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Abstract: 

Ridge regression (RR) for classification is a regularized least square method to 

model the linear dependency between covariate variables and labels. By applying 

appropriate techniques to encode the multivariate labels in face recognition as the 

vertices of the regular simplex which can separate points with highest degree of 

symmetry, RR maps the face images into a face subspace where the images from each 

individual will locate near their individual targets. However, as a holistic method, RR 

operates directly on a whole face region represented as a vector and thus can not 

effectively recognize the faces with illumination variations and partial occlusions. In 

this paper, we present a novel algorithm, termed as Local Ridge Regression (LRR). 

Different from RR, LRR emphasizes on each local face region matching rather than 

the whole. As a result, LRR can not only enhance the robustness to the local 

variations by utilizing the spatial and geometrical information of facial components, 

but also avoid the dimensionality reduction in the holistic RR as a preprocessing. 

Furthermore, an efficient cross-validation algorithm is adopted to select the 

regularization parameters in each local region. Experiments on two standard face 

databases demonstrate that the proposed algorithm significantly outperforms RR and 

the two popular linear face recognition techniques (Eigenface and Fisherface). 

Although we concentrate on ridge regression in this paper, following the proposed 

line of the research, many current multi-category classifiers can also be applied in 

face recognition through combining the characteristics of face images and may be 

obtain better recognition accuracies. 
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1. Introduction 

In the past few decades, face recognition has become a hot issue of research in 

computer vision community. Among various developed techniques in this field, 

appearance-based method is one of the most widely used techniques which usually 

represents a face image as a high dimensional vector of pixels[1]. To overcome the 

difficulty incurred by high dimension, a lot of subspace methods have been proposed 

where Eigenface[2] and Fisherface[3] are two of the most popular algorithms. 

Eigenface is an unsupervised method which utilizes the idea of Principle Component 

Analysis (PCA) to project the original high dimensional data onto a low dimensional 

subspace that can maximally preserve original image information[4]. Fisherface is a 

supervised algorithm which combines PCA and Linear Discriminant Analysis (LDA) 

to extract the most discirminant features that can maximally separate the images of 

different classes in the resultant face subspace. Although Fisherface further introduces 

the class information compared to Eigenface, it is affected heavily by the relative 

positions of the labeled training images due to the weakness of LDA. An et al.[1] have 

indicated that in the multi-category face recognition problems, while LDA tries to 

maximize the between-class distances and minimize the within-class distances 

simultaneously, the pairwise distances can be significantly unbalanced and this may 

result in bad performance for classes with small pariwise between-class distances in 

the reduced subspace.  

Recently, a new generalized Ridge Regression (RR) method[1] has been 

proposed to solve the latent problem of Fisherface. Motivated by the fact that the m 

vertices of a regular m-simplex is the most balanced and symmetric separate points in 

the (m-1)-dimensional space, the method first encodes the targets for m distinct 

individuals as the m vertices and then applies the ridge regression to map the training 

face images into the (m-1)-dimensional subspace so as to the images from each 



individual will locate near their individual targets[1]. Recognition is performed by 

mapping the new face images into the subspace and comparing its distance to all the 

targets. However, although RR has yielded much better recognition performance than 

Eigenface and Fisherface experimentally, like the two methods, RR is also a holistic 

technique which operates directly on a whole face region and neglects the local 

information. As a result, RR is sensitive to the local variations in face images, such as 

illumination variations and partial occlusions.  

For using as much local information hidden in face images as possible to relax 

the influence of local variation for recognition, recently various local region matching 

techniques have been developed[4-10]. The general idea of local region matching 

techniques is to first locate several facial features (components), and then classify the 

faces by comparing and combining the corresponding local statistics[11]. Heisele et 

al.[12] further indicated that comparing the component (local) system and the global 

systems, the former outperforms the latter in recognition rate larger than 60%[11]. 

