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Abstract. In this paper, we extend the original non-negative matrix factoriza-
tion (NMF) to kernel NMF (KNMF). The advantages of KNMF over NMF are: 
1) it could extract more useful features hidden in the original data through some 
kernel-induced nonlinear mappings; 2) it can deal with data where only rela-
tionships (similarities or dissimilarities) between objects are known; 3) it can 
process data with negative values by using some specific kernel functions (e.g. 
Gaussian). Thus, KNMF is more general than NMF. To further improve the 
performance of KNMF, we also propose the SpKNMF, which performs KNMF 
on sub-patterns of the original data. The effectiveness of the proposed algo-
rithms is validated by extensive experiments on UCI datasets and the FERET 
face database. 

1   Introduction 

Many data analysis tasks in machine learning require a suitable representation of the 
data. Typically, a useful representation can make the latent structure in the data more 
explicit, and often reduces the dimensionality of the data so that further computa-
tional methods can be applied [6]. Non-negative matrix factorization (NMF) [7] [8] is 
a recent method for finding such representation. NMF imposes the non-negativity 
constraints in its bases and coefficients. Due to its part-based representation property, 
NMF and its variations have been applied to image classification [2] [5], face expres-
sion recognition [3], face and object recognition [9] [10] [12], document clustering 
[13], etc.  

However, NMF and many of its variants are essentially linear, and thus cannot dis-
close nonlinear structures hidden in the data. Besides, they can only deal with data 
with attribute values, while in many applications we do not know the detailed attrib-
ute values and only the relationships (similarities or dissimilarities) are available. 
NMF cannot be directly applied to such relational data. Furthermore, one requirement 
of NMF is that the values of data should be non-negative, while in many real-world 
problems the non-negative constraints can not be satisfied. 



In this paper, we propose the kernel NMF (KNMF), which can overcome the 
above limitations of NMF. First, through using kernel-induced nonlinear mapping, 
KNMF could extract more useful features hidden in the original data. Second, we 
develop a method for KNMF to deal with data where only relationships between 
objects are known. Third, by using some specific kernel functions (e.g. Gaussian), 
KNMF can process data with negative values. Thus, KNMF is more general than 
NMF. Moreover, inspired by successes of so many 2D pattern representation methods 
[4] [14] and to further improve the performance of KNMF, we also propose the 
SpKNMF, which performs KNMF on sub-patterns of the original data. The effective-
ness of the proposed algorithms is validated by extensive experiments on several UCI 
datasets and the FERET database for face recognition. 

The rest of the paper is organized as follows: Section 2 introduces NMF briefly. 
This is followed by the detailed description of the KNMF algorithm in Section 3. In 
Section 4, we present the SpKNMF algorithm. In Section 5, experimental results are 
reported. Finally, we conclude this paper and raise some issues for future research in 
Section 6. 

2   Non-negative Matrix Factorization 

The key ingredient of NMF is the non-negativity constraints imposed on matrix fac-
tors. Assume that the observed data of the objects are represented as an n×m matrix 
V, each column of which contains n non-negative attribute values of one of the m 
objects. In order to represent the data or reduce the dimensionality, NMF finds two 
non-negative matrix factors W and H such that 
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Here the r columns of W are called NMF bases, and the columns of H are its com-
bining coefficients. The dimensions of W and H are n× r and r×m , respectively. The 
rank r of the factorization is usually chosen such that (n+m)r<nm, and hence the 
dimensionality reduction is achieved.  

To find an approximate factorization V≈W H, a cost function is needed to quan-
tify the quality of the approximation. NMF uses the divergence measure as the objec-
tive function 
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NMF factorization is a solution to the following optimization problem: mini-

mize ( || )D V WH with respect to W and H, subject to the constraints W, H 0≥ , i.e. 

all terms in the matrix are non-negative. In order to obtain W and H, a multiplicative 
update rule is given in [11] as follows 
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3   Kernel Non-negative Matrix Factorization 

Given m objects O1, O2, …, Om, with attribute values represented as an n by m matrix 
V=[v1, v2, …, vm], each column of which represent one of the m objects. Define the 
nonlinear map from original input space V to a higher or infinite dimensional feature 
space F as follows 

: ( )x V x Fφ φ∈ → ∈  (4) 

For the m objects, denote 

( ) [ ]1 2( ), ( ),..., ( )mV v v vφ φ φ φ=  (5) 

Similar as NMF, KNMF finds two non-negative matrix factors Wφ and H such that  

( )V W Hφφ =  (6) 

