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Abstract: Recently, a method called (PC)2A was proposed to deal with face recognition with one training image per 

person. As an extension of the standard eigenface technique, (PC)2A combines the original face image with its 

first-order projection and then performs principal component analysis (PCA) on the enriched version of the image. It 

was reported that (PC)2A could achieve higher accuracy than the eigenface technique through using 10%-15% fewer 

eigenfaces. In this paper, we generalize and further enhance (PC)2A along two directions. In the first direction, we 

combine the original image with its second-order projection as well as its first-order projection in order to acquire 

more information, and then apply PCA on the derived images. In the second direction, instead of combining the 

original image with its projections, we regard the projections of the original images as derived images that could 

augment training information, and then apply PCA on all the training images available, including the original ones 

and the derived ones. Experiments on the well-known FERET database show that the enhanced versions of (PC)2A 

are about 1.6% to 3.5% more accurate and use about 47.5% to 64.8% fewer eigenfaces than (PC)2A. 
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1. Introduction 

Face Recognition has been an active research area of computer vision and pattern recognition for decades (Turk and 

Pentland, 1991; Brunelli and Poggio, 1993; Chellappa et al., 1995; Moghaddam and Pentland, 1997; Moghaddam et 

al., 2000; Sukthankar, 2000; Wiskott et al., 1997; Zhao et al., 2000; Chen and Huang, 2003). Many face recognition 

methods have been proposed to date and according to (Brunelli and Poggio, 1993), these methods can be roughly 

classified into two categories, i.e., geometric feature-based and template-based. In the first category, the most often 

used method is the elastic bunch graph matching (Wiskott et al., 1997), while in the second category, the most 

widely used algorithm is the eigenface (Turk and Pentland, 1991). Recently, neural networks (Valentin et al., 1994; 

Zhang et al., 1997; Raytchev and Murase, 2003), support vector machines (Pang et al., 2003), kernel methods (Lu et 

al., 2003), and ensemble techniques (Pang et al., 2003) also find great applications in this area.  

 

In some specific scenarios such as law enforcement, only one image per person can be used for training the face 

recognition system. It is unfortunate that most face recognition algorithms may have problems in such scenarios. For 

example, most subspace methods such as Linear Discriminant Analysis (LDA) (Etemad and Chellappa, 1997; Lu et 

al., 2003), discriminant eigenfeatures (Swets and Weng, 1996) and fisherface (Belhumeur et al., 1997) can hardly be 

used because in order to obtain good recognition performance, they require there exist at least two training images 

per person so that the intra-class variation could be considered against the inter-class variation. Recently, a few 

researchers begin to address this issue (Wu and Zhou, 2002; Martinez, 2002;). In (Wu and Zhou, 2002), a method 

called (PC)2A was proposed as an extension of the standard eigenface technique, which combines the original face 

image with its first-order projected image and then performs principal component analysis (PCA) on the enriched 

version of the image. It was reported that (PC)2A outperformed the standard eigenface technique when only one 

training image per person is available (Wu and Zhou, 2002). In (Martinez, 2002), a probabilistic approach was 

described, in which the model parameters were estimated by using a set of images generated around a so-called 

representative sample image, each with small localized errors within the eigenspace, or partially occluded and 

expression-variant faces corresponding to the sample image.  

 

In this paper, we follow the line of Wu and Zhou (2002) but generalize and enhance (PC)2A in two ways. In the first 

way, besides the first-order projected image, we construct second-order projected images, combine these first and 

second-order projected images with the original image, and then perform PCA on the combined image. In the second 

way, instead of combining the original image with the projected images, we enlarge the training image database 

using a series of n-order projected images. That is to say, if there are M face images in the image database 

corresponding to M different persons, we can generate n additional images for each person and therefore obtaining 



an enlarged training database comprising (n+1)M face images. Then we perform PCA on the enlarged image 

database. The idea behind these two ways is to squeeze as much information as possible from the single face images. 

These information can derive some salient features that are important in face recognition with one training image per 

person, therefore we get the first extended version. These information can also be used to provide each person with 

several imitated face images so that the problem of face recognition with one training image per person becomes a 

common face recognition problem, therefore we get the second extended version. Experiments have been performed 

on a subset of the well-known FERET database, and the experimental results show that both the enhanced versions 

of (PC)2A get improved recognition accuracy while the number of eigenfaces used is only about half of that used by 

(PC)2A.  

 

The rest of this paper is organized as follows. In Section 2, we present the ways to generalize and enhance (PC)2A. 