Consequently, in this paper, we also apply local region matching techniques into RR 

and present a novel algorithm, termed as Local Ridge Regression (LRR). LRR first 

partitions an originally whole image into L equally sized local regions in 

non-overlapping or overlapping ways, and then collects all those local regions sharing 

the same original feature components respectively from the training set to compose L 

corresponding local region training sets. Ridge regression is performed on each of 

such L local region sets to directly train different L classifiers by the different face 

features. The new unlabeled face image is identified by also partitioning into L local 

regions in the same way as the training phase and classifying each local region by the 

corresponding classifier. The final recognition result is obtained by assembling the 

total L results from the L classifiers and voting. In this way, not only is the spatial and 

geometrical information in a face image preserved in each local region, but also the 

influence of local variations is restrained in several local regions by the classifiers’ 

voting so as to greatly improve the recognition accuracy. 

There are three major contributions of the proposed LRR. First, LRR is more 

robust to the local variations than the holistic RR. Second, LRR can simultaneously 



train a set of classifiers corresponding to different local regions and thus it is quite 

suitable for parallel computation to greatly improve the computational efficiency of 

the holistic RR, especially in the large-sized image cases. Third, the partition of local 

regions in LRR is independent on the dimension of the face image. Consequently, it 

can avoid the dimensionality reduction in the holistic RR as a preprocessing. 

Furthermore, it can also escape the latent dimensional curse when the dimension of 

the images is quite large. 

The rest of the paper is organized as follows. In section 2, we briefly review the 

holistic RR method. Section 3 presents the proposed LRR. Section 4 provides 

experimental results on two face databases to illustrate the superiority of LRR. Some 

conclusions are drawn in Section 5. 

2. Ridge Regression (RR) 

Suppose there are m individuals for recognition. RR algorithm usually has three 

parts: labeling training images, learning classifier and recognition. 

Firstly, RR chooses the regular simplex vertices as the individual targets and uses 

these targets as the multivariate labels of the training images[1]. Let 
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Then, RR treats the face recognition as a ridge regression problem to locate the 

images from each individual as near their individual targets as possible. As a result, 

the task of learning classifier in RR is to find a matrix W  that can model the linear 



dependency between the image ix  and the label iY , where i j=Y T  if ix  belongs 

to the jth individual, 1, ,i n= , 1, ,j m= . Meanwhile, RR also penalizes the norm 

of W  to reduce the variance of the estimate as the regularization term. Therefore, 

the objective function (2) of RR is minimizing 
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where λ  is the regularization parameter to balance the bias and variance of the 

estimate. 

Taking derivative of (2) with respect to the W and equaling it to zero, we have 

the matrix W  as 

1( )T Tλ −= +W XX I XY                      (3) 

where 1[ , , ]n=X x x  and 1[ , , ]n=Y Y Y . 

Finally, let x  be a new image. RR compares the distances between TW x  and 

the individual target iT  and identifies x  as that with minimal distance. 

3. Local Ridge Regression (LRR) 

 In this section, we propose a novel algorithm to solve the sensitivity of local 

variations in RR. Relatively to the holistic RR, here we abuse the terminology, i.e. 

local, to name the proposed algorithm as Local Ridge Regression (LRR). Following 

the line of the research in the local region matching methods, LRR also involves three 

steps: local region partition, classifier training and classification. It is noteworthy that 

LRR avoids the general dimension reduction preprocessing in the classifier training 

phase due to the partition, and thus it is much simpler. 

3.1. Local Region Partition  

Generally, there are two different techniques to implement the partition, that is, 

local components and local regions. Local components are areas occupied by the 

facial components, such as eyes, noses and mouths, and centered independently at the 

component centers; Local regions are local windows centered at designated 



coordinates of a common coordinate system[11]. Zou et al.[11] have verified that 

comparison of corresponding local regions is better than comparing corresponding 

facial components. So, in this paper, we adopt the simplest rectangular regions to 

partition images, which not only are conveniently used but also can better preserve the 

spatial and geometrical information in the original images[4-6].  

Suppose that there are n 1 2W W×  images belonging to m individuals in the 

training set, and these individuals possess 1 2, , , mn n n  face images respectively. 

