified to one group and the outlier is classified to the other group; 
Right is the result of FKLVQ where disturbance of the outlier is completely avoided.  

The second example is the well-known Iris data set. It contains 3 clusters with 50 
samples each. In this experiment, the parameters are set to m=2, c=3, σ =10, and the 
maximum number of iterations is 50. Table 1 gives comparison of accuracies and 
numbers of iterations of the four algorithms. From Table 1, FKLVQ achieves better 
accuracy and needs much less iteration than FLVQ and FSLVQ. For clustering the 
Iris data, FKLVQ only needs few tens of iterations. However, it was reported in [7] 



that the sequential kernel SOM typically needs hundreds to thousands of iterations for 
classifying the Iris data. Thus FKLVQ is much superior to kernel SOM as far as the 
computation efficiency is concerned. 

Table 1. Comparison of accuracy and number of iterations of the four algorithms 

Number of misclassified samples Algo-
rithms Cluster 1 Cluster 2 Cluster 3 Total 

Number of 
iterations 

FCM 0 3 13 16 14 
FLVQ 0 3 14 17 50 
FSLVQ 0 3 14 17 41 
FKLVQ 0 6 5 11 13 
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