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Rapid and Brief Communication

Alternative linear discriminant classi$er
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Abstract

Fisher linear discriminant analysis (FLDA) $nds a set of optimal discriminating vectors by maximizing Fisher criterion, i.e.,
the ratio of the between scatter to the within scatter. One of its major disadvantages is that the number of its discriminating
vectors capable to be found is bounded from above by C-1 for C-class problem. In this paper for binary-class problem, we
propose alternative FLDA to breakthrough this limitation by only replacing the original between scatter with a new scatter
measure. The experimental results show that our approach give impressive recognition performances compared to both the
Fisher approach and linear SVM.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Fisher linear discriminant analysis (FLDA) and some
problems

In this paper, we focus two class discriminating
problem. It is well-known that FLDA is a popular feature
extraction and discriminating approach [1] in pattern
recognition and data analysis communities. Formally, it can
brie>y be formulated as follows: Given two pattern classes
X (i) = [x(i)

1 ; x
(i)
2 ; : : : ; x

(i)
Ni ]; i = 1; 2 with Ni D-dimensional

patterns in the ith class, respectively. FLDA attempts to
seek an optimal discriminating vector ’ by maximizing the
Fisher criterion:

J (’) =
’TSb’
’TSw’

; (1)

where Sb is the between-class scatter matrix and denoted by
Sb =(m1 −m2)(m1 −m2)T and Sw is the within-class scatter
matrix and denoted by Sw=

∑2
i=1

∑Ni
j=1(x

(i)
j −mi)(x

(i)
j −mi)T,

m1 and m2 denote two corresponding class means, respec-
tively. By maximizing criterion (1), we can get only one
optimal discriminating vector ’ denoted by S−1

w (m1 − m2)
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due to that the rank of Sb is at most 1 for two class problem
(exact one here, we call it the rank problem hereafter). It
is this point that limits us to search more discriminating di-
rections to further boost recognition performance of FLDA,
which also inspires us to design a new between-class scat-
ter measure to replace the original Sb to breakthrough the
notorious limitation so that we not only can promote the
recognition performance of the original FLDA classi$er but
also still keep its analytical simplicity.

The rest of the paper is organized as follows: Section 2
gives a formulation of our AFLDA. Section 3 brie>y intro-
duces the linear SVM for self-consistence and $nally the
experimental results on seven real-world data sets are ex-
hibited in Section 4.

2. Alternative FLDA (AFLDA)

2.1. Alternative discriminant criterion and the derivation
of optimal discriminating direction

In order to construct a new between-class scatter mea-
sure to overcome the rank problem, let us $rst review the
geometrical meaning of the FLDA between-class scatter
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measure in the projected space de$ned by�TSb�=|�TSb�|=
(�Tm1−�Tm2)2, it de$nes a squared diIerence between the
average projected lengths of the two classes and then gets
maximized, equivalently making the two classes separated
as far from each other as possible. Thus, only one projection
can be found. Now we construct the following new scatter
measure denoted by

|’TSnb’| =
∣∣∣∣∣

1
N1

N1∑

i=1

‖’Tx(1)
i ‖2 − 1

N2

N2∑

j=1

‖’Tx(2)
j ‖2

∣∣∣∣∣ ; (2)

where Snb=(1=N1)
∑N1

i=1 x
(1)
i x(1)T

i −1=N2
∑N2

j=1 x
(2)
j x(2)T

j , ‖z‖
stands for the length of the vector z.

Eq. (2) de$nes an absolute value of the diIerence be-
tween the two-class average squared projected lengths.
Maximizing Eq. (2) equivalently makes the projected vec-
tors of one class have an average length greater than those
of the other class, hence resulting in a good separation
between the two classes. Here Snb is an inde$nite sym-
metric matrix but the upper-bound of its rank is greater
than that of Sb (Claim 1) due to such a fact from the ma-
trix theory [5] that for any matrices A, B and invertible
E, rank(AEB) is equal or less than the minimum of both
rank(A) and rank(B), where rank(X ) is the rank of ma-
trix X . Now we rewrite Snb, in a matrix form, as XEX T,
where X = [X (1); X (2)] is a given training pattern matrix
and E = diag[1=N1I1;−1=N2I2] is invertible with Ii being
Ni ∗ Ni identity matrix (i = 1; 2). From the above fact, we
have rank(XEX T)6min(rank(X ); rank(X T)) = rank(X ),
therefore the above Claim 1 holds and is also con$rmed by
our experiments. As a consequence, we can obtain multiple
discriminating projections for the two-class problem using
our new between-class scatter measure represented by

