
Improving the robustness of 'online agglomerative clustering method'

based on kernel-induce distance measures

Daoqiang Zhang1,2*, Songcan Chen1,2, Keren Tan1

1Department of Computer Science and Engineering, Nanjing University of Aeronautics and Astronautics,

Nanjing, 210016, P.R. China

2National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences,

Beijing, 100080, P.R. China

Abstract

Recently, an online agglomerative clustering method called AddC (Guedalia etc, Neural Computation,

1999) was proposed for nonstationary data clustering. Although AddC possesses many good attributes, a

vital problem of that method is its sensitivity to noises, which limits its use in real-word applications. In

this paper, based on kernel-induced distance measures, a robust online clustering (ROC) algorithm is

proposed to remedy the problem of AddC. Experimental results on artificial and benchmark data sets show

that ROC has better clustering performances than AddC, while still inheriting advantages such as

clustering data in a single pass and without knowing the exact number of clusters beforehand.

Keywords: Competitive learning; Robustness; Kernel-induced measure; Online clustering; Nonstationary

* Corresponding author. Tel.:+86-25-8489-2805.

E-mail address: daoqz@mail.com (D. Zhang), s.chen@nuaa.edu.cn (S. Chen), tankeren@hotmail.com (K. Tan).

1. Introduction

Clustering analysis is the process of grouping data (patterns) into clusters such that the patterns in a

cluster are more similar to each other than to patterns in different clusters under some measure of distance

or similarity [5]. Typically, clustering algorithms can be divided into two classes, batch and on-line. Batch

algorithms process data off-line; hence the temporal structure of generating data is usually ignored. On the

other hand, most of the existing on-line clustering methods assume stationarity of the data. When used to

cluster nonstationary data, these methods fail to generate a good representation for given data. Here by

“nonstationary”, we mean that on a short time scale, it is pseudo-stationary, while on the long time scale,

the process has a sequential property [3]. In our real-world and science discipline, there are a large amount

of these nonstationary data, such as stock market indexes and video streams transferred across the Internet

[2]. To effectively process these nonstationary data, an online clustering algorithm called AddC was

proposed recently by Guedalia et al [3]. It has been reported that the AddC has great advantages over

traditional methods such as the online k-means [5] and the EquiDistortion [7] when used to cluster

nonstationary data. However, a main drawback of the AddC is very sensitive to noise and thus results in its

lack of robustness, which limits its use in real-world applications.

Based on the well-established kernel method [1, 6], we propose a robust online clustering algorithm,

i.e. ROC for clustering nonstationary data. The kernel method in the machine learning theory refers to

increasing the computational power of linear methods by mapping the data into high-dimensional feature

space and has shown its great power in a number of kernel-based learning machines, e.g. support vector

machines (SVMs) [1] and kernel principal component analysis (KPCA) [6]. And in one of our previous

works [8], a robust batch clustering algorithm has been developed for clustering incomplete data using the

kernel method. In this letter, we generalize the algorithm in [8] to make it able to cluster on-line

nonstationary data. We carry out several experiments to compare the performances between the proposed

ROC algorithm and the existing AddC algorithm. Experimental results on artificial nonstationary data set

and 13 benchmark data sets show that ROC achieves better performances than AddC in most cases.

The rest of this paper is organized as follows: we present the kernel-induced distance measures and

whole ROC algorithm in section 2. In section 3, some experimental results are given, and finally in section

4, we conclude and give some directions for further research.

2. The proposed ROC algorithm

2.1 Kernel-induced distance measure

Suppose we are given an input set X , and a mapping function ϕ that maps ix X∈ from the input

space X to a new space F with higher or even infinite dimensions. The kernel function is defined as

the inner product in the new space F :

(,) (), ()K x y x yϕ ϕ= (1)

where ,x y X∈ , and ,⋅ ⋅ is the inner product operation in the new space.