In Section 3, we report our experiments. Finally in Section 4, we conclude. 

 

2. Enhanced (PC)2A 

2.1 E(PC)2A1 and E(PC)2A2 

In (PC)2A, the original image I(x, y) is combined with its first-order projection to derive a new version of the 

original image. It was demonstrated that such a combination is helpful to subsequent recognition process. Therefore, 

a natural extension of (PC)2A is to exploit some higher-order projection to enhance the recognition process . 

 

Let ),( yxI  be an intensity image of size 21 NN × , where ],1[],,1[ 21 NyNx ∈∈ , and ]1,0[),( ∈yxI , we 

can define the second-order projection of the original image as  

 

J
yHxVyxP )()(),( 22

2 =                       (1) 

 

where J  is the mean value of ),( yxJ  which is defined as the square of ),( yxI , i.e., 2),(),( yxIyxJ = , 

and 2V and 2H  are defined respectively as 
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It is also possible to derive another version of second-order projection of I(x, y) as 
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where '2V  and '2H  are defined as Eqs.(5) and (6) respectively. 
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where 2
NC  is a combinatorial number, whose value is N(N-1)/2, which denotes the number of terms in the brackets 

in (5) or (6). The difference between 2 ( , )P x y  and 2 '( , )P x y  is that the latter introduces mutual correlations 

between pixels as shown in Eq. (5) and (6). 

 

In (Wu and Zhou, 2002), the first-order projected image 1P  is defined similarly as in Eq. (1), which was obtained 

by using the original image ),( yxI  to replace ),( yxJ  in Eqs. (1)-(3). Then, through combining the original 

image with its first and second-order projection, we obtain two new projection-combined images, i.e. I2(x, y) and 

I’2(x, y), as shown in Eqs.(7) and (8), respectively, where α and β are parameters to control the bias of the 

projections. 
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Fig. 1 shows an example of the original image, its projections and the derived projection-combined images, where α 

and β are set to 0.25 and 1.5 respectively. Since the pixels of the projections and the projection-combined images 

may fall out of [0 1], these images are normalized into [0 1] for better display. 

 

 

       

                 (a)                 (b)                 (c)                (d) 

       

                 (e)                 (f)                 (g)                (h) 

a) original face image b) 1-order projection, c) 2-order projection generated by Eq.1, d) 2-order projection 

generated by Eq.4, e) 1/2 order projection, f) 1-order projection-combined image, g) 2-order 

projection-combined image generated by Eq.7, h) 2-order projection-combined image generated by Eq.8 

Fig. 1 Example of an original image, its projections, and the projection-combined images 

 

 

It is not difficult to derive that the projections 1P , 2P  and '2P , and the projection-combined images 2I  and '2I  

have the following properties: 

 

1) As α and β approach 0, 2I  and '2I  turn out to be exactly as the original image I . 

2) As α approaches infinity and β approaches 0, 2I  and '2I  approach 1P . 



3) As α approaches 0 and β approaches infinity, 2I  and '2I  approach 2P  and '2P , respectively. 

4) 1P , 2P  and '2P  have the intrinsic dimensionality (Bishop, 1995), or rank, not more than 1. 

 

Properties 1)-3) are apparent. To prove Property 4), it is helpful to represent projections 1P , 2P  and '2P  in matrix 

form. For example, 2P  can be rewritten as 2 2
2

V HP
J

= , where 2V  is a 1N -dimensional column vector and 

2H  a 2N -dimensional row vector. Thus, 1P  is a 21 NN ×  matrix and is exactly an out-product of vectors 

2V and 2
TH , where 2

TH  is the transpose of 2H . From the matrix theory, the rank of a matrix generated by two 

vector outer-product is at most 1. Thus, we get 
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Similarly, we can prove that both the ranks of 1P  and '2P  are at most 1. 

 

Such a property shows that the main information of the original image is still kept after combining it with its 

projections. Moreover, since the projections blur the original image to some extent, it can be anticipated that some 

important features for recognition may become more salient.  

 

In principle, the third, the fourth and even more higher-order projections can be combined with the original image. 

However, such a process will introduce too many control parameters to be adjusted, which will significantly increase 

the complexity of the method. Therefore, we choose to use only the first- and second-order projections. 

 

After deriving the new image ),(2 yxI  or ),('2 yxI  via Eq.(7) or Eq.(8), PCA can be performed to build the 

corresponding eigenspaces for subsequent recognition process. Here we call the method applying PCA on 

),(2 yxI  as E(PC)2A1 and that on ),('2 yxI  as E(PC)2A2. From the above discussions, both E(PC)2A1 and 

E(PC)2A2 turn into PCA as α and β both approach 0, and (PC)2A as only β approaches 0. 