Each image is first divided into L equally sized local regions in a non-overlapping 

way which are further concatenated into corresponding column vectors with 

dimensionality of 1 2 /W W L× . Then we collect these vectors at the same position of 

all face images to form a specific local region training set, in this way, L separate local 

region sets are formed[5]. This process is illustrated in Fig. 1. 

Non-overlapping partition sometimes may divide the relation between each 

sub-image and lead to totally neglect the relation between local regions. Consequently, 

we also attempt the overlapping partition way which can connect the adjacent local 

regions and combine the different information in each regions. The process is 

illustrated in Fig. 2. In Section 4, we will verify the conjecture that comparison of 

overlapping regions is better than comparing non-overlapping regions. 

       
 

 

       

 

Fig.1. The construction of local region face image sets (Images are from the Extended Yale face 
database B[13]) 
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Fig.2. The construction of overlapping local region face image set (The image is also from [13]) 

 

3.2. Classifier Training 

After partitioning L local regions, we can apply the ridge regression in each local 

region set to find the corresponding matrix dW , 1, ,d L= .  

1[ ( ) ]d d d T d Tλ −= +W X X I X Y                      (4) 

where 1 2[ , , , ]d d d d
n=X x x x  is the pixel matrix of the dth local region set of the 

training images, and 1[ , , ]n=Y Y Y  is the label matrix as in the original RR 

algorithm. λ  is the regularization parameter. Due to the partition independent on the 

dimension of the images, the LRR algorithm avoids the dimension reduction 

preprocessing in the original RR and directly learns the local classifiers. 

Especially, the regularization parameter λ  is a crucial hyper-parameter in the 

LRR which controls the good generalization performance of the trained classifier. 

Hence, here we will discuss the option of λ  in detail. A popular way to estimate λ  

is cross-validation. In k-fold cross-validation, the training dataset is randomly split 

into k disjoint subsets. A classifier is trained for k times on stochastic k -1 subsets and 

a subset is left out as the validation set to be used for estimating the generalization 

error at the same time[14]. Finally, the classifier corresponding to the parameter with 

the lowest average estimated risk is chosen. However, the original implementation of 

k-fold cross-validation trains a predictor for each split of the data and thus has much 

expensively computational complexity if k is large[1]. An et al.[1] further developed 

an efficient technique for general k-fold cross-validation of the generalized RR with 



multivariate labels. So, here we also adopt this technique to estimate λ  in each local 

region set.  

Generally, for a new image x , we first partition it into L local regions as in the 

training images. Then the corresponding predicted label in each local region is  

( ) ( )d d T d=Y x W x  

          1( ) [ ( ) ]d T d d T dλ −= +Y X X X I x  

          1[( ) ] ( )d T d d T dλ −= +Y X X I X x  

( ) ( )d T d T dA X x                          (5) 

where dx  denotes the pixel vector of the dth local region in the new image, and 

1[( ) ]d d T d Tλ −= +A X X I Y                      (6) 

In k-fold cross-validation, we split the data into k approximately equally sized 

subsets , 1{ } ln
l i i=x , 1, ,l k= . As in [1], we also split the label matrix Y  and dA  

into k sub-matrices as follows: 

(1) (2) ( ), , ,
TT

k⎡ ⎤= ⎣ ⎦Y Y Y Y , (1) (2) ( ), , ,
Td d d d
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where ( ) ,1 ,2 ,, , ,
l

TT T T
l l l l n⎡ ⎤= ⎣ ⎦Y Y Y Y .  

Without loss of generality, we leave the lth subset aside as the validation set. 

Then the corresponding predicted labels ( )l
cvY  can be directly computed as follows: 
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and i jn n
ij

×∈B R , for , 1, ,i j k= . For more details, the readers can refer to [1]. 

We identify each local region d
cvx  of the validation images by comparing the 

distances from the predicted labels ( )l
cvY  to the individual targets iT , 1, ,i m= . 

Then we sum up all recognition errors in the k-fold cross-validation in the 



corresponding local region set and choose the optimal parameter λ  with the minimal 

error for each local classifier.  