Here, Wφ  is the bases in feature space and H is its combining coefficients, each 

column of which denotes now the dimension-reduced representation for the corre-

sponding object. It is worth noting that since ( )Vφ  is unknown, it is impractical to 

directly factorize ( )Vφ . In what follows, we will derive a practical method to solve 

this problem. From Eq. (6), we obtain 

( )( ) ( ) ( )( )T T
V V V W Hφφ φ φ=  

(7) 

 
Before further explaining the meaning of Eq. (8), we first give the definition of 

kernels. According to [15], a kernel is a function in the input space and at the same 



time is the inner product in the feature space through the kernel-induced nonlinear 
mapping. More specifically, a kernel is defined as  

( ) ( ), ( ), ( ) ( ) ( )Tk x y x y x yφ φ φ φ= =  
(8) 

Some commonly-used kernels in literature are [15]: 
(1) Gaussian kernel 
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(2) Polynomial kernel 
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d
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(10) 

(3) Sigmoid kernel 

( )( , ) tanh ,K x y x yα β= +  (11) 

 
From Eq. (8), the left side of Eq. (7) can be rewritten as 
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From Eqs. (12) and (13), Eq. (7) changes to 

K YH=  (14) 

Comparing Eq. (14) with Eq. (6), it can be found that the combining coefficient H 

is the same. Since  Wφ  is the learned bases of ( )Vφ , similarly we call Y in Eq. (14) 

as the bases of the kernel matrix K. Eq.(14) provides a practical way for obtaining the 
dimension-reduced representation H by performing NMF on kernels. 

 
For a new data point, the dimension-reduced representation is computed as follows 
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Here A+  denote the generalized (Moore-Penrose) inverse of matrix A , and 

( )( ) ( )T
new newK V vφ φ=  is the kernel matrix between the m training instances and 

the new instance.  
 
Eqs. (14) and (15)  construct the key components of KNMF when used for classi-

fication. it is easy to see that, the computing of KNMF need not know the attribute 
values of objects, and only the kernel matrix K and Knew are required. Note that some 
kernels (e.g. Gaussian) can be seen as similarity measures between objects. Thus, the 
classification problem which KNMF can deal with is formulated as:  

Given m training objects, we do not know their detailed attribute values, but the 
pair wise relationship between them can be measured (recorded in K). Also, the at-
tribute values of the test object is not known, but the relationship between it and the 
training objects can be computed (recorded in Knew). Then, classify the new object 
into one of the training objects given K and Knew. 

Obviously, KNMF is more general than NMF because the former can deal with 
not only attribute-value data but also relational data. Another advantage of KNMF is 
that it is applicable to data with negative values since the kernel matrix in KNMF is 
always non-negative for some specific kernels (e.g. Gaussian). 

4   Sub-pattern based KNMF 

Given m objects O1, O2, …, Om, with attribute values represented by an n by m matrix 
V=[v1, v2, …, vm], each column of which represents one of the m objects. Assume n is 
divisible by p, then reassemble the original matrix V into n/p by mp matrix U as fol-
lows 

1 1 2 ( 1) 1,..., , ,..., ,..., ,...,p p p m p mpU u u u u u u+ − +⎡ ⎤= ⎣ ⎦  (16) 

Here  
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From Eq. (16), compute the mp by mp kernel matrix as 
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K U Uφ φ=  

(18) 

Factorizing Eq. (18) using Eq. (14), we obtain the dimension-reduced representa-
tion H={hj} with dimension of r by mp, where r is the number of reduced dimensions. 
Then reassemble the matrix H into rp by m matrix R as  
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Similarly, for some new data newv , first reassemble it into n/p by p matrix newU  as 

follows 

1 2, ,...,new pU u u u⎡ ⎤= ⎣ ⎦  (20) 

Here 1 ,...,
TT T

new pv u u⎡ ⎤= ⎣ ⎦ . From Eq. (20), compute the mp by p kernel matrix as 
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From Eq. (15), we can obtain the dimension-reduced representation 

1 2[ , ,..., ]new pH h h h=  with dimension of r by p, where r is the number of reduced 

dimensions. Then reassemble the matrix newH  into rp by 1 vector newR  as 

1 ,...,
TT T

new pR h h⎡ ⎤= ⎣ ⎦  
(22) 

Finally, Eqs. (19) and (22) can be used for classification. For example, if the near-
est neighborhood classifier is adopted, then classify the new data point to the same 

class of i-th column vector of R  with minimum distance from newR . 