 

2.2 (PC)2A+, E(PC)2A1+ and E(PC)2A2+ 



In fact, the main difficulty of face recognition with one training image per person lies in that since only one training 

image is available for each person, the intra-class variation can hardly be considered against the inter-class variation. 

Since the projections derived for each image can be regarded as a new image for a specific person, it is interesting to 

see that whether these projected images can act as additional training images for the person. Therefore, the problem 

of face recognition with one training image becomes a common face recognition problem where each person has 

several training images. 

 

Let’s generalize Eq. (1) to a universal form 

 

J
yHxVyxP nn

n
)()(),( =                       (10) 

 

where J  is the mean value of ),( yxJ which is defined as nyxIyxJ ),(),( = , and nV and nH  are defined 

respectively as 
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Note that n can be integers as well as fractions such as 1/2, 1/3, etc. Then, assume that we have obtained a series of 

projected images for each original face image. Without loss of generality, assume that there are n projected images 

for each person. Therefore, together with the original image, each person has (n+1) images for training, and PCA 

can be performed on (n+1)M training images, where M is the number of persons to be recognized.  

 

Thus, we develop another three extensions to (PC)2A. The first one, i.e. (PC)2A+, applies PCA on the original face 

images and their first-order projected images. The second one, i.e. E(PC)2A1+, applies PCA on the original face 

images, their 1/2-order and first-order projected images, and their second-order projected images derived according 

to Eq. (1). Finally the third one, i.e. E(PC)2A2+, applies PCA on the original face images, their 1/2 order and 

first-order projected images, and second-order projected images derived according to Eq. (4). Note that for 

simplifying our following discussion, we only use 1/2-, first- and second-order projected images, but projected 

images with other orders can also be used in principle. 



 

3. Experiments 

3.1 Data Set 

In our experiments, the new methods presented in Section 2 are compared with both (PC)2A and the standard 

eigenface technique. The experimental configuration is similar as that was described in (Wu and Zhou, 2002). The 

experimental face database comprises 400 gray-level frontal view face images from 200 persons, with the size of 

256x384. There are 71 females and 129 males, each person has two images (fa and fb) with different facial 

expressions. The fa images are used as gallery for training while the fb images as probes for testing. All the images 

are randomly selected from the FERET face database (Phillips et al., 1998). No special criterion is set forth for the 

selection. So, the face images used in the experiments are very diversified, e.g. there are faces with different race, 

different gender, different age, different expression, different illumination, different occlusion, different scale, etc., 

which greatly increases the difficulty of the recognition task. See (Wu and Zhou, 2002) for some concrete face 

samples. 

 

Before the recognition process, the raw images are normalized according to some constraints so that the face area 

could be appropriately cropped. Those constraints include that the line between the two eyes is parallel to the 

horizontal axis, the inter-ocular distance (distance between the two eyes) is set to a fixed value, and the size of the 

image is fixed. Here in our experiments, the eyes are manually located, the cropped image size is 60x60 pixels and 

the inter-ocular distance is 28 pixels. 

 

3.2 Results on E(PC)2A1 and E(PC)2A2 

At first, we compare the recognition performance of the methods proposed in Section 2.1 with that of (PC)2A and 

the standard eigenface technique when the size of the face database increases gradually form 20 to 200 with 20 as 

the interval. When a probe, i.e., an unknown face image, is presented, its corresponding feature vector is constructed 

from the eigenfaces. Then the distance between the probe's feature vector and that of the gallery images are 

computed, and the k best-matched image (with the minimum distance) in the gallery is considered as the top k match 

result.  

 

The top 1 match result is depicted in the left part of table 1. Here the number of eigenvectors or eigenfaces, i.e. d, is 

controlled by setting a threshold as follows 
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where 1 2, ,..., mλ λ λ  are the m biggest eigenvalues and θ  is set to 0.95. α is set to 0.25, and β is set to 1.5. These 

values will be used in the rest of this paper if no specific value is explicitly stated.  