Jn(’) =
|’TSnb’|
’TSw’

; (3)

where Sw is de$ned as before. By diIerentiating Eq. (3) and
zeroing its derivative, we have the following eigen-system
satis$ed by a set of eigenvectors �d = [�1; �2; : : : ; �d]:

S−1
w Snb�d = �d�d; (4)

where �d=diag[�1; �2; : : : ; �d] is a set of eigenvalues of Eq.
(4), but they are not non-negative anymore because of in-
de$nite of Snb. In order to ensure criterion (3) maximization,
we select the $rst d eigenvectors with respect to the $rst d
largest absolute eigenvalues to comprise the so-needed pro-
jection matrix �d because now

Jn(�d) =
d∑

i=1

|’T
i Snb’i|
’T
i Sw’i

=
d∑

i=1

|�i|

determines its optimization. Where d is taken as a minimum
of satisfying the inequality

∑d
i=1 |�i|=

∑D
i=1 |�i|¿ � (¿ 0).

2.2. Classi2cation rules for FLDA and AFLDA

To classify an unknown input pattern xu with FLDA
and AFLDA, respectively, we $rst project it along the

discriminating vectors calculated from training patterns and
then use the following corresponding decision rules, respec-
tively, to classify it.

For FLDA, if (m2 − m1)T’’T(xu − m0)¡ 0 and for
AFLDA, if (m2 − m1)T�d�T

d(xu − m0)¡ 0, then xu is, re-
spectively, classi$ed as class 1, otherwise class 2, where
m0 is de$ned as N1m1 + N2m2=N1 + N2 for FLDA, and
N1m1 + N2m2=N1 + N2 for AFLDA, respectively.

In addition, in order to compare with recently developed
support vector machine (SVM), we also give a brief intro-
duction in the following section.

3. SVMs

SVMs are based on the structural risk minimization
(SRM) principle and aim at maximizing the margin between
the points of the two classes by solving a convex quadratic
programming problem. The solution to that problem gives
us a hyper-plane having the maximum margin that is attain-
able between the two classes. SRM is a trade-oI between
the quality of the approximation of the given data and
the complexity of the approximating function. Vapnik [2]
showed that generalization error is bounded by a number
proportional to the ratio R2=!2, where R is the radius of the
sphere that contains all training patterns and ! is the margin.
There, in order to have a tighter bound and a better general-
ization, we need to reduce the radius while maximizing the
margin, which is the goal of SRM principle and the SVMs.

The separating hyper-plane or decision function following
the SRM can be determined by

f(x) = wTx =
N1∑

i=1

#(1)
i (xTx(1)

i ) −
N2∑

j=1

#(2)
j (xTx(2)

j ) + b; (5)

where b is a threshold or bias term and given in Ref. [3]
and #(i)

j ¿ 0 ∀i; j with
∑N1

i=1 #
(1)
i +

∑N2
ji=1 #

(2)
j = 1. And any

vector x(i)
j with respect to #(i)

j �= 0 is a support vector of
the optimal hyper-plane. The sign of f(x) determines the
class membership of x. In this paper, for performing fairly
comparison, we just adopt the linear SVM expressed by Eq.
(5).