5   Experiments 

In this section, we present a set of experiments to evaluate our proposed algorithms: 
KNMF and SpKNMF, compared with traditional NMF, on several UCI Machine 
Learning Repository datasets [1] and the FERET face database [11]. In our experi-
ments Gaussian kernel is adopted and the kernel width is set to the standard vari-

ance
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for classification. It is worthy noting that NMF, KNMF and SpKNMF are unsuper-
vised dimensionality methods, and hence it is not comparable between them and 
some supervised dimensionality techniques or supervised classifiers. 

5.1   UCI Data Sets 

Four UCI datasets are used. No extra criterion is adopted for the selection of datasets 
except that the datasets should have relatively more dimensions and only numeric 
attributes without missing values are considered. Table 1 gives the statistics of them. 
For each dataset 10 independent runs are carried out and the results are averaged. At 
each run, half of the data are randomly picked for training, and the rest for testing. 
For each data set, we test the accuracies of NMF, KNMF and SpKNMF under differ-
ent dimensions. 



 
Table 1. Statistics of  the UCI data sets 

Dataset Size Dimension # of classes 
Ionosphere 351 34 2 

Bupa 345 6 2 
Glass 214 9 6 
PID 768 8 2 

 
 
Fig. 1 depicts the accuracies of NMF, KNMF and SpKNMF under different di-

mensions. It can be found that on all these data sets, SpKNMF consistently outper-
forms KNMF and NMF no matter which dimension is considered. For Ionosphere 
and Glass, KNMF outperforms NMF greatly. While for Bupa and PID, the perform-
ances of KNMF and NMF are close, while KNMF is slightly better under bigger 
dimensions.  

Table 2 shows the accuracies averaged acrossthe dimensions shown in Fig. 1. 
From Table 2 it can be found that SpKNMF and KNMF outperform NMF on average, 
and SpKNMF always achieves the beest performance (see the bold). 

 

Table 2.  Comparisons of averaged accuracies (%) under different dimensions (the values in 
the bracket are the sizes of the reassembled matrices). 

Datasets NMF KNMF SpKNMF 
Ionosphere 75.24 91.24 92.69(17x2) 

Bupa 55.58 56.79 60.19(3x2) 
Glass 39.87 44.89 51.88(3x3) 
PID 64.52 64.75 69.51(4x2) 

 

5.2   FERET Face Database 

In this experiment, a partial FERET face database containing 400 gray-level frontal 
view face images from 200 persons are used, each of which is cropped with the size 
of 60×60. There are 71 females and 129 males; each person has two images (fa and 
fb) with different facial expressions. The fa images are used as gallery for training 
while the fb images as probes for test. 

Fig. 2 shows the accuracies of the three algorithms under different feature dimen-
sions on the partial FERET face database. From Fig2 it can be found that SpKNMF 
and KNMF consistently outperform NMF no matter how many dimensions are used. 
SpKNMF is slightly superior to KNMF on this database. The accuracies of NMF, 
KNMF and SpKNMF averaged across all the dimensions shown in Fig. 2 are 69.23, 
80.37 and 84.44, respectively. The performance of SpKNMF is still the best (the size 
of its reassembled matrix is 900x4). it is impressive that SpKNMF and KNMF 
achieve nearly 10% and 15% higher accuracies than NMF, respectively. 



  

  

Fig. 1. Comparisons of accuracies under different dimensions on Ionosphere (top left), Bupa 
(top right), Glass (bottom left) and PID (bottom right). 

6   Conclusions 

In this paper, KNMF is developed. Compared with conventional NMF, KNMF can: 1) 
extract more useful features hide in the original data using some kernel-induced 
nonlinear mapping; 2) deal with relational data where only the relationships between 
objects are known; 3) process data with negative values by using some specific kernel 
functions (e.g. Gaussian). Thus, KNMF is more general than NMF. Furthermore, 
another algorithm SpKNMF is proposed to further improve the performance of 
KNMF by performing KNMF on sub-patterns of the original data. Experimental 
results on UCI datasets and the FERET face database validated the effectiveness of 
the proposed algorithms. 

There are several issues for future research. First, as in other kernel-based methods, 
the selection of kernels and their parameters is crucial for the performances of KNMF 
and SpKNMF. In this paper, we only consider the Gaussian kernel and set the kernel 
width to the standard variance. We will investigate how to adaptively choose the 
kernels and parameters in the future. Also, choosing the appropriate size for the reas-
sembled matrix in SpKNMF is also an interesting issue for future research. Moreover, 
comparing KNMF and SpKNMF with other dimensionality reduction methods, such 



 

Fig. 2. Comparisons of accuracies under different dimensions on the partial FERET database. 

 
as LDA and KFD, in particular, on their performances in classification, is left for 
future research. 
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