 

Table 1 Comparison of recognition accuracies at different size of database 

size of 
database Eigenface (PC)2A E(PC)2A1 E(PC)2A2 (PC)2A+ E(PC)2A1+ E(PC)2A2+

20 0.9500 0.9500 0.9500 0.9000 0.9500 0.9500 0.9000 
40 0.8500 0.8750 0.8750 0.9250 0.8500 0.8750 0.9250 
60 0.8500 0.8667 0.8833 0.9333 0.8667 0.8833 0.9000 
80 0.8250 0.8250 0.8250 0.8875 0.8250 0.8500 0.8500 

100 0.7600 0.7500 0.7700 0.8400 0.7600 0.8000 0.7900 
120 0.7750 0.7750 0.8167 0.8250 0.7833 0.8000 0.8167 
140 0.7929 0.8000 0.8214 0.8143 0.8071 0.8214 0.8143 
160 0.8187 0.8187 0.8313 0.8250 0.8250 0.8438 0.8187 
180 0.8167 0.8278 0.8389 0.8222 0.8278 0.8556 0.8500 
200 0.8300 0.8350 0.8450 0.8400 0.8400 0.8550 0.8400 

 

 

Table 1 reveals that for nearly all cases, both E(PC)2A1 and E(PC)2A2 achieve higher recognition accuracy than 

(PC)2A and the standard eigenface technique. It also shows that on databases of relatively small size (about 30 to 

130), E(PC)2A2 obtains the best performance among all the compared methods, while for databases of relatively 

large size (about bigger than 130), E(PC)2A1 is the best one. In average, the recognition accuracy of the standard 

eigenface technique, (PC)2A , E(PC)2A1 and E(PC)2A2 under different size of databases is 82.68%, 83.23%, 84.57% 

and 86.12%, respectively. In other words, the recognition accuracy of E(PC)2A1 and E(PC)2A2 is about 1.6% and 

3.5% higher than that of (PC)2A, respectively. 

 

Although (PC)2A can achieve better recognition accuracy than the standard eigenface technique, its biggest strength 

is that it can use significantly fewer (about 10-15% (Wu and Zhou, 2002)) eigenfaces to achieve similar performance 

of the standard eigenface technique. Therefore, it is interesting to compare the number of eigenfaces used by 

E(PC)2A1 and E(PC)2A2. Part of Fig. 2 shows the comparison results. It is impressive that the number of eigenfaces 

used by E(PC)2A1 and E(PC)2A2 is even far fewer than that used by (PC)2A, and the difference is more and more 

distinct as the size of database increases. In average, the number of eigenfaces used under different size of database 



by the standard eigenface technique, (PC)2A, E(PC)2A1 and E(PC)2A2 are 47.8, 41.5, 21.8, and 14.6, respectively. 

In other words, E(PC)2A1 and E(PC)2A2 use about 47.5% and 64.8% fewer eigenfaces than (PC)2A. Recall that the 

number of eigenfaces used determines the dimensionality of the feature vectors that are extracted for representing 

the face images. So, it is obvious that using fewer eigenfaces means that less computational cost, less storage cost, 

and less matching time are required, which is of great benefit for large-size face databases in real-world tasks. 

 
Fig. 2 Comparison of number of eigenfaces used corresponding to recognition accuracies in table 1 

 

In the above experiments, we fix the number of eigenvalues by setting θ  in Eq. (13) to a constant, i.e. 0.95. Fig. 3 

depicts the recognition accuracies of the standard eigenface technique, (PC)2A, E(PC)2A1 and E(PC)2A2 

respectively under different number of eigenfaces. Clearly, both E(PC)2A1 and E(PC)2A2 achieve higher recognition 

accuracy than (PC)2A and the standard eigenface technique again. 

 
Fig. 3 Comparison of recognition accuracies under different number of eigenfaces used 



 
Fig. 4 Recognition accuracy under different values of β 

 
Fig. 5 Number of eigenfaces used under different values of β corresponding to recognition accuracy in Fig. 4 

 

In (PC)2A, there is a combination parameter α. In (Wu and Zhou, 2002), α is set to 0.25 and it has been shown that 

this value helps reach a good trade-off between the recognition accuracy and the number of eigenfaces used. In 

E(PC)2A1 and E(PC)2A2, however, besides α, there is another parameter β. In order to know the influence of β, 

more experiments are performed on E(PC)2A1 and E(PC)2A2 with different values of β. Fig. 4 shows the top 1 

match recognition accuracy, and Fig. 5 shows the corresponding number of eigenfaces used by the methods. The 

size of database used in the experiments is 100. For comparison, the performance of (PC)2A is also depicted as a 

baseline. Fig. 4 shows that as β gradually increases, there are a series of fluctuations of recognition accuracy for both 

E(PC)2A1 and E(PC)2A2, but no matter how to choose β, the recognition of both E(PC)2A1 and E(PC)2A2 always 

outperform (PC)2A. On the other hand, as β gradually increases, the number of eigenfaces used in E(PC)2A1 and 



E(PC)2A2 first decreased greatly and approaches to be steady after 1.5. Recall that fewer eigenfaces means less 

computational cost, we suggest setting the value of β as 1.5. 