4. Experimental results

After formulating our new FLDA and introducing both
FLDA and SVMs, we are in a position to carry out several
experiments on seven real-world data sets in part from the
UCI Repository [4]. Each data set was divided into two parts
with varying sizes—training and testing sets. For classi$-
cation problem under each given division, 20 independent
runs were performed and their results (testing accuracies)
are averaged. In all experiments, we set � to 0.98 to de-
termine the so-called number of the optimal discriminating
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Table 1
Testing or generalization accuracies (%) on the testing sets

Data sets SVM FLDA AFLDA

IRIS (60a/ 70a/ 80a) 94.0b/ 94.2b/ 93.4b 86.1/ 84.7/ 87.6 95:5/ 95:1/ 97:4 (2)c

WINE (80/ 90/ 100) 94.8/ 95.5/ 96.0 74.2/ 77.1/ 77.1 96:9/ 97:3/ 96:8 (5)
WBC (250/300/350) 96.3/ 96.6/ 96.6 85.2/ 85.4/ 86.7 97:2/ 97:0/ 97:4 (8)
LIV (80/100/120) 63:4/ 62:8/ 64:5 60.0/ 55.6 / 57.8 62.3/ 62.6 / 62.9(4)
DIAB (80/100/120) 72.9/ 74:9/ 71.8 66.0/ 66.3/ 66.4 73:6/ 73.8/ 73:9(6)
MUSK (200/300/500) 32.7/ 45.4/ 24.9 64.9/ 69.8/ 69.3 66:7/ 78:7/ 84:6(135)
WDBC (50/100/200) 91:1/ 93.2/ 94.4 84.6/ 84.4/84.0 87.0 /93:3=96:0/ (17)

aThe numbers of training samples.
bThe testing accuracies for given partitions.
cThe number of the optimal discriminating features found.

projections according to criterion (3). The data sets used are
brie>y described as follows:

(1) Iris (IRIS): Class2 (50 data) vs. Class3 (50 data) (lin-
ear non-separable), four dimension (4D) each input pat-
tern and the size of the data set is 100;

(2) wine in VISTA (WINE): Class2 (71) vs. Class1 and
Class3 (107), 13D, 178;

(3) Wisconsin breast cancer (WBC): Class1 (444) vs.
Class2 (239), 9D, 683;

(4) Bupa liver disorder (LIV): Class1 (145) vs. Class2
(200), 6D, 345;

(5) Pima Indian diabetes (DIAB): Class1 (500) vs. Class2
(268), 8D, 768;

(6) Musk clean2(Musk):Class1 (5581) vs. Class2 (1017),
166D, 6598;

(7) Wisconsin diagnosis breast (WDBC): Class1 (212) vs.
Class2 #(357), 30D, 569.

The calculated testing accuracies are given in Table 1 and
thus equivalently, also explain the respective generaliza-
tion abilities of the individual classifying algorithms. From
the table, we draw a conclusion that AFLDA does break-
throughs the rank limitation of FLDA in all of our experi-
ments here as remarked in the parenthesis of the rightmost
column of Table 1 and has better generalization ability than
both the linear SVM and FLDA in most of the data sets (as

underlined in the Table 1). Finally, from the computational
ePciency, the SVM has much heavier cost than both FLDA
and AFLDA, which contributes mainly to its quadratic pro-
gramming optimization. And in contrast, both the FLDA and
AFLDA have almost the same computational complexities
due to their direct and simple analytical solutions.

Acknowledgements

We thank National Science Foundations of China and
of Jiangsu under Grant Nos. 60271017 and BK2002092,
the “QingLan” Project Foundation of Jiangsu Province and
the Returnee Foundation of China Scholarship Council for
partial supports, respectively.

References

[1] G.J. Mclachlan, Discriminant Analysis and Statistical Pattern
Recognition, Wiley, New York, 1992.

[2] V.N. Vapnik, The Nature of Statistical Learning Theory,
Springer, New York, 1995.

[3] N. Cristianini, J. Shewe-Taylor, Support Vector Machines,
Cambridge University Press, Cambridge, 2000.

[4] UCI Repository available at http://www.kernel-machines.
org/datasets/.

[5] R.A. Horn, C.R. Johnson, Matrix analysis, Cambridge
University Press, Cambridge, 1985.

http://www.kernel-machines.org/datasets/.
http://www.kernel-machines.org/datasets/.

	Alternative linear discriminant classifier
	Fisher linear discriminant analysis (FLDA) and some problems
	Alternative FLDA (AFLDA)
	Alternative discriminant criterion and the derivation of optimal discriminating direction
	Classification rules for FLDA and AFLDA

	SVMs
	Experimental results
	Acknowledgements
	References