An important fact about kernel function is that it can be constructed without knowing the concrete

form of ϕ [1]. Namely, the transform is defined implicitly. There are several typical kernel functions, e.g.

the radial basis function (RBF) kernel: 2(,) exp(| | /)b
i ii

K x y x y σ= − −∑ (20 ≤< b) and the

polynomial kernel (PK): (,) (1)T dK x y x y= + . For all RBF kernels, (,) 1,K x x x X= ∀ ∈ , and the RBF

kernel will become the Gaussian kernel (GK) when b=2.

In the original AddC algorithm, a Euclidean norm is adopted as the distance measure. Here we develop

a novel kernel-induced distance (,)d x y defined as follows

22(,) () ()

() () 2 () () () ()
(,) 2 (,) (,)

T T T

d x y x y

x x x y y y
K x x K x y K y y

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

= −

= − +
= − +

 (2)

The above distance (,)d x y in the feature space corresponds exactly to a class of new non-Euclidian

distances or measures in the original space with varying kernels. It has been proved in [8] that the

measures based on the RBF kernels including GK are all robust but the measure induced by the PK is not

according to Huber M-estimator theory [4]. In summary, different kernels can induce different distance

measures with different properties and thus can induce different clustering algorithms. In this letter, we

only consider the Gaussian kernel for the simplicity of representation. From the above discussions, it is

obvious that when the Gaussian kernel is used in Eq. (2), the distance (,)d x y can be simplified as

2(,) 2 2 (,)d x y K x y= − .

2.2 Proposed ROC algorithm

In this section, we are in a position to present the robust online clustering (ROC) algorithm based on

the kernel-induced distance measure introduced in the last section. Similar to the AddC algorithm, the

ROC algorithm can also be divided into three main steps. For a new arriving data point, we first look for

and update the winner among the prototypes using the kernel-induced measure. Then we merge the two

closest prototypes in order to obtain a redundant prototype for future learning. At last, we remove all

clusters with negligible data points. The detailed description of the proposed algorithm is as follows (Note

that we follow the notation used in [3]). There is a parameter controlling the scale of the desired solution in

the ROC, which is denoted by maxN , a possible maximum number of prototypes available. The final

number of prototypes may be less than maxN because of the removing of clusters in the last step.

Apparently, different values for maxN may result in clustering results with different scales. Generally the

value of maxN is given in advance.

The proposed ROC algorithm:

Step 1: Set the threshold ε , a parameter used to control the final number of clusters, and initialize the

system with zero prototypes: 0N = .

Step 2: Input a new data point x . The prototype closest to the data point is defined as the winner:

winner =
1
arg min((,))i

i K
d x y

≤ ≤
, where (,)id x y is defined in Eq. (2). Update the winner prototype winnery

and its weight winnerc as follows:

(,)winner winner winnerc c K x y= + ; winner
winner winner

winner

x yy y
c
−

= + (3)

where the kernel function K(x, y) as defined in Eq. (1).

Step 3: If maxN N< , then 1N N= + , set Nδ = , and go to Step 5.

Step 4: Find the two closest prototypes:{ }
1

, arg min((,))
K

d y y
γ δ
γ δ

γ δγ δ
≤ ≤ ≤

≠

= . Merge the two prototypes

using the following equation:

y c y c
y

c c
γ γ δ δ

γ
γ δ

+
=

+
; c c cγ γ δ= + (4)

Step 5: Initialize the prototype yγ with the new data x and set its weight to zero: y xγ = ; 0cγ = .

Step 6: while there remains data to be clustered, go to Step 2.

Step 7: Post-processing: Remove all clusters with a negligible weight, i.e. cα ε< .