 

3.3 Results on (PC)2A+, E(PC)2A1+ and E(PC)2A2+ 

Then, we compare the recognition performance of the methods proposed in Section 2.2 with that of (PC)2A and the 

standard eigenface technique. The experimental methodology is the same as that described in Section 3.2.  

 

The right part of table 1 and Fig. 2 depict the recognition accuracy and the corresponding number of eigenfaces used, 

which shows that the performance of (PC)2A+ is very comparable to that of (PC)2A. Moreover, from table 1 and Fig. 

2, it can be found that the performance of E(PC)2A1+ and E(PC)2A2+ are comparable to that of E(PC)2A1 and 

E(PC)2A2. In fact, the average recognition accuracy of (PC)2A+, E(PC)2A1+ and E(PC)2A2+ under different sizes of 

database are 83.35%, 85.34% and 85.05%, while the averaged numbers of eigenfaces used are 47.2, 21.3 and 18.7, 

respectively. The results are comparable to those in Section 3.2, while no extra parameters are needed in the 

algorithms.  

 

These results demonstrate that the methods proposed in Section 2.2, especially E(PC)2A1+ and E(PC)2A2+, can also 

improve the performance of (PC)2A. This supports our claim that through employing the projections of the original 

images to enlarge the training face database, the problem of face recognition with one training image per person can 

be transformed to be a common face recognition problem to solve. In the above experiments, we just use 1/2, first- 

and second- order projections. It is natural to think about whether the recognition performance can be further 

improved through employing more projected images. Intuitively, we guess there would be a critical point for the 

number of projected images, that is, if the number of projected images used beyond the critical point, the recognition 

performance might gradually decrease. To verify this idea, more experiments are performed.  

 

Fig. 6 shows the average recognition accuracy as the number of projected images per person increases gradually. Fig. 

7 shows the average number of eigenfaces used as the number of projected images per person increases gradually. 

Here we use two methods to choose the projected images. In method 1, as the number of projected images per 

person increases, the images selected are like I, P1, P2, P1/2, P3, P1/3… While in method 2, the images are selected like 

I, P1, P1/2, P2, P1/3, P3… Here I is the original face image, and Pn is the n-order projected image. According to Fig. 6 

and Fig. 7, we find as the numbers of faces per person exceed 4, although there may be some fluctuations, the 

recognition accuracy tends to decrease and the number of the extracted eigenfaces tends to increase. So, we guess 

the critical point may locate at somewhere near the point 4. However, the accurate critical point can only be 



determined by more experiments and rigorous theoretical justifications. We believe that such a phenomenon can be 

explained from the fact that as the order increases, nyxI )),((  will be more and more close to zero, while 

nyxI /1)),((  to 1, which means their uselessness gradually increases. In addition, for high order projections, the 

numerical computations get noisier and less reliable. It is obvious that such a statement should also undergo rigorous 

theoretical justification in future work. 

 
Fig. 6 Averaged recognition accuracy using different numbers of faces per person 

 
Fig. 7 Averaged number of eigenfaces with different numbers of faces per person corresponding to 
averaged recognition accuracies in Fig. 6. 

 

4. Conclusions 

Most face recognition techniques require that there exist at least two training images per person. Recently, a method 



called (PC)2A was proposed to address the issue of face recognition with one training image per person. In this paper, 

two directions for generalizing and enhancing (PC)2A are identified and several new algorithms are proposed. These 

algorithms utilize second-order projections besides the first-order projection used by (PC)2A. Experiments show that 

algorithms proposed from the aspect of both directions can significantly improve the performance of (PC)2A, that is, 

achieving higher recognition accuracy with far fewer eigenfaces. 

 

Moreover, the second direction we proposed to improve (PC)2A is a general paradigm for dealing with 'small sample 

problem', in which we enlarge the original image database by appending the n-order projected images. This paper 

shows that this paradigm works well in the scenario of face recognition with one training image per person. 

However, we believe that this method is also effective in scenarios where each person has two (or more, but still 

'small sample') training images, which is another interesting issue for future work, besides the issues raised at the 

end of Section 2.2.  
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