In summary, the procedure of classifier training in each local region set can be 

formally stated as follows: 

Input: The local region set 1 2[ , , , ]d d d d
n=X x x x , 1, ,d L=  

Output:λ  and dW . 

1. Label the multivariate label iY  of d
ix  as the regular simplex vertices jT , 1, ,j m= ; 

2. Choose the regularization parameter λ : 

2.1. Compute 1[( ) ]d T d λ −+X X I ; 

2.2. Compute dA  and llB  from (6) and (9) respectively; 

2.3. Compute the predicted label ( )l
cvY  from (8), 1, ,l k= ; 

2.4. Identify the validation images d
cvx  by comparing the distances from the predicted labels 

( )l
cvY  to the individual targets jT , 1, ,j m= ; 

2.5. Sum up all recognition errors in the k-fold cross-validation and choose the optimal 
parameter λ  with the minimal error; 

3. Compute dW  from (4). 

3.3. Classification 

For an unknown face image x , we will classify it by classifiers’ voting. In this 

way, the influence of local variations, such as illumination variations and partial 

occlusions, will be restricted in the several local regions so as to greatly improve the 

recognition robustness to the variations. As described in Section 3.2, we first partition 

x  into L local regions. Then in each local region, the image’s identity is determined 

by comparing the distances from the predicted label produced by the corresponding 

local classifier to the individual targets iT s. Since one classification result for the 

unknown image is generated independently in each local region, there will be total L 

results from L local regions. Let the probability of the image x  belonging to the cth 

class is[6] 
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Then the final classification result is  

1
( ) arg max( )cc m

Identity P
≤ ≤

=x                    (11) 

4. Experiments 

4.1. Face Image Databases 

We carry out our experiments on two face image databases: the AR face 

database[15] and the Extended Yale face database B[13]. 

The AR database contains 100 individuals with different facial expressions, 

illumination conditions and occlusions. Each individual has 26 face images taken in 

two sessions. The first session has 13 face images named from 01 to 13, including 

neutral expression (01), different facial expression (02-04), different lighting (05-07), 

occlusions with sunglasses (08-10) and a scarf (11-13) under different lighting. The 

second session exactly duplicates the first session two weeks later[11]. For 

psychophysical experiments have indicated that eye is most important for 

recognition[16, 17], here we omit the pictures occluded by sunglasses. We use 

“01-07” pictures in the first session from each individual as gallery. And our 

experiments are conducted on four probe sets: AR11-13 (“11”, “12” and “13” pictures, 

occlusions with a scarf in Session 1), AR15-17 (“15”, “16” and “17” pictures, 

different expressions in Session 2), AR18-20 (“18”, “19” and “20” pictures, different 

lighting conditions in Session 2), AR24-26 (“24”, “25” and “26” pictures, occlusions 

with a scarf in Session 2). The 2000 images are all cropped into the same size of 66×

48 pixels.  

The extended Yale face database B contains 38 individuals and around 64 near 

frontal images under different illuminations per individual. All image data are 

manually aligned, cropped and then resized to 32×32 pixels just as in [1]. A random 

subset with l (l=5, 10, 20, 30) images per individual is taken with labels to form the 



training set, and the rest of the database is the testing set[1]. For each given l, the 

experiments is repeated over 50 random splits by using the matlab data files in [13], 

and the average results are reported.  

4.2. Evaluation of Classification Performance 

We compare the proposed LRR with the most popular face recognition methods: 

Eigenface, Fisherface and the originally holistic RR on the two face databases. In 

LRR, we attempt the different partition sizes according to the different sizes of the 

images in the databases by cross-validation and the selected experimental results are 

reported. In the AR database, the sizes of local regions are 11×8, 22×16 and 33×24; 

And in the extended Yale database B, the sizes are designated to 4×4, 8×8 and 16×

16 respectively. We also attempt the non-overlapping and overlapping partition ways. 