Note that the proposed ROC algorithm is similar to the AddC algorithm, but there are two major

differences: one is that the ROC uses a kernel-induced distance measure to replace the original Euclidean

norm in AddC, and different kernel functions can induce different kinds of distance measures and thus

different clustering algorithms in ROC. The other is the update of the weight winnerc , it is updated with the

kernel (,)winnerK x y between the data x and the winner winnery rather than simply set to constant 1 as in

the whole clustering course of the AddC. Possibly, it is a very point that makes the AddC sensitive to noise

and outliers. For example, when we take the Gaussian RBF kernel, (,)winnerK x y will approach to 1

for x near to winnery ; on the other hand, (,)winnerK x y will approach to 0 for x far away from winnery , i.e.

an outlier. As a result, the outlier does not cause too much effect on the prototype winnery . It is the distance

information used in the weight of the winner prototype that is expected to make ROC more robust to noise

or outlier than AddC.

3. Simulation results

3.1 Artificial data set

We use the same dataset as in [3] in the experiment. At first glance, i.e. when viewed at low resolution,

the dataset contains 3 clusters, as shown in Fig. 1(a). However, when viewed at high resolution, the same

dataset has 9 clusters, as shown in Fig. 1(b). When the dataset is not corrupted by noise, both AddC and

ROC can correctly clustering the data under different scales by setting the parameter maxN with

corresponding different scales. We use the Gaussian kernel with σ = 1 for ROC. Fig. 1(a) and (b) show the

results of AddC and ROC with maxN = 4 and 10 respectively. For more values of maxN , the results are in

Table 1. It can be seen that ROC has equivalent performance with AddC without noises.

Fig. 1(c), (e) and (g) show the clustering results with maxN = 4 when corrupted by 10%, 20% and 30%

random noises respectively, and Fig. 1(d), (f) and (h) show the clustering results with maxN = 10 when

corrupted by 10%, 20% and 30% random noises respectively. Table 1 shows the number of clusters found

by AddC and ROC respectively under different Nmax values when corrupted by 20% random noises.

According to Fig.1, AddC is very sensitive to the added noises and its performance deteriorates greatly as

the level of noises increases. However, ROC achieves nearly the same result as in Fig. 1(a) when maxN = 4

under all levels of noises. That is, ROC successfully eliminates the disturbance of noises at low resolution.

When maxN = 10, ROC both find three clusters under 10% and 20% added noises respectively, unlike the

nine clusters in Fig. 1(b) without noises. We guess that the random noises have destroyed the fine

structures of the dataset, and thus affected the final clustering at high resolution. And ROC begin to fail

under 30% added random noises for maxN = 10, as shown in Fig. 1(h), where a noise cluster, besides the

normal data clusters, is discovered by ROC.

3.2 Benchmark data sets

In the following experiment, we test the performances of AddC and ROC on 13 benchmark data sets 1.

For each data set, we only use the first group of training patterns for clustering. Table 2 shows the total

number of patterns and misclassified number of patterns by AddC and ROC respectively. In the ROC

algorithm, the Gaussian kernel with σ = 5 is used for all the 13 data sets.

According to Table 2, for 'banana', 'flare-solar' and 'image' data sets, the clustering performances of the

AddC are all a little superior to those of ROC. While for the rest data sets, ROC has all the same or better

performance than AddC. And such a contrast is especially distinct for "heart', 'twonorm' and 'waveform'

data sets, where ROC has 2-4 times less misclassified numbers of patterns than AddC. The corresponding

classification errors of ROC on "heart', 'twonorm' and 'waveform' data sets are 21.18%, 11.25% and

19.75% respectively. Remember that there is only one pass in the clustering process of the ROC algorithm

and hence the execution speed is very fast. The above performance of ROC is very competitive.

1 available at: http://web.rsise.anu.edu.au/~raetsch/data/index.html

4. Conclusions

Base on a kernel-induced measure, a robust online clustering algorithm named ROC is proposed in this

paper to breakthrough the limit of the AddC algorithm. We compare experimentally the performances of

ROC and AddC on the artificial and benchmark data sets. Experimental results show that ROC is more

robust to noises and has less classification errors than AddC in most cases.

In this paper, only the Gaussian kernel is used for the simulations. Furthermore, we fix the kernel

parameter σ to 5 in the real data experiments here for simplicity. The classification errors of ROC can

actually be further reduced if we optimize the parameter, which will be the ongoing and future research.