In the overlapping way, the adjacent local regions overlap each other almost 50%. The 

corresponding classification results are listed in Table 1 and 2 respectively, where 

Eigenface, Fisherface and the holistic RR all involve the dimension reduction and the 

optimal results are reported. 

As shown in Table 1, LRR is significantly superior to the other three holistic 

methods in all the probe sets in the AR database, basically within all combinations of 

the size of local regions and non-overlapping or overlapping way. Especially in the 

AR11-13, AR18-20 and AR24-26 corresponding to different light conditions and 

occlusions with a scarf, LRR shows the surprisingly high robustness to these local 

variations and the optimal recognition error rates are less than 50% of those in the 

other algorithms.  

The similar conclusion can also be drawn in the extended Yale database B in 

Table 2. The face images in the database mostly have pose and illumination variations. 

LRR also shows the best classification performance corresponding to all the different 

training sets. Especially, when the numbers of the training images are smaller, such as 

in 5Train and 10Train, LRR achieves much better recognition accuracies. 

Furthermore, it is noteworthy that, the options of the appropriate size of local 

regions and overlapping way are still open problems. However, here we can capture 



some empirical observations about the options in LRR. Obviously, from Tables 1 and 

2, in the two databases, the optimal classification performances of LRR are 

accomplished both in the middle partition size and in overlapping way, which even 

exceed the other combinations in LRR over 50%. These exactly accords with our 

conjecture in Section 3.1, that is, the middle-size and overlapping partition way can 

connect more spatial and geometrical information in adjacent local regions. 

Table 1. Classification performance (error rate %) comparison on the AR face database 

 AR11-13 AR15-17 AR18-20 AR24-26 
Eigenface 89.00 22.00 23.33 94.67 
Fisherface 64.00 19.00 16.33 83.33 

RR 35.33 8.33 4.67 66.00 
LRR 11×8, non-overlapping 23.00 18.00 3.67 50.67 

LRR 11×8, overlapping 17.67 15.33 4.33 44.67 
LRR 22×16, non-overlapping 24.33 12.67 2.33 54.33 

LRR 22×16, overlapping 11.00 8.00 0.67 33.33 
LRR 33×24, non-overlapping 30.33 14.33 4.67 50.33 

LRR 33×24, overlapping 23.00 8.67 1.00 41.67 

 

Table 2. Classification performance (error rate %) comparison on the extended Yale face database B 

 5 Train 10 Train 20 Train 30 Train 
Eigenface 63.60 46.40 30.40 22.50 
Fisherface 24.50 12.40 8.70 13.30 

RR 23.80 12.00 4.77 2.28 
LRR 4×4, non-overlapping 52.09 43.46 37.12 35.23 

LRR 4×4, overlapping 26.33 16.39 11.12 7.67 
LRR 8×8, non-overlapping 11.96 4.85 2.63 1.78 

LRR 8×8, overlapping 10.24 3.85 2.03 1.42 
LRR 16×16, non-overlapping 19.42 8.63 4.26 2.29 

LRR 16×16, overlapping 23.24 11.13 5.26 3.02 

 

5. Conclusions 

In this paper, we have proposed a new face recognition technique LRR based on 

the insights of the originally holistic RR. To overcome the sensitivity of RR to local 

variations, LRR adopts the popular local region matching techniques. As a result, 

LRR not only enhances the robustness to the variations, but also effectively avoids the 



latent dimensional curse when the dimension of the images is very large. 

Experimental results demonstrate the surprisingly good classification performance of 

LRR. It is worth to note that, although we concentrate on the improvement of RR in 

the whole paper, the proposed line of the research about LRR is general. Through 

combining the spatial and geometrical information of facial components in local way, 

many current multi-category classifiers can also be applied in face recognition and 

may obtain better recognition performance, which deserves our future researches.  

Furthermore, tensor subspace models are one of the modern research directions 

in the face recognition. Many researches have showed that representing the images as 

tensors of arbitrary order can further improve the performance of algorithms in most 

cases[18-24]. Consequently, how to generalize LRR to tensor learning is another 

interesting topic for future study. 
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