Moreover, other type of kernels such as the polynomial kernel can also be exploited and investigated.

Acknowledgements

This work was supported in part by the National Science Foundations of China and of Jiangsu under

Grant Nos. 60271017 and BK2002092 respectively.

References

[1] N. Cristianini, J.S. Taylor, An Introduction to SVMs and Other Kernel-based Learning Methods,

Cambridge University Press, 2000.

[2] D. Deng, N. Kasabov, On-line pattern analysis by evolving self-organizing maps, Neurocomputing 51

(2003) 87-103.

[3] I.D. Guedalia, M. London, M. Werman, An on-line agglomerative clustering method for nonstationary

data, Neural Computation 11 (1999) 521-540.

[4] P J. Huber, Robust statistics, Wiley, New York, 1981.

[5] A.K. Jain, R.C. Dubes, Algorithms for clustering data. Englewood Cliffs NJ: Prentice Hall, 1988.

[6] B. Schölkopf, A. Smola, K.R. Müller, Nonlinear component analysis as a kernel eigenvalue problem,

Neural Computation 10 (5) (1998) 1299-1319.

[7] N. Ueda, R. Nakano, A new competitive learning approach based on an equidistortion principle for

designing optimal vector quantizers, Neural Networks, 7 (8) (1994) 1211-1227.

[8] D. Zhang, S. Chen, Clustering incomplete data using kernel-based fuzzy c-means algorithm, Neural

Processing Letters 18 (2003) 155-162.

Figure captions

Fig. 1 Performance of AddC and ROC in clustering nonstationary data: (a) Nmax = 4 without noise, (b) Nmax

= 10 without noise, (c) Nmax = 4 with 10% noises, (d) Nmax = 10 with 10% noises, (e) Nmax = 4 with 20%

noises, (f) Nmax = 10 with 20% noises, (g) Nmax = 4 with 30% noises, (h) Nmax = 10 with 30% noises.

•(dot)-data points, □(square)-prototypes of AddC, *(star)-prototypes of ROC.

List of Tables

Table 1 Number of clusters found by AddC and ROC under different Nmax values

Table 2 Clustering performances of AddC and ROC on 13 benchmark data sets

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

(a) (b)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

(c) (d)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

(e) (f)

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

0 2 4 6 8 10 12

0

1

2

3

4

5

6

7

(g) (h)

Fig. 1 Performance of AddC and ROC in clustering nonstationary data: (a) Nmax = 4 without noise, (b) Nmax

= 10 without noise, (c) Nmax = 4 with 10% noises, (d) Nmax = 10 with 10% noises, (e) Nmax = 4 with 20%
noises, (f) Nmax = 10 with 20% noises, (g) Nmax = 4 with 30% noises, (h) Nmax = 10 with 30% noises.
•(dot)-data points, □(square)-prototypes of AddC, *(star)-prototypes of ROC.

Table 1 Number of clusters found by AddC and ROC respectively under different Nmax values

Nmax 1 2 3 4 5 6 7 8 9 10
AddC 1 1 2 3 4 5 6 7 8 9 Without

noise ROC 1 1 2 3 4 5 6 7 8 9
AddC 1 1 2 2 3 4 5 6 7 6 With 20%

noise ROC 1 1 2 3 3 3 3 3 3 3

Table 2 Clustering performances of AddC and ROC on 13 benchmark data sets1

Data Set
Total number of

patterns
Misclassified

number of AddC
Misclassified

number of ROC 2
banana 400 137 138

breast-cancer 200 53 46
flare-solar 666 307 315
diabetis 468 165 165
german 700 217 217
heart 170 74 36
image 1300 566 568

ringnorm 400 194 194
splice 1000 484 424

thyroid 140 34 34
titanic 150 39 39

twonorm 400 194 45
waveform 400 183 79

1 Data sets available from: http://web.rsise.anu.edu.au/~raetsch/data/index.html
2 The kernel function used in ROC algorithm is Gaussian kernel with σ = 5 for all data sets

